• Tidak ada hasil yang ditemukan

ANALISIS-EXERGI

N/A
N/A
Protected

Academic year: 2021

Membagikan "ANALISIS-EXERGI"

Copied!
12
0
0

Teks penuh

(1)

Prasekky Hanung Permadi Prasekky Hanung Permadi I0409040 I0409040 Tugas Termodinamika 2 Tugas Termodinamika 2

EXERGI

EXERGI

Definisi Exergi Definisi Exergi Exergi

Exergi adalah poadalah potensi tensi penggunaan penggunaan energi, exergi energi, exergi juga dapat juga dapat diartikan sebagaidiartikan sebagai kerja

kerja maksimun maksimun teoritis yteoritis yang ang mampu mampu diperoleh diperoleh saat sistem saat sistem berinteraksi dberinteraksi dalamalam mencapai kesetimbangan. exergi perlu ditentukan lingkungan referensi yang mencapai kesetimbangan. exergi perlu ditentukan lingkungan referensi yang menunjukkan bagaimana nilai numeric exergi didapatkan.

menunjukkan bagaimana nilai numeric exergi didapatkan.

Lingkungan referensi exergi Lingkungan referensi exergi

Lingkungan referensi exergi atau lingkungan dapat diasumsikan sebagai system Lingkungan referensi exergi atau lingkungan dapat diasumsikan sebagai system kompesibel sederhana yang berukuran besar dan memiliki temperature yang sama pada kompesibel sederhana yang berukuran besar dan memiliki temperature yang sama pada T 

T 00 dan tekanan  P dan tekanan  P 0.0. Walaupun sifat intensif lingkungan tidak berubah, tetapi sifatWalaupun sifat intensif lingkungan tidak berubah, tetapi sifat

ekstensif lingkungan dapat berubah karena interaksi dengan system lain. Perubahan sifat ekstensif lingkungan dapat berubah karena interaksi dengan system lain. Perubahan sifat ekstensif energy berhubungan dengan hukum pertama

ekstensif energy berhubungan dengan hukum pertama T dS T dS , yaitu, yaitu

Karena

Karena T T 00dan tekanan P dan tekanan P 00konstan, maka persamaannya menjadi :konstan, maka persamaannya menjadi :

Dead State Dead State Keadaan

Keadaan mati tercapai mati tercapai ketika terdapat ketika terdapat dua bdua buah syuah system yang stem yang telah mencapaitelah mencapai keadaan setimbang antara keduanya. Pada keadaan mati, masing-masing system dan keadaan setimbang antara keduanya. Pada keadaan mati, masing-masing system dan lingkungan memiliki energy, tetapi nilai exerginya adalah nol, karena tidak adanya lingkungan memiliki energy, tetapi nilai exerginya adalah nol, karena tidak adanya kemungkinan terjadi perubahan spontan di dalam system atau dalam lingkungan, juga kemungkinan terjadi perubahan spontan di dalam system atau dalam lingkungan, juga tidak timbul interaksi antara keduanya.

tidak timbul interaksi antara keduanya.

Aspek exergi Aspek exergi

 Exergi adalah suatu ukuran menjauhnya keadaan system dari keadaanExergi adalah suatu ukuran menjauhnya keadaan system dari keadaan

lingkungan atau merupakan sifat system dari lingkungan bersama-sama. lingkungan atau merupakan sifat system dari lingkungan bersama-sama.

  Nilai exergi tidak dapat negative. Nilai exergi tidak dapat negative. 

(2)

Neraca exergi tertutup

 Neraca exergi sistem tertutup merupakan gabungan dari neraca entropi dan neraca energi sistem tertutup

W : kerja

Q : perpindahan panas antara sistem dan daerah sekitarnya T b : temperature batas

: entropi

Maka neraca exergi adalah

Perpindahan Exergi mendampingi kalor Perpindahan energi dapat dinyatakan :

Tanpa memperhatikan sifat keadaan di sekitarnya, exergi transfer dapat diartikan sebagai besarnya perpindahan exergi yang mendampingi perpindahan kalor ketika kerja yang dapat dikembangkan dengan mensuplai perpindahan kalor ke siklus daya reversible yang beroperasi antara T b<T0.

(3)

Kerja yang dilakukan oleh sistem terhadap lingungan sebanding dengan p0 (V2

 – 

 V1

), maka jumlah kerja maksimum dari sistem kombinasi adalah :

Seperti halnya untuk perpindahan kalor, kerja, dan perpindahan exergi yang menyertai dapat memiliki arah yang sama atau berlawanan. Jika tidak terdapat  perubahan volume system selama proses, perpindahan exergi yang menyertai kerja

sebanding dengan W.

