• Tidak ada hasil yang ditemukan

Influence of farmyard manure application (1)

N/A
N/A
Protected

Academic year: 2018

Membagikan "Influence of farmyard manure application (1)"

Copied!
14
0
0

Teks penuh

(1)

ContentslistsavailableatScienceDirect

Scientia

Horticulturae

j o u r n a l ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / s c i h o r t i

Influence

of

farmyard

manure

application

and

mineral

fertilization

on

yield

sustainability,

carbon

sequestration

potential

and

soil

property

of

gardenpea–french

bean

cropping

system

in

the

Indian

Himalayas

Dibakar

Mahanta

a,∗

,

R.

Bhattacharyya

b

,

K.A.

Gopinath

c

,

M.D.

Tuti

a

,

Jeevanandan

K

a

,

Chandrashekara

C

a

,

Arunkumar

R

a

,

B.L.

Mina

a

,

B.M.

Pandey

a

,

P.K.

Mishra

a

,

J.K.

Bisht

a

,

A.K.

Srivastva

a

,

J.C.

Bhatt

a

aVivekanandaInstituteofHillAgriculture(IndianCouncilofAgriculturalResearch),Almora263601,Uttarakhand,India

bIndianAgriculturalResearchInstitute,NewDelhi110012,India

cCentralResearchInstituteforDrylandAgriculture,Santoshnagar,Saidabad,Hyderabad500059,India

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received14April2013

Receivedinrevisedform23August2013 Accepted3October2013

Keywords:

Carbonsequestrationpotential Farmyardmanure

Soilcationexchangecapacity Soilcracking

Soiltemperature Sustainableyieldindex.

a

b

s

t

r

a

c

t

Sustainabilityofagriculturalsystemshasbecomeanimportantissueallovertheworld.Hence,

sustaina-bilityandclimateresilienceofgardenpea–frenchbeancroppingsystemwasevaluatedbyyieldtrends,C

sequestrationandemissionreductionandsoilpropertiesasaffectedbyfourapplicationratesoffarmyard

manure(FYM)(5–20tha−1)vis-à-vismineralfertilization,integratednutrientmanagement(INM)

prac-ticesas50%recommendedNPK+FYMat5tha−1andun-amendedcontrolaftersixyearsofcroppingin

theIndianHimalayas.Thehighestsustainableyieldindexof0.606wasachievedwiththeapplicationof

20tFYMha−1(FYM

20).ThecarbonsequestrationpotentialofFYM20plotswasabout459and193%more

thanNPKandINMplots,respectively.Thesameplotsreduced53and24%carbonequivalentemission

withcomparisontoNPKandINMapplication,respectively.Thesoilcationexchangecapacity(CEC)under

FYM20plotswas22and11%higherthanNPKandINMplots.ThesoilcrackingvolumeunderFYM20plots

(57cm3m−2area)wasverylesscomparedtoNPK(324cm3m−2area)andINM(154cm3m−2area)plots.

Themorningsoiltemperature(0–15cmdepth)incoldestweekoflastyearexperimentationunderFYM20

plotswasmoderatedby0.60and0.47◦CthanNPKandINMplots,respectively.Successiveincreaseof

FYMlevelimprovedsoilorganicC,microbialcolonyformationunit,dehydrogenaseactivity,bulk

den-sityandsoilcrackingsurfaceareaandthebestvaluesforallsoilpropertieswererecordedunderFYM20

plots.Applicationof20tFYMha−1produced54and29%highergardenpeaequivalentpodyieldofthe

systemthanmineralfertilizationandINM,respectively.Theprincipalcomponentanalysisrevealedthat

soilCECwasthemostimportantproperty(amongtheselectedsoilparameters)contributingtothepod

yield.Soilorganiccarbonmarkedlyimprovedothersoilpropertiesasevidentfromcorrelations.Organic

productionsystemwithFYM20tha−1couldberecommendedforclimateresilientsustainableyieldand

bettersoilpropertyofgardenpea–frenchbeancroppingsystemthanmineralfertilizationandINMinthe

IndianHimalayanregions.

©2013ElsevierB.V.Allrightsreserved.

1. Introduction

Adoptionofrecent agriculturalpracticesinvolvesoff-farmor

externalchemicalinputswhichreleaseCO2andothergreenhouse

gases(GHGs)toatmosphereduringproduction,transportationand

storage.Industrialagricultureinputscontributetonumerousforms

Correspondingauthorat:VivekanandaInstituteofHillAgriculture(Indian

Coun-cilofAgriculturalResearch),Almora263601,Uttarakhand, India.Tel.:+915962241005;fax:+915962241250.

