• Tidak ada hasil yang ditemukan

MODEL PENENTUAN UKURAN LOT EKONOMIS GABUNGAN ANTARA PEMASOK DAN PEMBELI UNTUK PRODUK YANG MENGALAMI DETERIORASI

N/A
N/A
Protected

Academic year: 2021

Membagikan "MODEL PENENTUAN UKURAN LOT EKONOMIS GABUNGAN ANTARA PEMASOK DAN PEMBELI UNTUK PRODUK YANG MENGALAMI DETERIORASI"

Copied!
17
0
0

Teks penuh

(1)

238

YANG MENGALAMI DETERIORASI

Jonrinaldi

1

, Suprayogi

2

1

Program Magister Teknik dan Manajemen Industri Departemen Teknik Industri, Institut Teknologi bandung

Jalan Ganesha 10, Bandung 40132

e-mail: jonrinaldi772000@yahoo.com

2

Laboratorium Perencanaan dan Optimasi Sistem Industri Departemen Teknik Industri, Institut Teknologi bandung

Jalan Ganesha 10, Bandung 40132 e-mail: yogi@mail.ti.itb.ac.id

ABSTRAK

Penelitian ini bertujuan untuk mengembangkan model ukuran lot ekonomis gabungan antara pemasok dan pembeli untuk jenis produk yang mengalami deteriorasi selama berada dalam inventori. Pemasok memproduksi produk dalam selang waktu tertentu, kemudian dikirim kepada pembeli dengan jumlah ukuran lot yang ekonomis. Selama berada dalam inventori pemasok, dalam perjalanan, dan dalam inventori pembeli, produk tersebut mengalami kerusakan/deteriorasi dengan laju kerusakan yang konstan. Pemodelan matematis dilakukan untuk memperoleh ukuran lot ekonomis, dengan meminimasi biaya total inventori gabungan antara pemasok dan pembeli. Contoh numerik diberikan untuk mengilustrasikan model yang telah dikembangkan. Analisis sensitivitas terhadap model dilakukan dengan mengubah parameter-parameter yang ada sehingga dapat dilihat sejauh mana perubahan terhadap solusi optimal. Pada bagian akhir juga dilakukan perbandingan ukuran lot optimal dan total biaya inventori gabungan antara dua model, yaitu model yang mempertimbangkan faktor deteriorasi dan model yang tidak mempertimbangkan faktor deteriorasi.

Kata kunci: Ukuran lot ekonomis gabungan; Deteriorasi; Pemasok; Pembeli; Biaya total inventori gabungan

1. PENDAHULUAN

Dalam pengelolaan inventori tradisional, masalah inventori hanya dipandang dari satu aspek saja, yaitu pemasok ataupun pembeli. Kebijakan inventori yang optimal dianalisis hanya bagi masing-masing secara terpisah. Hal ini tidak menguntung bagi kedua belah pihak karena kebijakan optimal bagi pemasok belum tentu optimal bagi pembeli. Untuk itu dilakukan sistem pengelolaan inventori yang melibatkan semua pihak agar diperoleh nilai optimal terhadap sistem secara keseluruhan. Sistem pengelolaan tersebut dikenal dengan Manajemen Rantai Pasok.

Manajemen Rantai Pasok merupakan pendekatan untuk pengelolaan inventori dan distribusi secara terintegrasi antara pemasok, produsen, distributor dan pengecer untuk meminimasi ongkos sistem secara keseluruhan (Levi dan Kaminsky, 2000). Manajemen Rantai Pasok dapat dibedakan dalam tiga aspek yaitu : (1) aspek pemasok dan pembeli, (2) aspek produksi dan distribusi, dan (3) aspek inventori dan distribusi (Ongsakul, 1998). Dalam pengembangan model ini, aspek yang akan dibahas adalah pemasok dan pembeli. Manajemen Rantai Pasok bertujuan untuk meminimasi biaya untuk seluruh rantai pasok yang terlibat sehingga kebijakan inventori yang diperoleh merupakan optimal untuk seluruh sistem.

(2)

Dalam melakukan pengelolaan inventori, jenis barang atau produk juga harus menjadi perhatian dalam menentukan kebijakan yang optimal. Hal ini diakibatkan karena tidak semua jenis produk atau barang dapat tahan lama dalam inventori. Produk atau barang tersebut mengalami deteriorasi sehingga akan dapat menimbulkan kerugian bagi pemasok atau pembeli. Barang yang mengalami deteriorasi tersebut antara lain sayur-sayuran,

gasoline, obat-obatan, bank darah, bahan makanan merupakan contoh produk yang

mengalami deteriorasi. Bentuk deteriorasi yang terjadi bermacam-macam, seperti damage,

spoilage atau dryness, sehingga dalam menentukan kebijakan pengelolaan inventori perlu

mempertimbangkan faktor deteriorasi.

Penelitian dalam bidang manajemen rantai pasok telah banyak dilakukan. Ongsakul dan Liman (1998) mengembangkan model Banerjee’ Joint Economic Lot Size (JELS) dengan mempertimbangkan biaya simpan selama periode pengiriman. Kosadat dan Liman (2000)

mengembangkan Joint Economic Lot Size dengan kebijakan backorder, Yang dan Wee (2001) mengembangkan model supply chain tiga eselon tree-like. Shi dan Su (2002)

mengembangkan model supply chain dengan pemberian insentif kepada masing-masing pelaku. Dari semua model yang dikembang tersebut belum memperrtimbangkan faktor deteriorasi.

Penelitian pengendalian inventori dengan mempertimbangkan deteriorasi juga telah banyak dilakukan. Chakrabarty, Giri dan Chaundhuri (1998) mengembangkan model inventori untuk produk yang mengalami deteriorasi dengan distribusi Weibull , mengizinkan

shortage dan demand yang mengalami peningkatan. Su dan Lin (2001) mengembangkan

model inventori produksi dengan mempertimbangkan laju produksi tergantung demand dan tingkat inventori. Bhunia dan Maiti (1998) mengembangkan model dengan laju produksi tergantung tingkat inventori. Wee dan Law (1999) mengembangkan model inventori produksi dengan mempertimbangkan nilai waktu dari uang. Chang, Hung dan Dye (2001) mengembangkan model dengan kondisi mengizinkan penundaan dalam pembayaran inventori. Wee (1999) mengembangkan model dengan mempertimbangkan quantity discount, harga dan backorder parsial. Sarker, Jamal dan Wang (2000) mengembangkan model deteriorasi dengan mempertimbangkan faktor inflasi dan penundaan dalam pembayaran. Chen (1998) mengembangkan model dengan demand yang tergantung waktu, mengizinkan

shortages, dengan kondisi inflasi. Model-model yang dikembangkan tersebut hanya

memperhatikan satu aspek saja, yaitu pembeli atau pemasok.

