• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:OTHER:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:OTHER:"

Copied!
11
0
0

Teks penuh

(1)

23 11

Article 06.4.2

Journal of Integer Sequences, Vol. 9 (2006), 2

3 6 1 47

Sums Involving the Inverses of Binomial

Coefficients

Jin-Hua Yang

Department of Applied Mathematics

Dalian University of Technology

Dalian, 116024

China

and

Zhoukou Normal University

Zhoukou, 466001

China

Feng-Zhen Zhao

Department of Applied Mathematics

Dalian University of Technology

Dalian, 116024

China

[email protected]

Abstract

In this paper, we compute certain sums involving the inverses of binomial coef-ficients. We derive the recurrence formulas for certain infinite sums related to the inverses of binomial coefficients.

1

Introduction

As usual, the binomial coefficient ¡n

m

¢

is defined by

µ n m

¶ =

( n!

(2)

where n and m are nonnegative integers.

There are many identities involving binomial coefficients. However, computations related to the inverses of binomial coefficients are difficult. For some results involving the inverses of binomial coefficients, see [5, 4, 1, 6, 8, 9, 7, 10]. In order to compute sums involving the inverses of binomial coefficients, using integrals is an effective approach. This idea is based on Euler’s well-known Beta function defined by (see [8])

B(n, m) =

for all positive integersnandm. SinceB(n, m) = Γ(n)Γ(m) Γ(n+m) =

(n1)!(m1)!

(n+m1)! , the inverse binomial coefficient ¡n

m

¢−1

satisfies the identity

µ

with this method, a series of identities related to the inverses of binomial coefficients is obtained (see [8, 9, 7, 10]). In this paper, we also use Eq. (1) to evaluate the sums

where |ε|= 1, and k is an arbitrary positive integer withk > 1. For convenience, we put

S1(k) =

In the next section, we evaluate the sums above. In the third section, we define Wk =

(3)

2

Some Results For

S

i

(

k

)

And

T

i

(

k

) (1

i

2)

Proof. It follows from Eq. (1) that

S1(k) =

It is well known that

∞ X

n=1

un

n =−ln(1−u), for u∈[−1,1). (6)

On the other hand,

(4)

Now we give the proofs of Eqs. (4-5). One can verify that

T1(k) =

It follows from [2,10] that

Hence Eqs. (4-5) are valid.

Next, we extend Si(k) and Ti(k)(i= 1,2) to the following forms:

we give the corresponding results as a corollary:

Corollary 2.1. Let k and m be positive integers. Then

(5)

Proof. We only give the proofs of Eqs. (11-12), and leave the proofs of Eqs. (9-10) to the reader. We can immediately obtain that

T1(k, m) =

Owing to the conclusions (see [10]):

∞ we can show that Eqs. (11-12) hold.

It is evident that Eqs. (9-12) are the generalizations of Eqs. (2-5), respectively. Now we give the recurrence relation forSi(k) andTi(k).

Theorem 2.2. Let k be a positive integer with k2. Then

Proof. For 0< a1, we consider the integrals:

(6)

where Ik(0) = 0 and Jk(0) = 0. It is clear that

arctanu

(1 +u2)k du, (17) It is well known that

Z

arctanu (1 +u2)k du−

u2k−1

(7)

In the meantime, we note that

Z u2k−1

(1 +u2)k+1du=

2 4k+1

Z ak−1

da and Ik(0) =Jk(0) = 0.

ThereforeIk(a) and Jk(a) satisfy that

k+ 1

2k+ 1Ik+1(a) = 2Ik(a)− ak+1

k+ 1 + 4ak

k −

4√4aak−1/2

k arctan

r a

4a, (19) k+ 1

2k+ 1Jk+1(a) = −2Jk(a)− ak+1

k+ 1 − 4ak

k +

2ak−1/2√ a+ 4

k ln

a+ 4 +√a

a+ 4√a.

(20)

From Eqs. (19-20) we can derive Eqs. (13-14). According to Eqs. (4-5) we can obtain Eqs. (15-16).

We note that the recurrences given in Eqs. (13-14) are similar to [3, Eq. (28)].

Theorem 2.3. Let k be a positive integer with k2. Then

Q1(k) =

µ 1 k −1

¶ Z 1

0

ln[1t(1t)] +

k

X

i=1

ti(1t)i/i

tk dt

µ 1 + 1

k ¶ Z 1

0

(1t)kln[1t(1t)]dt, (21)

Q2(k) = (−1)k

µ 1 k −1

¶ Z 1

0

ln[1 +t(1t)] +

k

X

i=1

(1)iti(1t)i/i

tk dt

µ 1 + 1

k ¶ Z 1

0

(1t)kln[1 +t(1t)]dt, (22)

R1(k) =

1 k

Z 1

0

½

ln[1t(1t)] +

k

X

i=1

ti(1t)i

i ¾

dt

µ 2 + 1

k ¶ Z 1

0

tk(1t)kln[1t(1t)]dt, (23)

R2(k) =

(1)k

k Z 1

0

½

ln[1 +t(1t)] +

k

X

i=1

(1)iti(1t)i

i

¾ dt

µ 2 + 1

k ¶ Z 1

0

(8)

Proof. We only give the proof of Eq. (21). The proofs of Eqs. (22-24) follow the same pattern and are omitted here. It follows from Eq. (1) and Eq. (6) that

Q1(k) =

Hence Eq. (21) holds.