E-mailaddress:dibakarmahanta@yahoo.com(D.Mahanta).

ofenvironmentaldegradation,includingairandwaterpollution,

soildepletionanddiminishingbiodiversityandsoilquality.Again

theincreaseinextremeclimaticvariabilityintheIndianHimalayan

regions(Pandayetal.,2009)isaddinguncertaintyofagricultural

productivity.Hence,sustainabilityofagriculturalsystemswithlow

orwithoutemissionofGHGshasbecomeanimportantissueallover

theworld.Conversely,organicsourcemayinfluenceagricultural

sustainabilitybyimprovingsoilquality(Sahaetal.,2008).Organic

farmingisincreasinglybecomingpopularbecauseoftheperceived

healthandenvironmentbenefits(Zhaoetal.,2009).Severalstudies

havereportedloweryieldsinorganicconditionswithcomparison

tomineralfertilizations(Astieretal.,1994;Gopinathetal.,2009;

0304-4238/$–seefrontmatter©2013ElsevierB.V.Allrightsreserved.

(2)

D.Mahantaetal./ScientiaHorticulturae164(2013)414–427 415

Liebhardtetal.,1989;MacRaeetal.,1990).Initiallyloweryields

onorganicfarmshavebeenattributedtothenegativeeffectsof

conventionalpracticesonthesoilmicroorganismsthatmineralize

soilorganicmatter,orthatcontrolsoil-bornepests(Martinietal.,

2004).But,theseorganicsystemsmayleadtomorebiological

activ-ityandimprovesoilqualitythanindustrialconventionalsystems

(CastilloandJoergensen,2001;Fliessbachetal.,2007;Garcia-Ruiz etal.,2008;Gopinathetal.,2009).Nutrientmanagementis,

there-fore,oneof themostcritical management practicesfor organic

growers.

Inthepastfivedecades,thetraditionalknowledgeand

prac-ticesoforganicfarminghavebeenalmosterodedfrommanyparts

ofIndiaduetoinfluxofmodern“greenrevolution”technologies

(Gopinathetal.,2009).However,formanyfarmers(especiallysmall

andmarginal)inHimalayas,thepurchaseofmanufactured

fertil-izersandpesticidesisandwillcontinuetobeconstrainedbytheir

highcostsand unavailability. Furthermore,useof locally

avail-ablenaturalresourcesandfarmers’knowledgearefarmorelikely

tomeettheneedsandaspirationsofresource-poorfarmersthan

thosethatrequirecostlyorscarceexternalinputs(Parrottetal.,

2006).Theworldorganicproductionsystemisconsideredtocover

anareaof37millionhectaresin162differentcountrieswith1.8

millionproducersandtheworldorganicmarketisestimatedat

morethan62.9billionUSdollarsin2011(Willeretal.,2013).This

organicmarketexpansionmakesitpossibleforHimalayanfarmers

toemergeasmajorsuppliersoforganicproductswithhighprice

premiums(Gopinathetal.,2009).Againthepercapitalivestock

populationinIndianHimalayanstatesisveryhighthanaverage

ofIndia(Anonymous,2012;Anonymous,2011).Thiswillhelpin

producingmoreorganicmanuresinthesestatesandcanfulfillthe

demandoforganicmanurefortheorganicproducerstocontinue

organicagriculture.Theorganicmanuresproducedfromlivestock,

ifnotutilizedwilladdGHGstotheenvironment.

VegetablefarmersinIndianHimalayasmostlyapplyfarmyard

manure(FYM)asnutrientsourceinorganiccultivation.However,

thereislimitedresearchontheeffectsofapplicationofhigherlevel

ofFYMvis-à-vismineralfertilization(recommendedNPKonly)and

integratednutrientmanagement(INM;50%oftherecommended

NPK+5tFYMha−1) onyield of crops,sustainability of cropping

systemandsoilquality(soilphysical,chemicalandbiological

prop-erties).Gardenpeaandfrenchbeanaretwoimportantleguminous

vegetablescultivatedinnorth-westernHimalayasofIndia.Hence,

wechosetoevaluatetheinfluenceofFYMongardenpea(Pisum

sativumvar. hortense L.)and frenchbean(PhaseolusvulgarisL.)

yieldtrendsintheIndianHimalayasaftersixyearsofcropping.The

hypothesisofthestudywere(i)Mediumterm(6years)

continu-ousmanureapplicationunderayear-roundvegetableproduction

systemwouldstoremoreCinsoilandreduceemissionofCO2and

wouldhavehighersustainableproductivitycomparedwith

min-eralfertilizationandINM;(ii)Constantmanuringwouldmoderate

winterandsummersoiltemperaturesbetterthanINMalongwith

improvementinsoilproperty,therebywouldhavethepotential

toadaptandmitigatetheclimatechangeimpacts intheIndian

Himalayas.Theobjectivesofthestudywere(i)tofindoutthemost

sustainablenutrientmanagementpracticesforgardenpea–french

beancroppingsystem;(ii)toestimatethecarbonsequestration

potentialofFYMandmineralfertilization and(iii)toassessthe

effectsofdifferentlevelsofFYMvis-à-vismineralfertilizationand

INMonselectedsoilproperties.