Berdasarkan model-model yang telah dikembangkan sebelumnya, dapat disimpulkan bahwa belum ada penelitian yang mengembangkan model rantai pasok yang mempertimbangkan faktor deteriorasi sehingga penelitian ini bertujuan mengembangkan model rantai pasok, aspek pemasok dan pembeli, untuk produk yang mengalami deteriorasi.

2. FORMULASI MODEL

2.1 Hubungan Pemasok – Pembeli – Konsumen akhir

Pembeli memesan sejumlah unit produk dari pemasok untuk dijual kepada konsumen akhir. Produk yang dipesan tersebut mengalami deteriorasi selama dalam inventori sehingga jumlah yang dipesan akan lebih besar dari jumlah permintaan dari konsumen. Produk yang mengalami deteriorasi tersebut tidak dapat diperbaiki atau ditukar sehingga akan mengakibatkan kerugian kepada pembeli. Kerugian tersebut digambarkan sebagai biaya deteriorasi yang harus ditanggung oleh pembeli.

Untuk memenuhi pesanan dari pembeli, maka pemasok memproduksi sejumlah unit produk. Sebelum produk tersebut dikirim ke pembeli, akan terlebih dahulu disimpan dalam inventori. Selama berada dalam inventori, produk tersebut mengalami deteriorasi sehingga akan mengalami pengurangan dalam jumlah unit produk yang akan dikirim ke pembeli. Dengan demikian, untuk memenuhi jumlah pesanan tersebut maka jumlah yang diproduksi harus melebihi dari jumlah produk yang dipesan oleh pembeli.

(3)

Produk yang telah diproduksi tersebut dikirim ke pembeli dalam selang waktu tertentu. Dalam perjalanan produk tersebut juga akan mengalami deteriorasi dan biaya simpan. Sehingga jumlah produk yang akan diproduksi oleh pemasok harus dapat menanggulangi deteriorasi yang terjadi selama dalam inventori dan perjalanan untuk memenuhi sejumlah unit produk yang dipesan oleh pembeli. Pada penelitian ini dikembangkan dua kasus dimana pertama biaya simpan dan biaya deteriorasi ditanggung oleh pemasok dan kedua ditanggung oleh pembeli. Hubungan dari pemasok – pembeli – konsumen akhir lebih jelas dapat dilihat pada Gambar 1. berikut :

Tingkat inventori pada pembeli I(t)

Im- θIm(t2-t1) dengan deteriorasi dengan deteriorasi

-D-θI(t) tanpa tanpa deteriorasi deteriorasi

t3

Tingkat inventori pada pemasok

I(t) P- θI(t) Im1 Im- θIm(t2-t1)

0 t1 t2 Gambar 1. Hubungan Pemasok – Pembeli – Konsumen akhir

2.2 Notasi dan Asumsi Notasi

Notasi yang digunakan dalam penelitian ini :

S : biaya setup produksi pada pemasok ( Rp/setup)

A : biaya pesan pembeli kepada pemasok (Rp/pesan)

I(t) : Tingkat inventori pada saat t

Im : Inventori maksimum pada pemasok (unit)

r : tingkat ongkos penanganan inventori (% terhadap harga beli)

D : laju permintaan produk ( unit/periode)

P : laju produksi produk (unit/periode), dimana P > D

Cpm : harga beli pada pemasok (Rp/unit)

Cp : harga beli pada pembeli (Rp/unit)

θ : laju deteriorasi terhadap tingkat inventori pada saat t ( /periode)

TCpm : biaya total pada pemasok (Rp)

TCp : biaya total pada pembeli (Rp)

TCgab : Total biaya gabungan antara pemasok dan pembeli (Rp)

Cd : biaya deteriorasi (Rp/unit)

t1 : waktu saat dicapai inventori maksimum pada pemasok (Im) (satuan periode)

t2 : waktu saat produk sampai pada pembeli (satuan periode)

t3 : waktu saat inventori pada pembeli mencapai nol

tr : lead time pengiriman (satuan periode)

Asumsi :

Asumsi yang digunakan dalam penelitian ini adalah :

• laju permintaan, produksi dan deteriorasi bersifat deterministik dengan laju yang tetap • shortages tidak dibolehkan

(4)

• lead time pengiriman bersifat deterministik

• Kapasitas pada pemasok dan pembeli dapat memenuhi seluruh permintaan • Seluruh komponen biaya diketahui dengan pasti dan konstan

• Model yang dikembangkan hanya untuk satu pemasok dan satu pembeli

2.3 Model Matematik

Pada bagian ini akan dikembangkan model matematik dari penentuan ukuran lot ekonomis gabungan antara pemasok dan pembeli untuk produk yang mengalami deteriorasi. Model matematik dikembangkan berdasarkan biaya total pada pemasok dan pembeli serta biaya total gabungan pemasok dan pembeli. Total biaya gabungan merupakan biaya total pada pemasok dijumlahkan dengan biaya total pada pembeli serta menambahkan faktor deteriorasi pada setiap inventori. Model yang dikembangkan bertitik tolak pada model yang dikembangkan oleh Ongsakul dan Liman (1998), Su dan Lin (2001) dan Bhunia dan Maiti (1998).

Total biaya gabungan = Biaya total pada pemasok + Biaya total pada pembeli

Model yang dikembangkan dilakukan untuk dua kasus, dimana pertama biaya deteriorasi dan simpan selama perjalanan ditanggung pemasok, kedua ditanggung oleh pembeli.

Kasus 1 : Biaya deteriorasi dan simpan selama perjalanan ditanggung pemasok Biaya inventori pada pemasok,

Untuk memenuhi permintaan pembeli maka pada t = 0, pemasok mulai berproduksi sampai mencapai Im pada saat t = t1, selama dalam inventori produk mengalami deteriorasi.

Produk dikirim ke pembeli selama waktu (t2 – t1). selama dalam perjalanan timbul biaya

simpan dan deteriorasi, Inventori pada saat t, (I(t)), dapat digambarkan sebagai berikut :

P

t

I

t

I

dt

d

=

+

.

(

)

)

(

θ

0 ≤ t ≤ t1 (1)

0

)

(

.

)

(

t

+

I

t

=

I

dt

d

θ

t1 ≤ t ≤ t2 (2)

dengan memakai batasan :

I(0) = 0, I(t1) = Im , maka diperoleh

θ θ P e t I t ) 1 ( ) ( = − −. 0 ≤ t ≤ t 1 (3)

θ

θ

P

e

I

m

(

1

t

)

1 . −

=

(4) ) ( ) (t P e (t1 t) e t I θ θ θ − − = t1 ≤ t ≤ t2 (5) Sehingga, 1. Biaya simpan :

+

2 1 1

)

(

)

(

.