Aliran Exergi

Konsep ini berguna untuk mengatur bentuk volum dari neraca laju exergi. Ketika massa mengalir melalui batas volume alir, maka akan terjadi perpindahan exergi disertai aliran kerja. Persamaan aliran exergi spesifik:

e f  = h

 – 

 h0

 – 

 T 0(s

 – 

 s0 ) + V2 /2 + gz

ket: h dan s = entalp[i dan entropispesifik pada sisi masuk dan sisi keluar h0 dan s0= entalpi dan entropi dalam keadaan mati

Perpindahan Exergi yang Menyertai Kerja Aliran

kerja aliran diberikan dengan dasar

̇

  (pv). Sehingga pengembangan kerja pada sisi masuk dan sisi keluar menjadi:

(4)

[  

   ]̇  

 

Ket:

̇

 = laju aliran massa, p = tekanan, v = volume pada sisi masuk dan sisi keluar Konsep aliran exegi pada suatu system tertutup yang mengisi daerah berbeda pada

waktu t dan waktu kemudian t + ∆t. selama interval waktu ∆t sebagian dari massa awal

yang berada di dalam daerah. Ditunjukkan pada gambar dbwah ini:

Peningkatan volum system

tertutup dalam interval waktu Δt sebanding dengan volume

daerah e sehingga perpindahan exergi yang menyertai kerja adalah

⌊ 

  ⌋



  dimana



[ 

  ]



Pengembangan konsep aliran energy

Ketika aliran massa melewati batas volume atur maka perpindahan exergi yang menyertai adalah

[   

    ]̇

̇



Dimana e adalah energy spesifik pada sisi masuk dan sisi keluardari suatu volume atur. Dan ketika massa masuk dan keluar dari suatu volume atur, maka perpindahan exergi yang menyertai adalah:

(5)

[   

   ]̇ 











Laju waktu perpindahan exergi menyertai aliran massa dan aliran kerja adalah:

   

  

  

̇ 

 ̇











 ̇







Perkembangan exergi berkembang seiring dengan terjadinya entalphi dalam  pengembangan neraca laju energy volum atur dan memiliki setiap besaran yang merupakan penjumlahan aliran massa (energy dalam spesifik untuk entalphi, dan exergi dalam spesifik untuk aliran exergi).

NERACA LAJU EXERGI UNTUK VOLUME ATUR (control volume exergy rate balance)

Berhubungan dengan materi sebelunnya yaitu aliran exerxi,pada materi ini dijekaskan lebih spesifik lagi mengenai volume atur ruang masuk dan keluar pada sebuah system  perpindahannya.Tujuan utama pada materi ini adalah untuk menghitung kerja aliran

pada sisi masuk ataupun keluaran. Persamaan umum neraca laju energy,









Sedangkan pada neraca laju energy volume atur





 













∑



∑





Perbedaan yang dapat diambil adalah pada kerja sisi aliran masuk dan sisi aliran keluar,ditandai dengan symbol berwaarna merah.





(6)

= laju waktu perpindahan kalor pada batas dimana temperature  sesaat adalah Tj





   



     



   



   

   

Bentuk Kondisi Tunak

Bentuk ini adalah dimana pada keadan tunak













  ,jadi dapat dituliskan

dengan persamaan















∑



∑





Efisiensi Exergetik(Hukum Kedua)

Tujuan utama dari materi ini adalah penggunaan konsep exergi dalam menilai keefektifan pemanfaatan sumber energi.

Penyesuaian Penggunaan Akhir Dengan Sumber

Pada sisitem tertutup yang menerima perpindahan kalor,energy akan mengalami kerugian karena terjadi proses perpindahan kalor keselilingnya dengan melewati suatu  permukaan yang bertemperatur berbeda.Dapat diturunkan rumus apabila sistem tersebut  bekerja dalam keadaan tunak dalam persamaan berikut,

(7)

 pers 1





 pers 2





 









Pers 1 mengindikasikan energy dibawa masuk oleh perpindahan kalor,

 

 atau juga digunakan

 , atau kerugian ke sekeliling

Pers 2 menujukkan exergi yang dibawa ke system yang menyertai kalor

  berupa exergi dipindahkan dari system yang menyertai perpindahan kalor

 atau dihancurkan oleh ireversibilitas dalam system.