2. Materialsandmethods

2.1. Experimentalsiteandagronomicpractices

Thefieldexperimentwasconductedduring2002–2008atthe

experimental farm of Vivekananda Instituteof Hill Agriculture

Table1

Physicalandchemicalpropertiesoffarmyardmanure(meanofsixyears).

Particulars Characteristics

Color Brownishblack

Basicorganicmaterial Cattledungandurine+left-over materialoffodder+litter

Texture Smalllumps

bWaterholdingcapacitywasthedifferenceofmoisturecontentbetween0.33

and−15barpressure.

c FYM:Moisture=1:5.

locatedintheIndianHimalayanregionatHawalbagh(29◦36N

and79◦ 40Eand1250mabovemeansealevel)inthestateof

Uttarakhand,India.Thesoilwassiltyclayloam(TypicHaplaquept)

with the following characteristics in 0–15cm depth: pH 6.1

(1:2.5soil:watersuspension),easilyoxidizable(K2Cr2O7+H2SO4)

organicC11.3gkg−1,alkalineKMnO

4oxidizableN179.9mgkg−1,

0.5M NaHCO3 extractable P 6.79mgkg−1 and 1.0N NH4OAc

exchangeableK80.4mgkg−1soil.

Theclimaticconditionsattheresearchfarmindicatesthatthe

extremetemperatureconditionisincreasingi.e.minimum

temper-atureisdecreasingandmaximumtemperatureisincreasingover

theyears(Pandayetal.,2009;Pandayetal.,2003).Thefrequency

ofseveredroughtsastonishinglyincreasedfrom1.39to3.75years

outof10years(Pandayetal.,2009).

Thefieldexperimentconsistedofseventreatmentsandwaslaid

outinarandomizedcompleteblockdesignwiththreereplications

inafixedplot.ThetreatmentswerefourratesofFYMapplicationi.e.

5tha−1(FYM

5),10tha−1(FYM10),15tha−1(FYM15)and20tha−1

(FYM20),mineralfertilization asrecommendedNPK(NPK), INM

(50% recommended NPK as mineral fertilizer+FYM at 5tha−1)

and unfertilized control.All organicamendments were applied

onadry-weightbasis.Thenatureandcomposition(physicaland

chemical properties)of FYMwere analyzed prior to

incorpora-tionintoexperimentalplotsanddepictedinTable1.Themineral

fertilizersinNPKandINM(recommendedlevel:20-26.2-33.3kg

N-P-Kha–1forgardenpeaand50-30.6-41.7kgN-P-Kha−1forfrench

bean)wereappliedatthesowingtimeandthesourcesfor N,P

andK wereurea, singlesuperphosphateandmuriate ofpotash,

respectively.

2.2. Yielddatacollectionandsustainableyieldindex

Atharvestingtime,marketablegreenpodswerepickedin

dif-ferentphasesduringtheharvestingperiodforestimationofyield

parameterssuchaspodnumberperplant,podlength,and pod

yield (tha−1). Randomsamples of five plants were taken from

each plot for recording pod number plant−1 and plant height.

Podnumbersoftheseselectedplantswerecountedbysumming

fromfirstpickinguptothelastpicking.Plantheightwasrecorded

atthetimeof lastpickingofpods.Pod lengthwasrecordedby

averaging 20 pods in different pickingsof selected five plants.

The pod yield of netplot size of 3.0m×3.0mfrom gross plot

sizeof3.6m× 3.0mwasconsideredforestimationofpodyield

ha−1.

Observations were recorded onpod yield of gardenpea and

frenchbean.Thepodyieldoffrenchbeanwasconvertedinto

(3)

Fig.1.Weeklysoilminimumandmaximumtemperatureoflasteightyearsfrom theresearchfarmoftheexperiment.

frenchbeanandgardenpeaasfollows:

Gardenpeaeconomicequivalentyieldoffrenchbean

=(Yfb×Pfb)/Pgp (1)

whereYfbisthepodyieldoffrenchbean,Pfbisthepriceoffrench

bean,andPgpisthepriceofgardenpea.Thepricet−1offrenchbean

variedfromUS$400to500andthatofgardenpeafromUS$240to

360indifferentyears.