.

0 t t t pm

I

t

dt

I

t

dt

C

r

:

+

− 2 − − 1 1 1

)

(

)

1

(

.

.

( ) 0 . t t t t t t t pm

e

dt

e

e

dt

P

C

r

θ θ θ

θ

(6) 2. Biaya deteriorasi :

C

d

.

+

2 1 1

)

(

.

)

(

.

0 t t t

dt

t

I

dt

t

I

θ

θ

(5)

:

C

d

.

+

− 2 − − 1 1 1

)

(

)

1

(

( ) 0 . t t t t t t t

dt

e

e

dt

e

P

θ θ θ (7)

Sehingga biaya total pada pemasok per satuan waktu adalah :

TCpm (t1) = 2 3

t

t

S

+

+

− − − 2 1 1 1

)

(

)

1

(

)

(

.

.

( ) 0 . 2 3 t t t t t t t pm

e

dt

e

e

dt

t

t

P

C

r

θ θ θ

θ

+

C

d

.

+

− − − 2 1 1 1

)

(

)

1

(

( ) 0 . 2 3 t t t t t t t

dt

e

e

dt

e

t

t

P

θ θ θ (8)

Biaya inventori pada pembeli,

Pada saat t = t2, produk sampai ke pembeli sebesar I(t2), kemudian produk tersebut dijual ke konsumen dengan laju permintaan sebesar D, pada saat berada di inventori, produk juga mengalami deteriorasi, sehingga I(t2) akan lebih besar dari D.(t3 – t2). Inventori setiap saat pada pembeli dapat digambarkan sebagai berikut :

D

t

I

t

I

dt

d

=

+

.

(

)

)

(

θ

t2 ≤ t ≤ t3 (9)

dengan memakai batasan,

I(t3) = 0 maka, θ θ D e t I()=( (t3−t)−1) t 2 ≤ t ≤ t3 (10) Sehingga, 1. Biaya simpan :

3 2

)

(

.

.

t t p

I

t

dt

C

r

:

3 2 3

1

)

(

.

.

.

.( ) t t t t p

e

dt

D

C

r

θ

θ

(11) 2. Biaya deteriorasi :

C

d

.

3 2

)

(

.

t t

dt

t

I

θ

:

C

d

.

3 2 3

1

)

(

.

.( ) t t t t

dt

e

D

θ (12)

Sehingga biaya total pada pembeli per satuan waktu adalah :

TCp (t1) =

+

2 3

t

t

A

− 3 2 3

1

)

(

.

)

(

.

.

.( ) 2 3 t t t t p

e

dt

t

t

D

C

r

θ

θ

+

C

d

.

− 3 2 3

1

)

(

.

.( ) 2 3 t t t t

dt

e

t

t

D

θ (13)

Dari kedua biaya total tersebut maka dapat dimodelkan total biaya gabungan keduanya sebagai berikut : TCgab (t1) = 2 3

t

t

S

+

+

− − − 2 1 1 1

)

(

)

1

(

)

(

.

.

( ) 0 . 2 3 t t t t t t t pm

e

dt

e

e

dt

t

t

P

C

r

θ θ θ

θ

+

C

d

.

+

− − − 2 1 1 1

)

(

)

1

(

( ) 0 . 2 3 t t t t t t t

dt

e

e

dt

e

t

t

P

θ θ θ

(6)

+

+

2 3

t

t

A

− 3 2 3

1

)

(

.

)

(

.

.

.( ) 2 3 t t t t p

e

dt

t

t

D

C

r

θ

θ

+

C

d

.

− 3 2 3

1

)

(

.

.( ) 2 3 t t t t

dt

e

t

t

D

θ (14) dengan mensubstitusikan nilai t2 dengan (t1 + tr) maka diperoleh persamaan sebagai berikut : TCgab (t1) =

)

(

1 3

t

t

r

t

S

+

+

+

+

+ − − − ) ( ) ( 0 . 1 3 1 1 1 1

)

(

)

1

(

))

(

(

.

.

r t t t t t t t t r pm

e

dt

e

e

dt

t

t

t

P

C

r

θ θ θ

θ

+

C

d

.

+

+

+ − − − ) ( ) ( 0 . 1 3 1 1 1 1

)

(

)

1

(

)

(

r t t t t t t t t r

dt

e

e

dt

e

t

t

t

P

θ θ θ +

+

+

(

1

)

3

t

t

r

t

A

+ −

+

3 1 3 ) ( ) .( 1 3

)

1

(

.

))

(

(

.

.

t t t t t r p r

dt

e

t

t

t

D

C

r

θ

θ

+

C

d

.

+ −

+

3 1 3 ) ( ) .( 1 3

)

1

(

.

)

(

t t t t t r r

dt

e

t

t

t

D

θ (15)

Kasus 2 : Biaya deteriorasi dan simpan selama perjalanan ditanggung pembeli Biaya inventori pada pemasok,

Untuk memenuhi permintaan pembeli maka pada t = 0, pemasok mulai berproduksi sampai mencapai Im pada saat t = t1, selama dalam inventori produk mengalami deteriorasi. Inventori pada saat t, (I(t)), dapat digambarkan sebagai berikut :

θ

θ

P

e

t

I

(

)

=

(

1

−.t

)

0 ≤ t ≤ t1

θ

θ

P

e

I

m

(

1

t

)

1 . −

=

Sehingga, 1. Biaya simpan :

1 0 ) ( . . t pm I t dt C r :

− − 1 0 . ) 1 ( . . . t t pm e dt P C r θ

θ

(16) 2. Biaya deteriorasi :

C

d

.

1 0 ) ( . t dt t I

θ

:

C

d

.

− − 1 0 . ) 1 ( . t t dt e P θ (17)

Sehingga biaya total pada pemasok per satuan waktu adalah :

TCpm (t1) = 2 3

t

t

S

+

− − − 1 0 . 2 3 ) 1 ( . ) ( . . t t pm e dt t t P C r θ

θ

(7)

+

C

d

.

− − − 1 0 . 2 3 ) 1 ( . t t dt e t t P θ (18)

Biaya inventori pada pembeli,

Produk dikirim ke pembeli dari pemasok selama waktu (t2 – t1). selama dalam

perjalanan timbul biaya simpan dan deteriorasi. Pada saat t = t2, produk sampai ke pembeli

sebesar I(t2), kemudian produk tersebut dijual ke konsumen dengan laju permintaan sebesar

D, pada saat berada di inventori, produk juga mengalami deteriorasi, sehingga I(t2) akan lebih besar dari D.(t3 – t2). Inventori setiap saat pada pembeli dapat digambarkan sebagai berikut :

)

(

)

(

t

P

e

(t1 t)

e

t

I

θ θ

θ

− −

=

t1 ≤ t ≤ t2 θ θ D e t I()=( (t3−t) −1) t 2 ≤ t ≤ t3 Sehingga, 1. Biaya simpan :

+

3

2 2 1

)

(

)

(

.

t t t t p

I

t

dt

I

t

dt

C

r

:

+

3 −

− − 2 2 1 1 3

1

)

.