Efisiensi produk dalam bentuk input/output

η=

sehingga dapat dituliskan,



⁄ 



⁄ 

atau

η



⁄ 



⁄ 

  merupakan efisiensi exergetik.Parameter

 dan η masing

-maing menugkur seberapa  jauh efektifitas yang dapat diukur.Tetapi dalam hal ini

mengukur efisiensi berdasarkan

(8)

Biaya kerugian kalor,dalam system yang terdapat pada gambar diatas sangat memungkinkan adanya penghitungan biaya kerugian kalor .Kalor yang terbyang pada gambar diatas dapat dihitung nilai biaya kerugiannya drngan pers,

[nilai biaya kerugian kalor

 pada

]=

 



⁄ 

Efisiensi Exergetik Pada Komponen Umum

Biasanya efisiensi diperoleh dari penggunaan laju exergetik, namun Pendekatan yang digunakan disini adalah bekerja sebagai suatu model untuk pengembangan persamaan efisiensi exergetik pada komponen lain

Turbin, pada operasi turbi yang dalam keadaan tunak dengan tidak ada perpindahan kalor dengan sekelilingnya, maka dari persamaannya dapat memberikan







 ̇

̇  

 ̇



̇

 ̇

Suku disebelah kiri adalah penurunan aliran exergi dari masukan turbin sampai keluaran. Persamaan ini menunjukkan aliran exergi berkurang sebab turbin manghasilkan

 ̇



 ̇

̇

  dan exergi diproses

 ̇

̇ ̇

. Sehingga efisiensi turbin exergetik adalah

 

̇



 ̇



̇

̇



Kompressor dan Pompa, dalam keadaaan tunak tidak terjadi perpindahan kalor dengan sekelilingnya. Maka dari persamaannya dapat memberikan

 ̇



̇ 







 ̇

̇

Sehingga efisiensi pompa exergetik adalah

  







(9)

Alat penukar kalor tanpa pencampuran, dalam keadaab tunak

̇

(







)̇

(







) ̇

Sehingga efisiensi Alat penukar kalor exergetik adalah:

  ̇

(







)

̇

(







)

Penukar kalor persentuhan langsung, dalam keadaan tunak

̇

(







)̇

(







) ̇

Sehingga efisiensi Penukar kalor persentuhan langsung exergetik adalah:

 ̇

(







)

̇

(







)

PENGGUNAAN EFISIENSI EXERGETIK

Efisiensi exergetik merupakan langkah yang sangat berguna untuk penanfaatan efektivitas sebuah sumber.Ini dapat dilakukan dengan membandingkan nilai efisiensi yang telah ditentukan sebelum dan sesudah modifikasi serta mampu menunjukkan  perbaikan setelahnya.Efisiensi dapat berupa mengurangi konsumsi bahan bakar, memanfaatkan sumber-sumber dengan lebih baik, penambahan investasi dan lain sebagainya. Salah satu metode efisiensi exergetik adalah kogenerasi dimanatujuan utamanya adalah menghasilkan daya dan perpindahan kalor dengan menggunakan suatu sisitem yang terintegrasi dengan tingkat pengeluaran biaya yang lebih rendah dibandingkan pengoperasian masing-masing instalasi tersebut.Beberapa contoh lagi yaitu pemulihan daya dan pemulihan kalor buangan.

TERMOEKONOMI

Hampir disemua industri menggunakan sistem termal dalam proses pengolahan  bahan baku menjadi prodaknya. Perancangan sistem termal juga ditentukan oleh

(10)

 pertimbangan dari sudut ekonomi karena faktor biaya juga menjadi dasar pengambilan keputusan.

Penggunaan Exergi dalam Desain

Gambar diatas megilustrasikan penggunaan exergi pada rancangan, yang menunjukkan sebuah sistem termal. Bahan bakar masuk ke unit pembangkit daya, menghasilkan daya yang kemudian masuk ke unit heat-recovery steam generator  (HRSG) dengan output-an gas pembakaran. Air masuk ke HRSG dengan massa aliran

w menerima exergi akibat perpindahan kalor dari gas pembakaran dan keluar sebagai

uap pada kondisi yang diinginkan untuk kegunaan proses lain. Hasil pembakaran yang masuk HSRG memiliki nilai ekonomi yang dapat dihitung sebagai fungsi nilai bahan  bakar karena sumber exerginya dari inputan yang berupa bahan bakar.

Gambar 7.13 menunjukkan biaya bahan bakar tahunan yang menukar irreveribilitas Heat-recovery

sebagai fungsi ∆

Tave.