Minimumguaranteedyieldthatcouldbeobtainedrelativeto

maximumobservedyieldovertheyearsofgardenpea–frenchbean

croppingsystemwasquantifiedthroughsustainableyieldindex

(SYI),whichwascalculatedbythefollowingexpression(Singhetal.,

1990):

SYI=(Ya−)/Ym (2)

whereYaisthemeanyield,‘’thestandarddeviationofyieldfor

thattreatmentacrossyears,andYmisthemaximumyieldobtained

underthattreatmentinanyyear.IntheconceptofSYI,lowvalues

ofsuggestsustainabilityofthesystem(Efthimiadouetal.,2010),

becausemeasuresvariationinyieldcausedbysoilparameters

andclimaticfactors.Ifishigh,SYIwillbelowandthisindicates

unsustainablemanagementpractice(Singhetal.,1990).The

near-nessofSYIto1.0impliestheclosenesstoanidealsituationthatcan

sustainmaximumcropyieldsoveryears,whiledeviationfrom1.0

indicatesthelossestosustainability.

2.3. Soilphysicalproperties

Bulkdensity(BD,Mgm−3)ofthesurface(0–15cm)soillayerwas

determinedusingacoresampler(diameter7cmandheight8cm).

Thegravimetricwatercontentofthesoilinthesesleeveswas

deter-minedondryingat105◦C.Plantavailablewatercapacity(PAWC)

wasdeterminedasthedifferenceofpercentagewatercontentat

fieldcapacity(0.03MPa)andpermanentwiltingpoint(1.5MPa)

usingapressureplateapparatusmethod.Thewaterinfiltrationrate

(IR)wasmeasuredusingtapwaterateachoftheplotsonthesoil

surfaceusingadoubleringinfiltrometerwitha27cmouter

diame-teranda15cminnerdiameter,untilaconstantratewasachieved.

Soiltemperaturewasrecordedwiththehelpofsoilthermometer.

Theprevalenceofweeklysoilminimumandmaximum

tempera-tureoftheyearacrosslasteightyearsfromtheresearchfarmof

theexperimenthasbeendepictedinFig.1.Soiltemperaturewas

recordedinlastyearoftheexperimentduringcoldestandhottest

weekoftheyear.Thecoldestandhottestweekswerechosenonthe

basisofmeanoflastsixyearsatmospherictemperature.The

morn-ingtemperatureandafternoontemperaturewererecordedat6:45

AMand2:15PM,respectivelyduringcoldestseasonweek(January

secondweek)andat5:00AMand2:15PM,respectivelyduring

hottestseasonweek(22ndweekoftheyear–May27toJune2).

Thetemperaturedifferenceofthedaywascalculatedby

subtrac-tingmorningtemperaturefromtheafternoon.Themoderationof

soiltemperaturewasestimatedasdifferenceofsoiltemperature

betweentreatedandun-amended controlplotsduringmorning

andafternoonforcoldestandhottestweekofyear,respectively.

Fordeterminationofsoilcrackvolume(SCV)andsoilcrack

sur-facearea(SCSA),eachexperimentalplotwasdividedintofourparts

andsquaresof1m×1mweredemarcatedineachpart.Within

eachofthesesquares,cracklengthapparentonthesoilsurface

wasmeasuredbyaflexibletwinerunalongthecrackand

measur-ingthetotallengthofallthecracksinthe1m×1m(Dasogand

Shashidhara,1993).Theaveragedepthandwidthofcrackswere

basedonmeasurementsmadeat0.5mintervalalongthecourse

ofthecrack.Thecrackdepthwasmeasuredbya2mmdiameter

steelrodinserteduntilitofferedresistancetofurtherpenetration,

whilethewidthatthesamepointasthatofdepthrecordingwas

measuredwithanadjustabledividerat1cmbelowthesoilsurface

(Dasogetal.,1988).Adepthof1cmwaschosentoavoid

exagger-atedwidthscausedbysurfacedisturbance.Totalvolume(SCV,cm3)

andsurfacearea(SCSA,cm2)ofeachcrackwascomputedusing

thefollowingequationsassumingtriangularshapeofthecracks

(Bandyopadhyayetal.,2003;Sharmaetal.,1995):

SCV=

0.5wdl; (3)

SCSA=

2Cl; (4)

C=[(0.5w)2+d2]1/2 (5)

wherewisthemeanwidthofcracks(cm),dthemeandepthof

thecrack(cm),lthelengthofthecrack(cm),andCtheparameter

basedonwandd.