(

)

(

.

.

t .( ) ( ) t t t t t t t t p

dt

e

e

P

dt

e

D

C

r

θ θ θ

θ

(19) 2. Biaya deteriorasi :

C

d

.

+

3

2 2 1

)

(

.

.

)

(

.

t t t t

dt

t

I

P

dt

t

I

θ

θ

C

d

.

+

3 −

− − 2 2 1 1 3

1

)

.

(

)

(

.

.( ) ( ) t t t t t t t t t

dt

e

e

P

dt

e

D

θ θ θ (20)

Sehingga biaya total pada pembeli per satuan waktu adalah :

TCp (t1) =

+

2 3

t

t

A

+

− − − 3 2 2 1 1 3

1

)

.

(

)

(

.

)

(

.

.( ) ( ) 2 3 t t t t t t t t t p

dt

e

e

P

dt

e

D

t

t

C

r

θ θ θ

θ

+

+

− − − 3 2 2 1 1 3

1

)

.

(

)

(

.

.( ) ( ) 2 3 t t t t t t t t t d

dt

e

e

P

dt

e

D

t

t

C

θ θ θ (21)

Dari kedua biaya total tersebut maka dapat dimodelkan total biaya gabungan keduanya sebagai berikut :

TCgab (t1) = 2 3

t

t

S

+

− − − 1 0 . 2 3 ) 1 ( . ) ( . . t t pm e dt t t P C r θ

θ

+

C

d

.

− − − 1 0 . 2 3 ) 1 ( . t t dt e t t P θ +

+

2 3

t

t

A

+

− − − 3 2 2 1 1 3

1

)

.

(

)

(

.

)

(

.

.( ) ( ) 2 3 t t t t t t t t t p

dt

e

e

P

dt

e

D

t

t

C

r

θ θ θ

θ

+

+

− − − 3 2 2 1 1 3

1

)

.

(

)

(

.

.( ) ( ) 2 3 t t t t t t t t t d

dt

e

e

P

dt

e

D

t

t

C

θ θ θ (22)

(8)

Dengan mensubstitusikan nilai t2 dengan (t1 + tr) maka diperoleh persamaan sebagai berikut : TCgab (t1) =

)

(

1 3

t

t

r

t

S

+

+

− − + − 1 0 . 1 3 ) 1 ( . )) ( ( . . t t r pm e dt t t t P C r θ

θ

+

C

d

.

− − + − 1 0 . 1 3 ) 1 ( . ) ( t t r dt e t t t P θ +

)

(

1 3

t

t

r

t

A

+

+

+

+

+

+ − − − 3 1 1 1 1 3 ) ( ) ( ) ( ) .( 1 3

)

(

.

)

1

(

.

))

(

(

.

t t t t t t t t t t t r p r r

dt

e

e

P

dt

e

D

t

t

t

C

r

θ θ θ

θ

+

+

+

+

+ − − − 3 1 1 1 1 3 ) ( ) ( ) ( ) .( 1 3

)

(

.

)

1

(

.

)

(

t t t t t t t t t t t r d r r

dt

e

e

P

dt

e

D

t

t

t

C

θ θ θ (23)

Dari persamaan (6) dan (11), diperoleh hubungan antara t1 dan t3 adalah :

t3 ln P − exp θ t⋅

⎡⎣

1−θ t⋅

(

1+ tr

)

⎤⎦

+P exp⋅

⎡⎣

−θ⋅

(

t1 tr+

)

⎤⎦

−D

⎡⎣

⎤⎦

− D

+ θ t⋅

(

1+ tr

)

θ (24) 3. ANALISIS Kasus 1 :

Analisis dilakukan untuk menentukan nilai t1 optimal untuk ukuran lot gabungan

antara pemasok dan pembeli dengan menguraikan terlebih dahulu biaya total gabungan ( TCgab). TCgab (t1) =

)

(

1 3

t

t

r

t

S

+

+ ⎥⎦ ⎤ ⎢⎣ ⎡ + + − − − t tr r pm t e e t t t P C r 1 . . 1 3 ). 1 ( 1 )) ( ( . . θ 1 θ

θ

θ

+

C

d

.

⎢⎣⎡ + − ⎥⎦⎤ + − − − t tr r e e t t t t P . . 1 1 3 ). 1 ( 1 ) ( 1 θ θ

θ

+

t

3

(

t

1

t

r

)

A

+

+ ⎥⎦ ⎤ ⎢⎣ ⎡ + + + − − + − r t t t r p e t t t t t t D C r r 1 3 ) ( 1 3 ) 1 ( 1 )) ( ( . . θ 1 3

θ

θ

+

C

d

.

⎢⎣⎡− − − + + ⎥⎦⎤ + − − + − r t t t r t t t e t t t D r 1 3 ) ( 1 3 ) 1 ( 1 ) ( 3 1 θ

θ

(25) Kasus 2 :

Analisis dilakukan untuk menentukan nilai t1 optimal untuk ukuran lot gabungan

antara pemasok dan pembeli dengan menguraikan terlebih dahulu biaya total gabungan ( TCgab). TCgab (t1) =

)

(

1 3

t

t

r

t

S

+

+ ⎥⎦ ⎤ ⎢⎣ ⎡ + + − − ) 1 ( 1 )) ( ( . . .1 1 1 3 t r pm t e t t t P C r θ

θ

θ

(9)

+

C

d

.

⎥⎦ ⎤ ⎢⎣ ⎡ + + − − ) 1 ( 1 ) ( 1 . 1 1 3 t r e t t t t P θ

θ

+

t

3

(

t

1

t

r

)

A

+

+

⎥⎦

⎢⎣

+

+

+

− + − r t t t r p

t

t

t

e

t

t

t

D

C

r

r 1 3 ) ( 1 3

)

1

(

1

))

(

(

.

.

3 1 θ

θ

θ

+

⎥⎦

⎢⎣

+

+

− − + −

)

1

(

1

))

(

(

.

.

