• Tidak ada hasil yang ditemukan

Staff Site Universitas Negeri Yogyakarta

N/A
N/A
Protected

Academic year: 2017

Membagikan "Staff Site Universitas Negeri Yogyakarta"

Copied!
52
0
0

Teks penuh

(1)

€ Ma nufa c turing is the ind ustria l a c tivity

€ Ma nufa c turing is the ind ustria l a c tivity tha t c ha ng e s the fo rm o f ra w ma te ria ls to c re a te p ro d uc ts.o c e a e p o d uc s.

(2)
(3)
(4)

C d t l ti f i

€ C o mp a re d to p la stic fo rming

te c hno lo g y, ma c hining te c hno lo g y is usua lly a d o p te d whe ne ve r p a rt

usua lly a d o p te d whe ne ve r p a rt

a c c ura c y a nd surfa c e q ua lity a re o f p rime imp o rta nc e .

p p

€ The te c hno lo g y o f ma te ria l re mo va l in ma c hining is c a rrie d o ut o n ma c hine

i f i

to o ls tha t a re re sp o nsib le fo r g e ne ra ting mo tio ns re q uire d fo r p ro d uc ing a g ive n p a rt g e o me try

(5)

€ Ma c hine to o ls fo rm a ro und 70% o f

o p e ra ting p ro d uc tio n ma c hine s a nd a re

h i d b h i hi h d i

c ha ra c te rize d b y the ir hig h p ro d uc tio n a c c ura c y c o mp a re d with me ta l fo rming

hi t l

ma c hine to o ls.

€ Ma c hining a c tivitie s c o nstitute

i t l 20% f th f t i

(6)

€ The a nc ie nt Eg yp tia ns use d the se ro lle rs fo r tra nsp o rting the re q uire d sto ne s fro m

h b ild i i

a q ua rry to the b uild ing site .

€ The use o f ro lle rs initia te d the

intro d uc tio n o f the first wo o d e n d rilling ma c hine , whic h d a te s b a c k to 4000 b c .

(7)

€ Wilkinso n (1775), wa s intro d uc e d b o ring ma c hine , whe n he ma d e the

t f t hi f J

c o mp o ne nt o f ste a m ma c hine o f Ja me s Wa tt.

I 1840 th fi t i l th

€ In 1840, the first e ng ine la the wa s intro d uc e d

( )

€ Ma ud sla y (1771–1831) a d d e d the le a d sc re w, b a c k g e a rs, a nd the to o l p o st to

th i d i

(8)

€ Pla ne rs a nd sha p e rs ha ve e vo lve d a nd we re mo d ifi e d b y Se lle rs (1824–1905)

we re mo d ifi e d b y Se lle rs (1824 1905).

€ Fitc h d e sig ne d the first turre t la the in 1845

€ A c o mp le te ly a uto ma tic turre t la the wa s

€ A c o mp le te ly a uto ma tic turre t la the wa s inve nte d b y Sp e nc e r in 1896. He wa s a lso c re d ite d with the d e ve lo p me nt o f the

c re d ite d with the d e ve lo p me nt o f the multisp ind le a uto ma tic la the .

€ In 1818 Whitne y b uilt the first milling

(9)

€ the c ylind ric a l g rind ing ma c hine wa s b uilt fo r the first time b y Bro wn a nd

(10)
(11)
(12)

Ma c hining

As the c hip is re mo ve d , a ne w surfa c e is e xp o se d

(13)

Machining

C utting a c tio n invo lve s she a r d e fo rma tio n o f wo rk ma te ria l to fo rm a c hip

(14)

€ Wa ste ful o f ma te ria l

› C hip s g e ne ra te d in ma c hining a re wa ste d t i l t l t i th it ti

ma te ria l, a t le a st in the unit o p e ra tio n

€ Time c o nsuming

A hi i ti ll t k

(15)

€ G e ne ra lly p e rfo rme d a fte r o the r ma nufa c turing p ro c e sse s, suc h a s

i f i d b d i

c a sting , fo rg ing , a nd b a r d ra wing

› O the r p ro c e sse s c re a te the g e ne ra l sha p e o f the sta rting wo rkp a rt

sta rting wo rkp a rt

(16)

€ Mo st imp o rta nt ma c hining o p e ra tio ns:

› Turning

› Drilling

› Milling

O th hi i ti

€ O the r ma c hining o p e ra tio ns:

› Sha p ing a nd p la ning Bro a c hing

› Bro a c hing

(17)

Turning

Sing le p o int c utting to o l re mo ve s ma te ria l fro m a ro ta ting wo rkp ie c e to fo rm a c ylind ric a l sha p e

g

a ro ta ting wo rkp ie c e to fo rm a c ylind ric a l sha p e

(18)

Drilling

Use d to c re a te a ro und ho le , usua lly b y me a ns o f a ro ta ting to o l (d rill b it) with two c utting e d g e s

g

(19)

Milling

Ro ta ting multip le -c utting -e d g e to o l is mo ve d a c ro ss wo rk to c ut a p la ne o r stra ig ht surfa c e

g

p g

€ Two fo rms: p e rip he ra l milling a nd fa c e milling

(20)

1. Sing le -Po int To o ls

› O ne d o mina nt c utting e d g e

› Po int is usua lly ro und e d to fo rm a no se ra d ius

› Turning use s sing le p o int to o ls

M lti l C tti Ed T l

2. Multip le C utting Ed g e To o ls

› Mo re tha n o ne c utting e d g e

Mo tio n re la ti e to o rk a c hie e d b ro ta ting

› Mo tio n re la tive to wo rk a c hie ve d b y ro ta ting

(21)

Cutting Tools

g

Figure 21.4 (a) A single-point tool showing rake face, flank, and tool point; and (b) a helical milling cutter, representative of tools with

(22)

€ Thre e d ime nsio ns o f a ma c hining p ro c e ss:

p ro c e ss:

› C utting sp e e d v – p rima ry mo tio n

› Fe e d f – se c o nd a ry mo tio n

› De p th o f c ut d – p e ne tra tio n o f to o l b e lo w o rig ina l wo rk surfa c e

€ Fo r c e rta in o p e ra tio ns ma te ria l

€ Fo r c e rta in o p e ra tio ns, ma te ria l re mo va l ra te c a n b e c o mp ute d a s

R

= v f d

whe re v = c utting sp e e d ; f = fe e d ; d = d e p th o f c ut

MR

R

(23)

C utting C o nd itio ns fo r Turning

g

g

(24)

€ Ro ug hing - re mo ve s la rg e a mo unts o f g g g ma te ria l fro m sta rting wo rkp a rt

› C lo se to d e sire d g e o me try (not to full depth)

› C lo se to d e sire d g e o me try (not to full depth)

› Fe e d s a nd d e p ths: large

C tti d l

› C utting sp e e d s: slow

€ Finishing - c o mp le te s p a rt g e o me try › Fina l d ime nsio ns, to le ra nc e s, a nd finish

› Fe e d s a nd d e p ths: p small

(25)

O rtho g o na l C utting Mo d e l – C hip Thic kne ss Ra tio

C hip Thic kne ss Ra tio

o

t r =

c

t r =

whe re r = chip thickness ratio; to = thic kne ss o f the c hip

p rio r to c hip fo rma tio n; a nd tc = c hip thic kne ss a fte r

(26)

€ C hip thic kne ss a fte r c ut a lwa ys g re a te r tha n b e fo re , so c hip

(27)

€ Ba se d o n the g e o me tric p a ra me te rs o f

th th l d l th h l

the o rtho g o na l mo d e l, the she a r p la ne a ng le φ c a n b e d e te rmine d a s:

α α φ sin cos tan r r − =

1 s α

h hi ti d k l

(28)

She a r Stra in in C hip Fo rma tio n

ABD a ng le ? 90 - Φ

DBE a ng le ? Φ

E E Stra in: DB AC =

γ = tan(φ - α) + cot φ

BD DC AD + = E DB

whe re γ = she a r stra in, φ = she a r p la ne a ng le , a nd α = ra ke a ng le

(29)

Shear Strain in Chip Formation

Fig ure 21.7 She a r stra in d uring c hip fo rma tio n: (a ) c hip fo rma tio n d e p ic te d a s a se rie s o f p a ra lle l p la te s slid ing re la tive to e a c h o the r, (b ) o ne o f the p la te s iso la te d to sho w she a r stra in, a nd (c ) she a r