2.4. Soilbiologicalproperties

Microbialpopulationofthesoilattheendoftheexperimentwas

enumeratedbythesoildilutionplatemethod(Seeleyetal.,1991).

Nutrient,roseBengal,KenknightagarandTrichodermaselective

medium(TSM)wereusedforbacteria,fungi,actinomycetesand

Trichoderma species counts, respectively. To suppress bacteria,

streptomycin(30ppm)wasadded tonutrient agar.Inthe

con-ventionaldilution-plateprocedure,1gofsoilwasaddedto10ml

sterilewaterandtenfolddilutionwereprepared.Fromthe

result-ingsuspensionportionsof0.1mlofrespectivedilution(upto10−7,

10−5,10−4 and10−3 fortotalbacteria,fungiactinomycetesand

Trichodermaspecies,respectively)werespreadwiththeaidofa

Drigalskylooponthesurfaceof agarplates containing25mlof

Nutrient,RoseBengal,KenknightagarandTSMmedium.Theplates

wereincubatedat28◦Cforaweekandcolonyformationunitswere

recorded.

Soildehydrogenase activitywasestimated byreducing 2, 3,

5-triphenyltetrazolium chloride(TTC)(Casida etal., 1964).Five

gramsofsoilsampleweremixedwith50mgofCaCO3 and1ml

of3% (w/v)2,3, 5-triphenyltetrazoliumchloride andincubated

for24hat37±1◦C.DehydrogenaseenzymeconvertsTTCto2,3,

5-triphenylformazan(TPF).TheTPFformedwasextractedwith

ace-tone(3×15ml),theextractswerefilteredthroughWhatmanNo.5

andabsorptionwasmeasuredat485nmwithaspectrophotometer.

Acidphosphatasewasassayedusing1gsoil(wetequivalent),

(4)

D.Mahantaetal./ScientiaHorticulturae164(2013)414–427 417

p-nitrophenylphosphate(Tabatabai and Bremner,1969).After

incubationfor1hat37±1◦C,theenzymereactionwasstoppedby

adding4ml0.5MNaOHand1ml0.5MCaCl2topreventdispersion

ofhumicsubstances.Theabsorbancewasmeasuredinthe

super-natantat400nm;enzymeactivitywasexpressedas␮gp-nitro

phenolreleasedg−1soilh−1.

2.5. Soilchemicalproperties

Soilsampleswerecollectedfrom0–15cmdepthattheendofthe

6thcroppingcycle.SoilpHwasdeterminedin1:2.5soil:water

sus-pensionaftershakingfor30min.Thesesoilsampleswereanalyzed

fororganicC bywetdigestionusingK2Cr2O7 and concentrated

H2SO4 (WalkleyandBlack, 1934).Soil organicC concentrations

wereconvertedfromgkg−1toMgCha−1usingmeasuredsoilBD.

Cation exchange capacity (CEC) of thesoil wasdetermined by

leachingthesoilwithKClfollowedbyextractionofexchangeable

K+ byNH

4OAcand K+ in solutionwasdetermined

flamephoto-metrically(Rhoades,1990).Carbonsequestrationpotential(CSP;

Mgha−1year−1)ofa particulartreatmentwascalculatedbythe

followingrelationship(Bhattacharyyaetal.,2009):

CSP=(SOCfinal−SOCinitial)/n (6)

whereSOCfinalandSOCinitialrepresentSOCcontent(MgCha−1)

attheendofexperimentandinitialplots,respectively,and‘n’

indi-catesyearsofexperimentation.SoilorganicCbudgetingforthe

studiedsystemswasdoneas:

SOCbuilduprate(MgC ha−1year1)

=(SOCtreatment−SOCcontrol)/n (7)

where SOCtreatment and SOCControl represent SOC content

(MgCha-1)intheFYMormineralfertilizerappliedplotsand

unfer-tilisedcontroltreatment,respectively.

Soilorganiccarbon(SOC)storedinthesoilindirectlyreducesthe

emissionofCO2 toatmosphere.CO2emissionreductionthrough

SOCstockwasestimatedbythefollowingformula:

CO2 emissionreductionthroughSOCstock(Mgha−1)

=(SOCamounttreatment−SOCamountcontrol)×3.67 (8)

TheC emissionforproduction,packaging,storageand

distri-butionoffertilizersare1.3kgcarbonequivalentgreenhousegas

emission(CE)/kgN,0.2kgCE/kgP2O5and0.15kgCE/kgK2O(Lal,

2004).TheCEofFYMisestimatedat0.15kg/kgN.TheCEcanbe

convertedtoCO2equivalentbymultiplying3.67.