1 1 ) . . ( 1 3 t t t t r p

e

e

e

t

t

t

P

C

r

r r θ θ θ

θ

θ

+ ⎢⎣⎡ − − + + ⎥⎦⎤ + − − + − r t t t r d t t t e t t t D C r 1 3 ( 1 3 ) 1 ( 1 ) ( . θ 1 3

θ

+ ⎥⎦ ⎤ ⎢⎣ ⎡ + + − − − + − ) 1 ( 1 ) ( . 1 1 ) . . ( 1 3 t t t t r d e e e t t t P C r r θ θ θ

θ

(26)

Untuk menentukan nilai t1 optimal, maka harus memenuhi kondisi berikut ini :

0

1

=

t

TC

gab , (27)

dan untuk memenuhi kriteria minimum, harus memenuhi kondisi berikut :

0

2 1 2

>

t

TC

gab (28) 4. CONTOH NUMERIK

Untuk memberikan ilustrasi solusi optimal dari model yang dikembangkan tersebut, digunakan parameter berikut ini:

biaya setup produksi pada pemasok (S) = Rp. 50.000/setup

biaya pesan pembeli kepada pemasok (A) = Rp. 60.000/pesan

tingkat ongkos penanganan inventori (r ) = 0.01

laju permintaan produk (D) = 5000 unit/bulan

laju produksi produk (P) = 10000 unit/bulan

harga beli pada pemasok (Cpm) = Rp. 10.000/unit

harga beli pada pembeli (Cp) = Rp. 20.000/unit

laju deteriorasi terhadap tingkat inventori pada saat t (θ) = 0.01/bulan

biaya deteriorasi (Cd) = Rp. 25.000/unit

lead time pengiriman (tr) = 0.1 bulan

Hasil selengkapnya solusi optimal untuk kedua pemasok dan pembeli dapat dilihat pada tabel.1 berikut :

Tabel 1. Hasil perhitungan kebijakan inventori untuk pemasok dan pembeli

Kebijakan Lama produksi (t1) (bulan) siklus pemesanan (t3-t2) (bulan) Inventori maksimum pemasok (Im) Inventori maksimum pembeli (I(t2)) Total biaya pada pemasok (TCpm) Total biaya pada pembeli (TCp) Total biaya gabungan (TCgab) Kasus 1 0.132 0.263 1319.129 1317.811 481069.95 524327.5 1005397.451 Kasus 2 0.132 0.263 1319.129 1317.811 305751.79 749736.56 1055488.353

Sebagai perbandingan, maka pada contoh numerik ini juga ditampilkan solusi optimal untuk kedua pemasok dan pembeli tanpa mempertimbangkan faktor deteriorasi.

(10)

Model matematis tanpa mempertimbangkan faktor deteriorasi dapat dilihat pada lampiran. Hasil selengkapnya dapat dilihat pada tabel.2 berikut :

Tabel 2. Hasil perhitungan kebijakan inventori untuk pemasok dan pembeli tanpa mempertimbangkan faktor deteriorasi produk

Kebijakan Lama produksi (t1) (bulan) siklus pemesanan (t3-t2) (bulan) Inventori maksimum pemasok (Im) Inventori maksimum pembeli (I(t2)) Total biaya pada pemasok (TCpm) Total biaya pada pembeli (TCp) Total biaya gabungan (TCgab) Kasus 1 0.21 0.42 2100 2100 221547.619 352857.1429 574404.7619 Kasus 2 0.21 0.42 2100 2100 171547.62 452857.14 624404.7619

Dari hasil perhitungan di atas dapat dilihat bahwa waktu produksi (t1) dan siklus

pemesanan (t3-t2) pada model yang mempertimbangkan faktor deteriorasi lebih kecil

dibandingkan dengan model yang tidak mempertimbangkan faktor deteriorasi, hal ini disebabkan adanya tambahan biaya deteriorasi yang dialami oleh pemasok dan pembeli. Sehingga untuk mengurangi total biaya inventori yang besar maka waktu produksi dan siklus pemesanan diperpendek agar jumlah inventori tidak terlalu banyak.

Hubungan antara waktu produksi (t1) dengan total biaya inventori gabungan (TCgab), baik yang mempertimbangkan faktor deteriorasi ataupun tidak, dapat dilihat gambar.2 berikut:

Kurva Hubungan Waktu produksi (t1) vs Total Biaya Inventori Gabungan (TCgab)

TCgab,dengan deteriorasi, Kasus 1, (0.132, 1005397.45) TCgab,dengan deteriorasi, Kasus 2, (0.132, 1055488.35)

TCgab, tanpa deteriorasi, Kasus 1, (0.21, 574404.76) TCgab,tanpa deteriorasi, Kasus 2, (0.21, 624404.76) 400,000.00 600,000.00 800,000.00 1,000,000.00 1,200,000.00 1,400,000.00 1,600,000.00 1,800,000.00 0.078 0.108 0.138 0.168 0.198 0.228 0.258 0.288 0.318 0.348 0.378

Wak tu Produk s i (t1),(bulan)

T o tal B iaya I n ven to ri G a bunga n ( T C g a b ), (R p)

TCgab,dengan deteriorasi, Kasus 1 TCgab,dengan deteriorasi, Kasus 2 TCgab,tanpa deteriorasi, Kasus 1 TCgab,tanpa deteriorasi, Kasus 2

(11)

Untuk melihat pengaruh parameter-parameter model terhadap solusi optimal (waktu produksi (t1), siklus pemesanan (t3-t2) dan biaya total inventori gabungan (TCgab)), maka dilakukan analisis sensitivitas parameter-parameter tersebut terhadap solusi optimal. Hasil selengkapnya analisis sensitivitas tersebut dapat dilihat pada tabel 3. berikut :