Sehingga jika ∆

Tave bertambah besar,

(11)

modal dan biaya bahan bakar. Dari gambar, dapat dilihat bahwa biya total bernilai

minimum pada pada titik a, sehingga ∆

Tavemendekati optimal

 pada titik a’ sampai a”.

Pada kajadian nyata, biaya-biaya tersebut tidak dapat ditentukan secara tepat seperti pada gambar 7.13, karena sebuah sistem termal terdiri dari beberapa komponen yang mana optimasi pada satu komponen tidak menjamin hasilnya akan optimaum pada seluruh sistem.

Biaya Exergi Kogenerasi

Sistem kogenerasi pada prinsipnya memiliki dua produk yaitu tenaga listrik yang dinyatakan dengan

e dan uap tekanan rendah untuk penggunaan beberapa proses.

Pada boiler, total biaya untuk menghasilkan uap aliran keluar sebanding dengan  biaya aliran masuk ditambah biaya-biaya lain dan operasi boiler. Hal ini dinyatakan

dengan neraca laju biaya pada boiler sebagai berikut:

Dimana C nilai biaya dari aliran dan Z b  faktor yang menghitung nilai biaya berkaitan

dengan biaya lain operasi boiler.

Dengan biaya exergi, setiap nilai biaya berhubungan dengan perpindahan exergi dan biaya satuan. Jadi untuk aliran masuk dan keluar dapat ditulis:

Dimana c menyatakan biaya per unit exergi (sen per kWh) dan berkaitan dengan laju perpindahan exergi. Jika diasumsikan feedwater dan udara pembakar memasuki  boiler dengan mengabaikan exergi dan biaya, sedangkan hasil pembakaran dikeluarkan

(12)

Pada Turbin, laju biayanya adalah dimana Ce nilai

 biaya yang berkaitan dengan listrik, C1 dan C2 berkaitan dengan uap masuk dan keluar,

dan Zt  berkaitan dengan kepemilikan dan operasi turbin. Jika ditambah dengan

 pembiayaan exergi, maka persamaannya menjadi

Satuan biaya yang sama dimiliki oleh uap tekanan rendah sehingga c2=c1.

Persamaannya menjadi

Suku pertama diruas kanan memperhitungkan biaya exergi dan suku kedua biaya dari sistem itu sendiri.

Dimana  adalah efisiensi turbin exergetik.

Jadi, dengan mengaplikasikan neraca laju biayan ke boiler dan turbin, maka kita dapat menentukan biaya setiap produk sistem kogenerasi.

Gambar

Gambar  7.13  menunjukkan  biaya  bahan  bakar  tahunan  yang  menukar irreveribilitas Heat-recovery sebagai fungsi ∆ T ave

Referensi

Dokumen terkait

Puji syukur kami panjatkan kepada Allah SWT atas karunia dan berkat yang telah dilimpahkan-Nya, sehingga penulisan skripsi dengan judul “ Pengaruh Rasio CAMEL Terhadap

Berdasarkan Surat Menteri Pendayagunaan Aparatur Negara dan Reformasi Birokrasi Republik Indonesia Nomor B-2640 / M.PAN-RB / 07 / 2014 Tanggal 02 Juli 2014 Tentang Persetujuan

(1) Rencana sistem dan jaringan drainase di Kecamatan Kepulauan Seribu Selatan sebagaimana dimaksud dalam Pasal 752 ayat (1) huruf c, dilakukan melalui pengembangan sistem

Pada tabel 3, Graduated Annuity Interest Factor (GAIF) menunjukkan sebesar 78,4047 untuk masa pinjaman 20 tahun, bunga pinjaman 20% per tahun, dengan lima tahun pertama

Setelah dilakukan penelitian mengenai Pengaruh Mobilisasi Dini terhadap Keberhasilan Penyembuhan Luka pada Pasien Pasca Operasi di Bangsal Arofah dan Marwah RS PKU

Karena adanya multi-path channel, metode time-reversal memiliki kelebihan dalam mendeteksi sinyal seperti yang telah disebutkan pada gambar (4.1) dan (4.2)

Penetapan harga dasar gabah dan harga atap beras di tingkat konsumen lebih rendah daripada harga keseimbangan di pasar dengan tidak ada subsidi kepada produsen maka

Dari uraian tersebut dan juga memperhatikan berbagai analisis yang dilakukan oleh Investmen Banking, maka bank yang prospektif di tahun 2006 ke depan adalah bank