2.6. Statisticalanalysis

StatisticalanalysisofthedatawasdonebyusingAnova

tech-niqueandfollowingSPSS10.0andSAS9.2software.Thetreatment

meanswerecomparedatP<0.05levelofprobabilityusingstudent

t-testandworkingoutLSDvalues.Formultifactorialcomparison,

principalcomponentanalysis(PCA)andagglomerative

hierarchi-calclustering(AHC)wereusedtodisplaythecorrelationbetween

thevariousparametersandtheirrelationshipwiththedifferent

nutrientmanagementpractices.Varimaxrotationwasperformed

toproduceorthogonaltransformationstothereducedfactorsto

identifythehighandlowcorrelationsbetter.Multifactorialanalysis

wascarriedoutusingtheXLSTATsoftware(XLSTAT2010).

3. Results

3.1. Yieldattributesandpodyield

Gardenpea and french bean showed significant response to

additionalnutrientsthroughFYM.Thehighestpodnumbersper

plantwererecordedintheplotsunderFYM15andFYM20for

gar-denpeaandfrenchbean,respectively(Table2).Theseapplications

producedsignificantlyhighernumberofpodsperplantthanother

treatments,exceptFYM20andFYM15treatedplotsforgardenpea

andfrenchbean,respectively.PlotsunderFYM15ingardenpeahad

34and18%higherpodsperplantthanNPKandINMtreatedplots,

respectively,whileFYM20treatedplotsunderfrenchbeanhad36

and22%higherthanNPKandINMtreatedplots,respectively.The

similartrendswerealsoobservedforpodlengthandplantheight

forrespectivecrops.

Thehighestmeanpodyieldofgardenpeawasobservedinthe

plotsunderFYM15(Table3).ThepodyieldofFYM20andINMplots

weresimilartoFYM15forgardenpeacrop.But,inthecasesoffrench

beanandtotalgardenpeaequivalentyieldofthesystem,the

high-estproductivitywasrecordedintheplotsunderFYM20.Twocrops

arerespondingtotwodifferentapplicationratesofFYM.Hence,we

haveconsideredtheyieldoftotalsystemforevaluation,asFYMhas

residualeffectfordifferentcropseasonsandtwodifferent

appli-cationratescannotberecommendedfortwocropsinasystem.

Thehighestproductivityofgardenpeaequivalentyieldofsystem

wasobservedunderFYM20,whichprovided54and29%higherpod

yieldthanNPKandINMtreatedplots,respectively.

3.2. Sustainableyieldindex

TheSYIofthecroppingsystemcontinuedtoincreasewith

suc-cessivelevelsofFYMandthehighestvalueof0.606wasrecorded

underFYM20comparedwith0.525and0.549underNPKandINM

treatedplots,respectively.Similartrendswereobservedforboth

crops(Table3).

3.3. Soilphysicalproperties

ThesoilBDdecreasedsignificantlyinalltreatmentscompared

withthecontrolplots(Table4).TheBDofplotsunder20tFYMha−1

(1.34Mgm−3)waslowerby0.04Mgm−3 and0.07Mgm−3 from

NPK and control plots, respectively after six years. PAWC was

clearlyimprovedbyfertilization(Table4).TheFYM20treatment

(15.75%PAWC)showedagainof5.18and0.79%availablemoisture

inthe0–15cmsoillayerovertheplotsunderNPKandINM

treat-ments,respectively.AdditionofFYMtomineralfertilization(INM)

improvedPAWCby42%overplotsunderNPK.

AlltreatmentssignificantlyreducedtheSCVandSCSAthanthe

unfertilizedcontrolplotsandthelowestvaluewasrecordedwith

applicationof20tFYMha−1forbothparameters.Thedecreasein

SCVunderFYM20plotswasby82and63%overNPK(324cm3m−2

surfacearea)andINM(154cm3m−2 surfacearea)plots,

respec-tively.TheplotsunderFYM20had83and63%lessSCSAthanNPK

(3111cm2m−2surfacearea)andINM(1424cm2m−2surfacearea)

treatedplots,respectively.

TheIRincreasedsignificantlywiththeapplicationofFYM,

min-eralfertilizerandINMthancontroltreatment.Thehighestvalueof

IR(1.06cmh−1)wasrecordedwiththeapplicationof20tFYMha−1.

INMsignificantlyincreasedtheIRcomparedtoNPKonly.There

wereimprovementsof0.39and0.14cmh–1IRsunderFYM

20over

NPKandINMtreatedplots,respectively(Table4).