Tabel 3. Analisis Sensitivitas

% perubahan Kasus 1 Kasus 2 Parameter % Perubahan t1 t3 – t2 TCgab t1 t3 – t2 TCgab A -50 -13.64 -13.61 -12.16 -13.64 -13.61 -11.59 -20 -4.55 -4.54 -4.64 -4.55 -4.54 -4.42 20 6.06 6.05 4.39 6.06 6.05 4.18 50 13.64 13.61 10.59 13.64 13.61 10.09 S -50 -12.12 -12.10 -10.00 -12.12 -12.10 -9.52 -20 -4.55 -4.54 -3.85 -4.55 -4.54 -3.66 20 4.55 4.54 3.67 4.55 4.54 3.50 50 12.12 12.09 8.91 12.12 12.09 8.49 Cd -50 19.70 19.65 -19.70 19.70 19.65 -18.77 -20 7.58 7.56 -7.60 7.58 7.56 -7.24 20 -4.55 -4.54 7.30 -4.55 -4.54 6.95 50 -12.12 -12.10 17.79 -12.12 -12.10 16.94 Cpm -50 3.03 3.02 -4.16 3.03 3.02 -1.59 -20 1.52 1.51 -1.66 1.52 1.51 -0.63 20 0.00 0.00 1.65 0.00 0.00 0.63 50 -1.52 -1.51 4.13 -1.52 -1.51 1.56 Cp -50 9.09 9.07 -6.88 9.09 9.07 -11.29 -20 4.55 4.54 -2.68 4.55 4.54 -4.45 20 -3.03 -3.02 2.59 -3.03 -3.02 4.37 50 -6.06 -6.05 6.35 -6.06 -6.05 10.79 tr -50 0.00 0.05 -8.73 0.00 0.05 -10.69 -20 0.00 0.02 -3.49 0.00 0.02 -4.28 20 0.00 -0.02 3.49 0.00 -0.02 4.28 50 0.00 -0.05 8.74 0.00 -0.05 10.70 θ -50 19.70 19.85 -19.76 19.70 19.85 -18.82 -20 7.58 7.63 -7.62 7.58 7.63 -7.26 20 -4.55 -4.59 7.33 -4.55 -4.59 6.98 50 -12.12 -12.22 17.86 -12.12 -12.22 17.01 P -50 77.27 -11.40 10.88 77.27 -11.40 10.36 -20 21.21 -3.04 2.85 21.21 -3.04 2.71 20 -13.64 3.64 -1.96 -13.64 3.64 -1.86 50 -30.30 4.56 -3.96 -30.30 4.56 -3.77 D -50 -22.73 54.46 -37.13 -22.73 54.46 -37.74 -20 -7.58 15.51 -14.30 -7.58 15.51 -14.57 20 7.58 -10.35 13.86 7.58 -10.35 14.15 50 15.15 -23.22 34.12 15.15 -23.22 34.87

Dari tabel.3 di atas dapat dilihat ada beberapa parameter yang sensitif terhadap hasil solusi optimal yang diperoleh. Parameter-parameter mana yang sensitif terhadap solusi optimal dapat dilihat pada gambar. 3 dan 4 berikut :

(12)

Pengaruh Parameter-parameter Terhadap Solusi Optimal Cpm,t3-t2 Cpm,t3-t2 Cpm,t3-t2 Cpm,t3-t2 Cpm,TCgab Cpm,TCgab Cpm,TCgab Cpm,TCgab Cp, t 3 - t 2 Cp, t 3 - t 2 Cp, t 3 - t 2 Cp, t 3 - t 2 Cp,TCgab Cp,TCgab Cp,TCgab Cp,TCgab teta,t3-t2 teta,t3-t2 teta,t3-t2 teta,t3-t2 teta,TCgab teta,TCgab teta,TCgab teta,TCgab P,t1 P,t1 P,t1 P,t1 P,TCgab P,TCgab P,TCgab P,TCgab D,t1 D,t1 D,t1 D,t1 D,t3-t2 D,t3-t2 D,t3-t2 D,t3-t2 D,TCgab D,TCgab D,TCgab D,TCgab -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 -50 -20 20 50 % Pe rubahan Param e te r % P e ru ba ha n S o lu s i O p ti ma l

A,t1 A,t3-t2 A,TCgab S,t1 S,t3-t2 S,TCgab Cd,t1 Cd,t3-t2 Cd,TCgab Cpm,t1

Cpm,t3-t2 Cpm,TCgab Cp,t1 Cp,t3-t2 Cp,TCgab tr,t1 tr,t3-t2 tr,TCgab teta,t1 teta,t3-t2

teta,TCgab P,t1 P,t3-t2 P,TCgab D,t1 D,t3-t2 D,TCgab

Gambar 3. Pengaruh Parameter-parameter model Terhadap Solusi Optimal (Kasus 1)

Pengaruh Parameter-parameter Terhadap Solusi Optimal

A,t3-t2 A,t3-t2 A,t3-t2 A,t3-t2 S,TCgab S,TCgab S,TCgab S,TCgab Cp,t3-t2 Cp,t3-t2 Cp,t3-t2 Cp,t3-t2 teta,t3-t2 teta,t3-t2 teta,t3-t2 teta,t3-t2 teta,TCgab teta,TCgab teta,TCgab teta,TCgab P,t1 P,t1 P,t1 P,t1 P,t3-t2 P,t3-t2 P,t3-t2 P,t3-t2 P,TCgab P,TCgab P,TCgab P,TCgab D,t1 D,t1 D,t1 D,t1 D,t3-t2 D,t3-t2 D,t3-t2 D,t3-t2 D,TCgab D,TCgab D,TCgab D,TCgab -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 -50 -20 20 50 % Pe rubahan Param e te r % P e ruba ha n S o lu s i O p ti ma l

A,t1 A,t3-t2 A,TCgab S,t1 S,t3-t2 S,TCgab Cd,t1 Cd,t3-t2 Cd,TCgab Cpm,t1

Cpm,t3-t2 Cpm,TCgab Cp,t1 Cp,t3-t2 Cp,TCgab tr,t1 tr,t3-t2 tr,TCgab teta,t1 teta,t3-t2

teta,TCgab P,t1 P,t3-t2 P,TCgab D,t1 D,t3-t2 D,TCgab

(13)

Dari gambar. 2 dan 3 di atas dapat dilihat bahwa parameter yang sensitif antara lain laju permintaan (D), laju produksi (P), laju deteriorasi (θ) dan harga beli pembeli dan pemasok (Cp dan Cpm)

5. KESIMPULAN

Penelitian ini mengembangkan model ukuran lot ekonomis gabungan antara pemasok dan pembeli dengan mempertimbangkan faktor deteriorasi dari produk selama berada dalam inventori sehingga akan menimbulkan kerugian bagi kedua belah pihak. Model dikembangkan dalam dua kasus, dimana pertama pemasok bertanggungjawab terhadap biaya deteriorasi dan simpan selama perjalanan, kedua sebaliknya. Penentuan ukuran lot optimal dilakukan dengan meminimasi total biaya gabungan antara pemasok dan pembeli. Hasil perhitungan memperlihatkan bahwa faktor deteriorasi mempengaruhi jumlah inventori yang ada di gudang. Jumlah inventori tersebut lebih kecil jika dibandingkan dengan tanpa mempertimbangkan faktor deteriorasi. Hal ini akibat penambahan biaya deteriorasi yang dialami oleh keduanya, pemasok dan pembeli.

Untuk melihat pengaruh parameter-parameter yang ada pada model tersebut terhadap ukuran lot optimal, maka dilakukan analisis sensitivitas. Hasil analisis tersebut adalah laju permintaan (D), laju produksi (P), laju deteriorasi (θ) dan harga beli pembeli dan pemasok (Cp dan Cpm) sensitif terhadap solusi optimal.

Pada model yang dikembangkan, kapasitas alat angkut diasumsikan tetap, laju deteriorasinya tetap, tidak mempertimbangkan faktor kuantitas diskon serta model supply

chain yang lain seperti satu pemasok dan banyak pembeli, satu distributor dan banyak

pembeli. Topik-topik tersebut merupakan pengembangan model lanjutannya dan topik tersebut sedang dalam penelitian.