(30)

Chip Formation

C p o

a o

(31)

1. Disc o ntinuo us c hip

2. C o ntinuo us c hip

3. C o ntinuo us c hip with Built-up Ed g e (BUE)

S t d hi

(32)

Discontinuous Chip

Brittle wo rk ma te ria ls

€ Lo w c utting sp e e d s

€ La rg e fe e d a nd d e p th o f c ut

€ Hig h to o l-c hip f i ti

fric tio n

(33)

Continuous Chip

€ Duc tile wo rk ma te ria ls

p

ma te ria ls

€ Hig h c utting sp e e d s

€ Sma ll fe e d s a nd d e p ths

€ Sh tti

€ Sha rp c utting e d g e

€ Lo w to o l-c hipo o o c p fric tio n

(34)

Continuous with BUE

€ Duc tile ma te ria ls

€ Lo w to me d ium

€ Lo w-to -me d ium c utting sp e e d s

€ To o l-c hip fric tio n c a use s p o rtio ns o f c a use s p o rtio ns o f c hip to a d he re to ra ke fa c e

€ BUE fo rms, the n

b re a ks o ff, c yc lic a lly

(35)

Serrated Chip

€ Se mic o ntinuo us -sa w-to o th

sa w to o th a p p e a ra nc e

€ C yc lic a l c hip fo rms ith a lte rna ting

with a lte rna ting hig h she a r stra in the n lo w she a r

t i

stra in

€ Asso c ia te d with

d iffic ult-to -ma c hine d iffic ult to ma c hine me ta ls a t hig h

(36)

Forces Acting on Chip

€ Fric tio n fo rc e F a nd No rma l fo rc e to fric tio n N € She a r fo rc e Fs a nd No rma l fo rc e to she a r Fn

g

s n

(37)

€ Ve c to r a d d itio n o f

F

a nd

N

= re sulta nt

R

€ Ve c to r a d d itio n o f

F

s a nd

F

n = re sulta nt

R

'

€ Fo rc e s a c ting o n the c hip must b e in

€ Fo rc e s a c ting o n the c hip must b e in b a la nc e :

RR' must b e e q ua l in ma g nitud e to must b e e q ua l in ma g nitud e to RR

R’ must b e o p p o site in d ire c tio n to R

(38)

C o e ffic ie nt o f fric tio n b e twe e n to o l a nd c hip :

F

=

μ

N

=

μ

Friction angle related to coefficient of friction as follows:

β

t

β

(39)

She a r stre ss a c ting a lo ng the she a r p la ne : s s A F S = w t A o

where As = area of the shear plane

φ

sin

As = o

(40)

C o e ffic ie nt o f fric tio n b e twe e n to o l a nd c hip :

F

whe re β is: the friction angle

N F

=

μ = tan β

She a r stre ss a c ting a lo ng the she a r p la ne :

whe re S is: the shear strength

s

A F

S = g

whe re As is: the shear plane area φ

i

w t As = o

s

A

x to is: cut depth

x w is: cutting edge width

φ

sin s

(41)

Cutting Force and Thrust Force

€ F, N, Fs, a nd Fn c a nno t b e d ire c tly me a sure d

€ Fo rc e s a c ting o n the to o l tha t c a n b e

g

g me a sure d :

› C utting fo rc e Fc a nd Thrust fo rc e Ft

Figure 21 10 Forces Figure 21.10 Forces in metal cutting: (b) forces acting on the tool that can be

(42)

€ Eq ua tio ns c a n b e d e rive d to re la te the fo rc e s tha t c a nno t b e me a sure d to the fo rc e s tha t c a n b e me a sure d :

fo rc e s tha t c a n b e me a sure d :

F = Fc sinα + Ft cosα N = Fc cosα - Ft sinα N Fc cosα Ft sinα Fs = Fc cosφ - Ft sinφ Fn = Fc sinφ + Ft cosφ

€ Ba se d o n the se c a lc ula te d fo rc e , she a r stre ss a nd c o e ffic ie nt o f fric tio n c a n b e d e te rmine d

(43)

€ O f a ll the p o ssib le a ng le s a t whic h

she a r d e fo rma tio n c a n o c c ur the wo rk she a r d e fo rma tio n c a n o c c ur, the wo rk ma te ria l will se le c t a she a r p la ne a ng le