Themorningsoiltemperatureofcoldestweek(secondweekof

January)increasedsignificantlyinalltreatmentscomparedtothe

controlplots.ThesoiltemperatureunderFYM20plots(10.78◦C)

(5)

Table2

Effectoffarmyardmanure(FYM)onyieldattributesofgardenpeaandfrenchbean(meanofsixyears).

Treatmentsa Gardenpea Frenchbean

Podnumberplant−1 Podlength(cm) Plantheight(cm) Podnumberplant−1 Podlength(cm) Plantheight(cm)

Control 6.53 6.29 43.6 7.6 10.5 31.9

FYM5 8.35 6.69 56.2 9.6 11.9 44.0

FYM10 9.54 6.86 63.7 11.7 12.6 51.3

FYM15 11.09 7.18 70.1 12.8 12.9 54.2

FYM20 11.02 7.10 68.1 13.7 13.2 57.2

NPK 8.30 6.69 55.8 10.1 12.3 46.5

INM 9.43 6.84 62.7 11.2 12.5 50.4

SEM± 0.36 0.07 1.9 0.5 0.2 1.6

LSD(P=0.05) 1.05 0.20 5.6 1.4 0.6 4.6

aSeeSection2fortreatmentdetails.LSD=Leastsignificantdifference.SEM=Standarderrorofmean.

Table3

Mean(ofsixyears)productivityandsustainabilityofgardenpea–frenchbeancroppingsystemunderdifferentnutrientmanagementpracticesintheIndianHimalayas.

Treatmentsa Meanpodyield(tha−1) Sustainableyieldindex

Gardenpea Frenchbean Gardenpeaequivalent yieldoftotalsystem

Gardenpea Frenchbean Gardenpea–french beancroppingsystem

Control 3.42 4.12 10.04 0.637 0.318 0.472

FYM5 6.04 8.93 20.12 0.676 0.399 0.482

FYM10 7.60 11.19 25.18 0.680 0.436 0.521

FYM15 9.12 12.83 29.24 0.682 0.486 0.564

FYM20 8.90 14.44 31.47 0.705 0.517 0.606

NPK 5.96 9.14 20.49 0.615 0.381 0.525

INM 7.07 10.97 24.36 0.684 0.466 0.549

SEM± 0.37 0.75 1.07 – – –

LSD(P=0.05) 1.06 2.16 3.08 – – –

aSeeSection2fortreatmentdetails.LSD=Leastsignificantdifference.SEM=Standarderrorofmean.

plots.TheFYM20treatmenthadasignificantdecreasein

temper-atureinthe0–15cmsoillayerovertheplotswithNPKandINM

duringafternoon ofthecoldest and hottestweekand morning

temperatureofthehottestweek.Thetemperaturedifference

dur-ingthedaywaslowestwithapplicationof20tFYMha−1 among

othernutrientsourceplots.Itindicatesthatthediurnalvariation

intemperatureislowwithapplicationofhighrateofFYM(FYM20)

comparedtoNPKandINMtreatedplots.

3.4. Soilbiologicalproperties

Ingeneral,itwasobservedthatcontinuousapplicationofFYM

hadabeneficialeffectonthepopulationlevelsoftotalbacteria,

fungi,actinomycetes and Trichoderma spp. in the surface layer

(0–15cm)ofsoilaftersixyearsofcropcycle(Table5).Theleast

populationwasrecordedintheunfertilizedcontrolplotsfor

afore-mentionedmicrobes.PlotsunderFYM20hadthehighestbacterial

population(3.92×107colonyformationunitsg−1soil),whichwas

significantlyhigherthanthepopulationlevelsrecordedintheplots

underNPKandINM.ThefungalpopulationunderFYM20(5.18×105

colonyformationunitg−1soil)were350and27%higherthanthe

plotsreceivingNPKandINM,respectively.Itwasfurtherobserved

thattheplotsunderFYM20recordedsignificantlyhigherlevelsof

actinomycetes(140and 48%higherthanNPK andINM,

respec-tively)and Trichodermaspp.(304and60%higherthanNPKand

INM,respectively).Therewasatleast150%increaseinmicrobial

populationwithadditionofFYMtomineralfertilizer over NPK

alone.

Basically, the enzyme involved in intracellular microbial

metabolism,i.e.,dehydrogenaseandtheenzymeresponsiblefor

solubilizingPfromsoili.e.acidphosphatase,increasedwith

appli-cationofFYM,mineralfertilizerandINM(Table5).Dehydrogenase

and acidphosphatase activity increasedwith each incremental

applicationofFYMandthehighestactivitiesoftheseenzymeswere

estimatedwithapplicationof20tFYMha−1amongalltreatments.