6. DAFTAR PUSTAKA

1. Bhunia, A.K., Maiti, M. (1998), “Deterministic Inventory Model for Deteriorating Items

with Finite Rate of Replenishment Dependent on Inventory Level”, Computers and

Operation Research, Vol. 25 No. 11, pp. 997-1006

2. Chakrabarty, T., Giri, B.C., Chaundhuri, K.S. (1998), “An EOQ Model for Items with

Weibull Distribution Deterioration, Shortages and Trended Demand: An Extension of Philip’s Model”, Computers and Operation Research, Vol. 25 No. 7/8, pp. 649-657

3. Chang, H.J, Hung, C.H, Dye, C.Y. (2001), “An inventory Model for Deteriorating Items

with Linear Trend Demand Under The Condition of Permissible Delay In Payments”,

Production Planning & Control, Vol. 12 No.3, pp. 274-282.

4. Chen, J.M. (1998), “An Inventory Model for Deteriorating Items with Time-Proportional

Demand and Shortages Under Inflation and Time Discounting”, International Journal of

Production Economics, Vol. 55, pp. 21-30.

5. Kosadat, A., Liman, S.D. (2000), “Joint Economic Lot-Size With Backordering Policy”. Thesis, Departement of Industrial Engineering, Texas Tech University, Lubbock, Texas. http:/webpages.acs.ttu.edu/vchatsir/images/JELS%20model%20with%20backordering% 20policy%20(Arisa).pdf.

Homepage of Center for Innovative Supply Chain Management, Industrial Engineering Department, Texas Tech University

6. Levi, D. Simchi and Kaminsky, Philip. (2000), “Design and Managing the Supply

Chain”, Mc Graw-Hill, Singapore.

7. Ongsakul, V., Liman, S.D. (1998), “Joint Economic Lot Size Problem with Pipeline Inventory Cost”, Thesis, Department of Industrial Engineering, Texas Tech University,

(14)

http:/webpages.acs.ttu.edu/vchatsir/images/JELS%20model%20with%20backordering% 20policy%20(Arisa).pdf.

Homepage of Center for Innovative Supply Chain Management, Industrial Engineering Department, Texas Tech University.

8. Sarker, Bhaba R., Jamal, A.M.M., Wang, Shaojun (2000), “Supply Chain Models for

Perishable Products Under Inflation and Permissible Delay in Payment”, Computers

and Operation Research, Vol. 27, pp. 59-75

9. Shi, Chi-Sheng , Su, Chao-Ton (2002), “Improving Supply Chain Efficiency via Option

Premium Incentive”, Production Planning and Control, Vol. 13 No. 3, pp. 236-242

10. Su, Chao-Ton, Lin, Chang-Wang (2001), “A Production Inventory Model which

Considers The Dependence of Production Rate on Demand and Inventory Level”,

Production Planning and Control, Vol. 12 No. 1, pp. 69-75.

11. Wee, Hui-Ming (1999), “Deteriorating Inventory Model with Quantity Discount,

Pricing and Partial Backordering”, Int. J. Of Production Economics, Vol. 59, pp.

511-518.

12. Wee, Hui-Ming, Law, Sh-Tyan (1999), “Economic Production Lot Size for

Deteriorating Items Taking Account of The Time-Value of Money”, Computers and

Operation Research, Vol. 26, pp. 545-558

13. Yang, Po-Chung, Wee, Hui-Ming (2001), “An arborescent Inventory Model in A Supply

Chain System”, Production Planning and Control, Vol.12 No. 8, pp. 728-735

LAMPIRAN

Model matematis ukuran lot ekonomis gabungan tanpa mempertimbangkan faktor deteriorasi produk adalah :

Kasus 1 : Biaya deteriorasi dan simpan selama perjalanan ditanggung pemasok Biaya inventori pada pemasok,

Untuk memenuhi permintaan pembeli maka pada t = 0, pemasok mulai berproduksi sampai mencapai Im pada saat t = t1. Produk dikirim ke pembeli selama waktu (t2 – t1). Inventori pada saat t, (I(t)), dapat digambarkan sebagai berikut :

P

t

I

dt

d

=

)

(

0 ≤ t ≤ t1 (L1)

0

)

(

t

=

I

dt

d

t1 ≤ t ≤ t2 (L2)

dengan memakai batasan :

I(0) = 0, I(t1) = Im , maka diperoleh

Pembeli Pemasok t1 Q Q t3 P D t2 0 tr

(15)

t P t I()= . 0 ≤ t ≤ t1 (L3) 1

.t

P

I

m

=

(L4) 1 . ) (t P t I = t1 ≤ t ≤ t2 (L5) Sehingga, 1. Biaya simpan :

⎥⎦

⎢⎣

+

r m m pm

I

t

t

I

C

r

.

2

.

.

.

1 :

+

r pm

P

t

t

t

P

C

r

.

.

2

.

.

.

1 2 1 (L6)

Sehingga biaya total inventori pada pemasok per satuan waktu adalah :

TCpm (t1) = 2 3

t

t

S

+

+

r pm

t

t

P

t

P

t

t

C

r

.

.

2

.

)

(

.

1 2 1 2 3 (L7)

Dengan mensubstitusikan t1 dengan

P Q dan (t3 – t2) dengan D Q , maka : TCpm (Q) =

Q

S

D.

+ ⎦ ⎤ ⎢ ⎣ ⎡ + r pm t Q P Q Q D C r . . 2 . . 2 =

Q

S

D.

+

r

C

pm

t

r

D

r

C

pm

P

Q

D

.

.

.

.

.

.

2

.

+

(L8) Dengan memasukkan total harga beli, diperoleh biaya total pada pemasok :

TCpm (Q) =

C

pm

.

D

+

Q

S

D.

+

r

C

pm

t

r

D

r

C

pm

P

Q

D

.

.

.

.

.

.

2

.

+

(L9)

Biaya inventori pada pembeli,

Pada saat t = t2, produk sampai ke pembeli sebesar I(t2), kemudian produk tersebut dijual ke konsumen dengan laju permintaan sebesar D. Inventori setiap saat pada pembeli dapat digambarkan sebagai berikut :

D

t

I

dt

d

=

)

(

t2 ≤ t ≤ t3 (L10)

dengan memakai batasan,

I(t3) = 0 maka, ) ( ) (t2 D t3 t2 I = − (L11) ) ( ) (t D t3 t I = − t2 ≤ t ≤ t3 (L12) Sehingga, 1. Biaya simpan : .( ) 2 ) ( . . 3 2 2 t t t I C r p − :

2

)

.(

.