φ tha t minimize s e ne rg y, g ive n b y

2 2

45 α β

φ = + −

€ De rive d b y Eug e ne Me rc ha nt

(44)

45 α β

φ

T i h l l

2 2

45 α β

φ = + −

€ To inc re a se she a r p la ne a ng le

› Inc re a se the ra ke a ng le R d th f i ti l (

(45)

Effect of Higher Shear Plane Angle

€ Hig he r she a r p la ne a ng le me a ns sma lle r

she a r p la ne whic h me a ns lo we r she a r fo rc e ,

tti f d t t

ec o

g e S ea

a e

g e

c utting fo rc e s, p o we r, a nd te mp e ra ture

Figure 21.12 Effect of shear plane angle φ : (a) higher φ with a

(46)

€ A ma c hining o p e ra tio n re q uire s p o we r

€ The p o we r to p e rfo rm ma c hining c a n b e c o mp ute d fro m:

P

cc =

F

cc

v

(47)

€ In U.S. c usto ma ry units, p o we r is

tra d itio na l e xp re sse d a s ho rse p o we r (d ivid ing ft lb / min b y 33 000)

(d ivid ing ft-lb / min b y 33,000)

v F HPc = c

where HPc = cutting horsepower, hp 000

33,

(48)

€ G ro ss p o we r to o p e ra te the

ma c hine to o l

P

g o r

HP

g is g ive n b y

P

P c HP HPc

o r

E

Pg = c

E

HPg = c

where E = mechanical efficiency of machine tool

(49)

€ Use ful to c o nve rt p o we r into p o we r p e r unit vo lume ra te o f me ta l c ut

p e r unit vo lume ra te o f me ta l c ut

€ C a lle d unit power, Pu o r unit horsepower, HPuu

o r MR c U R P P = MR c u R HP HP =

(50)

Unit p o we r is a lso kno wn a s the

specific energy U specific energy U

w vt v F R P P U o c MR c

u = =

=

Units for specific energy are typically N-m/mm3 or J/mm3

o MR

(51)

€ Ap p ro xima te ly 98% o f the e ne rg y in ma c hining is c o nve rte d into he a t

€ This c a n c a use te mp e ra ture s to b e ve ry hig h a t the to o l-c hip

(52)

Hig h c utting te mp e ra ture s

1. Re d uc e to o l life

2. Pro d uc e ho t c hip s tha t p o se sa fe ty

ha za rd s to the ma c hine o p e ra to rp

3. C a n c a use ina c c ura c ie s in p a rt

Referensi

Dokumen terkait

Berdasarkan kondisi ini, maka penelitian ini dimaksudkan untuk merancang metode dalam mengoperasikan motor induksi 3 fasa pada sistem tenaga listrik 1 fasa dengan cara

Berdasarkan hasil penelitian dapat disimpulkan sebagai berikut. 1) Kecepatan putar mesin yang palingbaik adalah 1000Rpm. 2) Penggunaan bahan pemoles yang paling baik pada

Suatu kepercayaan dan penerimaan terhadap tujuan dan nilai dari Kantor Akuntan Publik, suatu tekad auditor untuk berusaha sungguh-sungguh demi kepentingan Kantor

Ada briefing antara GM dengan semua manajer setiap pukul 10.00 Data valid, hasil pengamatan sudah sesuai dengan hasil wawancara Pelaksanaan kegiatan operasional/pe

Tugas Akhir ini berjudul Desain Interior Furniture Store dengan Konsep Industrial Modern di Surakarta.. Artikel ini bertujuan untuk menghasilkan desain interior

lindung masih rendah (rata-rata skor 36), terutama dipengaruhi secara nyata oleh masih rendahnya kemampuan pelaku pemberdayaan, kurang tersedianya modal fisik, dan melemahnya

Titik Setiawati, A.210 090 098 Program Studi Pendidikan Akuntansi Fakultas Keguruan dan Ilmu Pendidikan, Universitas Muhammadiyah Surakarta, 2013. Untuk mengetahui pengaruh

Segala puji syukur kehadirat Tuhan YME yang telah melimpahkan seluruh rahmat serta karunia-Nya sehingga penulis diberikan kelancaran dan kemudahan dan mampu menyelesaikan