By computing integrals of Eqs. (17-18) and Eqs. (21-24), we can establish a series of identities involving inverses of binomial coefficients. In the final part of this section, we evaluate special cases of Si(k), Ti(k), and Ri(k)(1 ≤ i ≤ 2) according to the particular

24uarctanu

(9)

Hence, we get

S1(2) =

13 4 −

7√3π

6 +

π2

3 , T1(2) = 7√3π

12 − 13

8 − 5π2

36 ,

S2(2) = −

11 4 + 5

5 ln

5 + 1

2 −12 ln

2

µ√ 5 + 1

2 ¶

,

T2(2) =

11 8 −

5√5 2 ln

5 + 1 2 + 5 ln

2

µ√ 5 + 1

2 ¶

.

By means of Si(2), Ti(2), and Eqs. (13-16), we can compute other values of Si(k) and

Ti(k)(1≤i≤2, k >2).

If k= 2 in Eqs. (23-24), we can obtain

R1(2) =

1 2

Z 1

0

·

ln(1t+t2) +t(1t) + t

2(1t)2

2 ¸

dt

−52

Z 1

0

t2(1t)2ln(1t+t2)dt

= 17 36−

3π 12 ,

R2(2) =

1 2

Z 1

0

·

ln(1 +tt2)t(1t) + t

2(1t)2

2 ¸

dt

−52

Z 1

0

t2(1t)2ln(1 +tt2)dt

= 1

36+ 5√5

6 ln

51 2 .

3

The Value of

lim

r+

X

r

We know that W1 =

9 , W2 = π2

18, and W4 = 17π4

3240 (see [2]). However, we do not know how to evaluate Wk in closed form when k ≥ 5. In this section, we are interested in

the average Xr of Wk. We compute lim

r→+∞Xr by Eq. (1).

Theorem 3.1. Let r be a positive integer with r >4. Then lim

r→+∞Xr = 1 2.

Proof. One can verify that

Xr =

1 2 +

1 r

∞ X

n=2

1 1

nr

(n1)¡2n n

(10)

Since 1 1

nr+1 <1, the series

∞ X

n=2

1 1 nr

(n1)¡2n n

¢ satisfies that

∞ X

n=2

1n1r

(n1)¡2n n

¢ ≤ ∞ X

n=2

1 (n1)¡2n

n

¢.

It follows from Eq. (1) that

∞ X

n=2

1 (n1)¡2n

n

¢ = ∞ X

n=2

(2n+ 1)R1

0 tn(1−t)ndt

n1 .

Then

∞ X

n=2

1 (n1)¡2n

n

¢ =

∞ X

n=1

(2n+ 3)R1

0 t

n+1(1t)n+1dt

n

= 2 Z 1

0

t2(1t)2dt

[1t(1t)]2 −3

Z 1

0

t(1t) ln[1t(1t)]dt.

Hence lim

r→+∞Xr = 1 2.

4

Acknowledgments

The authors are grateful to the referee for a careful reading and for numerous suggestions, all of which have helped improve the presentation of this article.

References

[1] M. R. Andrew, Sums of the inverses of binomial coefficients,Fibonacci Quart. 19(1981), 433–437.

[2] L. Comtet, Advanced Combinatorics, Reidel, 1974.

[3] C. Elsner, On recurrence formulae for sums involving binomial coefficients, Fibonacci Quart. 43 (2005), 31-45.

[4] P. Juan, The sum of inverses of binomial coefficients revisited, Fibonacci Quart. 35 (1997), 342–345.

[5] P. Nicolae, Problem C:1280, Gaz. Mat. 97 (1992), 230.

(11)

[7] B. Sury, Tianming Wang, and Feng-Zhen Zhao, Some identities involving reciprocals of binomial coefficients, J. Integer Sequences 7 (2004), Article 04.2.8.

[8] T. Tiberiu, Combinatorial sums and series involving inverses of binomial coefficients,

Fibonacci Quart. 38 (2000), 79–84.

[9] WMC Problems Group, Problem 10494, Amer. Math. Monthly103 (1996), 74.

[10] Feng-Zhen Zhao and Tianming Wang, Some results for sums of the inverses of binomial coefficients, Integers 5 (1) (2005), Paper A22.

2000 Mathematics Subject Classification: Primary 11B65.

Keywords: binomial coefficients, integral, recurrence relation.

Received June 26 2006; revised version received September 3 2006. Published in Journal of Integer Sequences, September 3 2006.

Referensi

Dokumen terkait

Pekerjaan Landscape Lingkungan Kampus BPPTD Palembang Tahun Anggaran 2017 dengan nilai.. HPS

Sehubungan dengan poin 2 dan 3 tersebut di atas, POKJA ULP memutuskan bahwa Pelelangan Pekerjaan Pembangunan Gapura Candi Bentar, Pengaspalan Jalan Masuk

Dengan sistem informasi yang berjalan pada saat ini masih belum berjalan secara baik, hal ini dapat dilihat pada lambatnya penanganan proses pendaftaran sertifikat yang

Mengingat pentingnya acara dimaksud, dimohon agar rapat dihadiri oleh Direktur Utama/Pimpinan atau wakil yang memperoleh kuasa penuh dari Direktur

Penelitian ini membuktikan bahwa pemberian ekstrak alkohol biji jengkol ( Pithecolobium lobatum Benth) 1 kali sehari selama 7 hari tidak memberikan efek menurunkan kadar glukosa

[r]

Terkait hasil pengumuman pemenang tersebut di atas, kepada seluruh peserta lelang yang telah memasukkan penawaran kepada Pokja Paket Pekerjaan Supervisi Pengerukan Alur Pelayaran

Alamat Kualifikasi Teknis Keterangan.. EMPIRIS