.

2 2 3

t

t

D

C

r

p

(L13)

Sehingga biaya total inventori pada pembeli per satuan waktu adalah :

TCp (t1) =

+

2 3

t

t

A

)

.(

2

)

.(

.

.

2 3 2 2 3

t

t

t

t

D

C

r

p

(L14) P Q t1 = (L15) D Q t t − )= ( 3 2 (L16)

(16)

Dengan mensubstitusikan t1 dengan P Q dan (t3 – t2) dengan D Q , maka : TCp (Q) =

Q

A

D.

+

2

.

.

C

Q

r

p (L17)

Dengan memasukkan total harga beli, diperoleh biaya total pada pembeli :

TCp (Q) =

C

p

.

D

+

Q

A

D.

+

2

.

.

C

Q

r

p (L18)

Dari kedua biaya total tersebut maka dapat dimodelkan total biaya gabungan keduanya sebagai berikut : TCgab (Q) =

C

pm

.

D

+

Q

S

D.

+

r

C

pm

t

r

D

r

C

pm

P

Q

D

.

.

.

.

.

.

2

.

+

+

C

p

.

D

+

Q

A

D.

+

2

.

.

C

Q

r

p (L19)

Model di atas sama dengan model yang dikembangkan oleh Ongsakul dan Liman (1998).

Kasus 2 : Biaya deteriorasi dan simpan selama perjalanan ditanggung pembeli Biaya inventori pada pemasok,

Untuk memenuhi permintaan pembeli maka pada t = 0, pemasok mulai berproduksi sampai mencapai Im pada saat t = t1. Inventori pada saat t, (I(t)), dapat digambarkan sebagai berikut : t P t I()= . 0 ≤ t ≤ t1 1

.t

P

I

m

=

Sehingga, 1. Biaya simpan : 2 . . . I t1 C r m pm :

2

.

.

.

2 1

t

P

C

r

pm (L20)

Sehingga biaya total inventori pada pemasok per satuan waktu adalah :

TCpm (t1) = 2 3

t

t

S

+

2

.

.

)

(

.

2 1 2 3

t

P

t

t

C

r

pm

(L21)

Dengan mensubstitusikan t1 dengan

P Q dan (t3 – t2) dengan D Q , maka : TCpm (Q) =

Q

S

D.

+ P Q Q D C r pm . 2 . . . 2 =

Q

S

D.

+

r

C

pm

P

Q

D

.

.

.

2

.

(L22) Dengan memasukkan total harga beli, diperoleh biaya total pada pemasok :

TCpm (Q) =

C

pm

.

D

+

Q

S

D.

+

r

C

pm

P

Q

D

.

.

.

2

.

(L23)

(17)

Biaya inventori pada pembeli,

Produk dikirim ke pembeli dari pemasok selama waktu (t2 – t1). Pada saat t = t2, produk

sampai ke pembeli sebesar I(t2), kemudian produk tersebut dijual ke konsumen dengan laju

permintaan sebesar D. Inventori setiap saat pada pembeli dapat digambarkan sebagai berikut : 1 1) . (t P t I = ) ( ) (t2 D t3 t2 I = − ) ( ) (t D t3 t I = − t2 ≤ t ≤ t3 Sehingga, 1. Biaya simpan :

⎢⎣

+

⎥⎦

2

)

).(

(

).

(

.

1 2 3 2

t

t

t

I

t

t

I

C

r

p r : ⎦ ⎤ ⎢ ⎣ ⎡ − + 2 ) .( . . . . 2 2 3 1 t t D t t P C r p r (L24)

Sehingga biaya total inventori pada pembeli per satuan waktu adalah :

TCp (t1) =

+

2 3

t

t

A

⎥ ⎦ ⎤ ⎢ ⎣ ⎡ − + − 2 ) .( . . ) ( . 2 2 3 1 2 3 t t D t t P t t C r r p (L25)

Dengan mensubstitusikan t1 dengan

P Q dan (t3 – t2) dengan D Q , maka : TCp (Q) =

Q

A

D.

+

t

r

.

D

.

r

.

C

p +

2

.

.

C

Q

r

p (L26)

Dengan memasukkan total harga beli, diperoleh biaya total pada pembeli :

TCp (Q) =

C

p

.

D

+

Q

A

D.

+

t

r

.

D

.

r

.

C

p +

2

.

.

C

Q

r

p (L27) Dari kedua biaya total tersebut maka dapat dimodelkan total biaya gabungan keduanya sebagai berikut : TCgab (Q) =

C

pm

.

D

+

Q

S

D.

+

r

C

pm

P

Q

D

.

.

.

2

.

+

C

p

.

D

+

Q

A

D.

+

t

r

.

D

.

r

.

C

p +

2

.

.

C

Q

r

p (L28)

Model di atas sama dengan model yang dikembangkan oleh Ongsakul dan Liman (1998).

Gambar

Tabel 1. Hasil perhitungan kebijakan inventori untuk pemasok dan pembeli
Gambar 2. Hubungan Waktu produksi (t 1 ) dengan Total biaya inventori gabungan (TC gab )
Tabel 3. Analisis Sensitivitas
Gambar 3. Pengaruh Parameter-parameter model Terhadap Solusi Optimal (Kasus 1)

Referensi

Dokumen terkait

Dikarenakan seluruh rutin program dari mulai pengaturan lingkungan kerja (pembuatan direktori kerja, pembuatan berkas analisis, dan pembuatan direktori penyimpanan), pemilihan

1) Pada butir pernyataan satu dari kuesioner yang disebar dan dianalisis, terdapat 62,5 % setuju dengan pernyataan bahwa “Media sosial memudahkan dalam mengakses informasi

Konsentrasi penggunaan Poly Aluminium Chloride (PAC) dan tawas (alum) yang dibandingkan dalam air baku yang memiliki pH 6,90 dan turbiditas awal 187 NTU adalah

Sementara yang paling rendah terdapat pada sampel daun kol dan buah tomat pada jarak 10 meter dari jalan raya dengan dilakukan pencucian (T1J2C2 dan T 2 J 2 C 2 ) yaitu

[r]

Oleh karena itu dapat dikatakan bahwa ada pengaruh penyuluhan terhadap tingkat pengetahuan tentang kesehatan reproduksi pada siswa SMP Negeri 24 Surakarta yang secara

Hasil pengujian Alat Pencetak Label Pada Kertas Undangan, Imitasi kulit Dan Kulit Secara Mekanik ini yaitu dengan menempelkan label yang telah dipanaskan pada bahan yang akan

Hasil belajar adalah kemampuan yang dimiliki oleh siswa yang berupa kemampuan kognitif, afektif, dan psikomotorik yang disebabkan oleh.