• Tidak ada hasil yang ditemukan

A smoothness indicator for numerical solutions to the Ripa model.

N/A
N/A
Protected

Academic year: 2017

Membagikan "A smoothness indicator for numerical solutions to the Ripa model."

Copied!
23
0
0

Teks penuh

(1)

Contents Introduction FVM NEP Numerical tests Conclusion

A smoothness indicator for numerical solutions to

the Ripa model

Sudi Mungkasi1 and Stephen Roberts2

1Sanata Dharma University, Yogyakarta, Indonesia 2Australian National University, Canberra, Australia

A Presentation in ICMAME 2015

(2)

Contents Introduction FVM NEP Numerical tests Conclusion

Outline

Introduction: governing equations Finite Volume Method (FVM) Numerical entropy production (NEP) Numerical tests

(3)

Contents Introduction FVM NEP Numerical tests Conclusion

Shallow water flows

(4)

Contents Introduction FVM NEP Numerical tests Conclusion

Shallow water equations

The Ripa model

The shallow water wave equations involving the water temperature fluctuations are

∂h

∂t +

∂(hu)

∂x = 0, (1)

∂(hu)

∂t +

∂(hu2+1 2gh2θ)

∂x =−ghθ dz

dx, (2)

∂(hθ)

∂t +

∂(hθu)

(5)

Contents Introduction FVM NEP Numerical tests Conclusion

Ripa model

A balance law

The Ripa model can be rewritten as a balance law

∂q

where the vectors of conserved quantities, fluxes, and sources are respectively given by

(6)

Contents Introduction FVM NEP Numerical tests Conclusion

Illustration

(7)

Contents Introduction FVM NEP Numerical tests Conclusion

Finite volume scheme

Finite volume scheme

A semi-discrete finite volume scheme for the homogeneous Ripa model is

∆xj d

dtQj +F(Qj,Qj+1)− F(Qj−1,Qj) =0 (6)

whereF is a numerical flux function consistent with the

homogeneous Ripa model. Here ∆xj is the cell-width of the jth

cell.

We continue discretising the semi-discrete scheme (6) using the first order Euler method for ordinary differential equations. We obtain the fully-discrete scheme

Qnj+1 =Qnj −λnj Fnj+1 2

−Fnj −12

(8)

Contents Introduction FVM NEP Numerical tests Conclusion

Entropy inequality

Entropy, entropy flux, and entropy inequality

Entropy solutions of the Ripa model must satisfy the entropy inequality

∂η ∂t +

∂ψ

∂x ≤0 (8)

in the weak sense for all entropies. We consider the entropy pair

η(q) =hu

2

2 +

g

2hθ(h+z), (9)

ψ(q) =hu(u

2

2 +gθ(h+z)) (10)

(9)

Contents Introduction FVM NEP Numerical tests Conclusion

Numerical scheme for entropy

Semi discrete scheme for entropy

We take a semi discrete scheme

∆xi d

dtΘi + Ψ r(Q

i,Qi+1,zi,r,zi+1,l)−Ψl(Qi−1,Qi,zi−1,r,zi,l) = 0

(11)

to get the value of Θn

i , where

Ψr(Q

i,Qi+1,zi,r,zi+1,l) := Ψ(Qi,r∗ ,Q∗i+1,l,zi∗+1/2) (12)

and

Ψl(Qi−1,Qi,zi−1,l,zi,r) := Ψ(Q∗i−1,r,Q∗i,l,zi∗−1/2) (13)

(10)

Contents Introduction FVM NEP Numerical tests Conclusion

Definition of the numerical entropy production

Definition

The numerical entropy production is

Ein= 1 ∆t(η(Q

n

i)−Θni), (14)

(11)

Contents Introduction FVM NEP Numerical tests Conclusion

Some indicators to compare

We compare the results of NEP (Numerical Entropy Production) to

Karni, Kurganov, and Petrova’s (KKP) local truncation error [2]

The KKP indicator is defined atx =xi,t =tn:

Constantin and Kurganov’s (CK) local truncation error [1]

(12)

Contents Introduction FVM NEP Numerical tests Conclusion

Test 1

Moving shock in a dam break problem

We consider a reservoir with horizontal topography

z(x) = 0, 0<x <2000, (15)

and an initial condition

u(x,0) = 0, w(x,0) =

 

0 if 0<x<500,

10 if 500<x <1500,

5 if 1500<x <2000.

(13)

Contents Introduction FVM NEP Numerical tests Conclusion

Test 1

Moving shock in a dam break problem, 20 s:

(14)

Contents Introduction FVM NEP Numerical tests Conclusion

Test 2

Stationary shock on a parabolic obstruction

We consider a channel of length 25 with topography

z(x) =

0.2−0.05 (x−10)2 if 8≤x ≤12,

0 otherwise. (17)

The initial condition

u(x,0) = 0, w(x,0) = 0.33 (18)

together with the Dirichlet boundary conditions

(15)

Contents Introduction FVM NEP Numerical tests Conclusion

Test 2

Stationary shock on a parabolic obstruction, 50 s:

(16)

Contents Introduction FVM NEP Numerical tests Conclusion

Test 3

Shock-like detection

We consider the initial condition

u(x,0) = 0, w(x,0) = 0.33 (21)

together with the Dirichlet boundary conditions

[w,m,z,h,u] =

0.42,0.18,0.0,0.42,0.18

0.42

at x = 0−, (22)

[w,m,z,h,u] =

0.1,0.18,0.0,0.1,0.18

0.1

(17)

Contents Introduction FVM NEP Numerical tests Conclusion

Test 3

Shock-like detection, 100 s:

(18)

Contents Introduction FVM NEP Numerical tests Conclusion

Test 4

The Ripa problem

We consider the initial condition

q(x,t = 0) =

 

(5,0,15)t if x<0,

(1,0,5)t if x>0.

(19)
(20)
(21)

Contents Introduction FVM NEP Numerical tests Conclusion

Conclusion and future direction

The numerical entropy production detects the location of a shock nicely.

(22)

Contents Introduction FVM NEP Numerical tests Conclusion

References

Constantin L A and Kurganov A 2006Hyperbolic problems:

Theory, numerics, and applications,195

Karni S, Kurganov A and Petrova G 2002Journal of

Computational Physics,178323

Puppo G and Semplice M 2011Communications in

Computational Physics10 1132

Ripa P 1993Geophysical & Astrophysical Fluid Dynamics70

85

Ripa P 1995Journal of Fluid Mechanics303 169

S´anchez-Linares C, Morales de Luna T and Castro D´ıaz M J

2015Applied Mathematics and Computation

(23)

Contents Introduction FVM NEP Numerical tests Conclusion

Referensi

Dokumen terkait

Candi Prambanan merupakan salah satu peninggalan nenek moyang bangsa Indonesia yang terkenal sampai ke manca negara. Pemahaman tentang Candi Prambanan terdapat pada

[r]

[r]

[r]

Dinding usus besar mempunyai tiga lapis yaitu lapisan mukosa (bagian dalam), yang berfungsi untuk mencernakan dan absorpsi makanan, lapisan muskularis

[r]

By the 12 th meeting, Alice had developed the following pattern of working: She would write the statement of the theorem to be proved on the middle board, then look up in the

Bagi pihak pendidik, media pembelajaran ini dapat digunakan sebagai media alternatif dalam mengembangkan metode mengajar pelajaran yang berkaitan (Ilmu Pengetahuan Sosial,