ThedehydrogenaseactivityunderFYM20plotswere93and26%

Table4

Effectsoffertilizationonsoilphysicalpropertiesaftersixyearsofirrigatedgardenpea–frenchbeancroppingsystem.

Treatmentsa BD (Mgm−3)b

PAWC (%)

SCV (cm3m−2area)

SCSA (cm2m−2area)

IR (cmh−1)

Soiltemperatureduringthelastyearofexperimentation(◦C)

Coldestweekofyear Hottestweekofyear Temperature difference withinyear Morn AN Tempdiff Morn AN Tempdiff

Control 1.41 8.89 401 4232 0.63 11.0 15.1 4.07 24.2 29.1 4.87 13.6

FYM5 1.37 10.09 186 1819 0.73 11.6 14.3 2.67 23.8 27.6 3.80 12.8

FYM10 1.36 11.84 206 1990 0.77 11.9 14.0 2.17 23.6 25.9 2.30 11.8

FYM15 1.35 14.09 177 1974 0.97 12.1 13.6 1.53 23.6 24.6 1.03 11.3

FYM20 1.34 15.75 57 531 1.06 12.5 13.3 0.77 23.5 24.1 0.60 10.9

NPK 1.38 10.57 324 3111 0.67 11.9 14.3 2.43 24.0 27.0 3.03 12.4

INM 1.35 14.96 154 1424 0.92 12.0 13.6 1.57 23.7 24.8 1.10 11.4

SEM± 0.005 0.79 15 101 0.004 0.1 0.1 0.1 0.3

LSD(P=0.05) 0.014 2.43 45 310 0.012 0.4 0.4 NS 0.9

aSeeSection2fortreatmentdetails.LSD=Leastsignificantdifference.SEM=Standarderrorofmean.

b BD=Bulkdensity;PAWC=Plantavailablesoilwatercapacity;SCV=Soilcrackvolume;SCSA=Soilcracksurfacearea;IR=Infiltrationrate;Morn=morning;AN=Afternoon;

(6)

D.Mahantaetal./ScientiaHorticulturae164(2013)414–427 419

Table5

Effectsoffertilizationonsoilbiologicalpropertiesaftersixyearsofirrigatedgardenpea–frenchbeancroppingsystem.

Treatmentsa Microbialpopulationcount(CFUbg−1soil) Soilenzymaticactivity

Bacteria (×107)

Fungi (×105)

Actinomycetes (×104)

Trichoderma spp.(×103)

Dehydrogenaseactivity (␮gTPFg−1soil24h−1)

Acidphosphataseactivity (␮gPNPg−1soilh−1)

Control 1.10 1.09 6.85 1.14 67.5 994

FYM5 1.72 2.11 12.59 2.08 78.7 1038

FYM10 1.91 3.26 13.45 2.59 103.9 1142

FYM15 2.68 4.59 22.73 4.45 127.1 1249

FYM20 3.92 5.18 27.15 4.96 148.1 1410

NPK 1.68 1.15 11.32 1.23 76.7 1031

INM 2.62 4.09 18.28 3.11 117.7 1238

SEM± 0.16 0.19 0.84 0.16 7.1 64

LSD(P=0.05) 0.50 0.59 2.60 0.48 21.9 197

aSeeSection2fortreatmentdetails.LSD=Leastsignificantdifference.SEM=Standarderrorofmean. bCFU=Colonyformingunit.

higherthanNPKandINMtreatedplots,respectively.About37and

14%higheracidphosphataseactivitieswererecordedundersoils

ofFYM20thanNPKandINMtreatments,respectively.

3.5. Soilchemicalproperties

ApplicationofFYM,mineralfertilizer(NPK)andintegrationof

bothorganicandmineralsourceofnutrients(INM)significantly

influenced all selected soil chemical properties in the 0–15cm

depth(Table6).ApplicationofNPKrecordedthelowestsoilpH

value(5.64),whichwas0.46(7.5%)lowerthantheinitialvalue.

AdditionofFYMtomineralfertilizerimprovedthesoilreactionin

INM.ThesoilpHincreasedsignificantlyinallplotstreatedwith

FYMcompared withmineralfertilization. Applicationof FYM20

recordedthehighest soilpHvalue(6.85)and wasnearneutral

range,whichwas∼21.5%higherthanNPKplots.ThepHincreased

from6.65to6.85asthelevelofFYMapplicationincreasedfrom5

to20tha−1.

SOCisanoverallindicatorofsoilquality(Lopezetal.,2012).

SoilorganicCconcentrationsdecreased fromtheirinitialvalues

intheplotsunderunfertilizedcontrol.SoilsunderFYM20

treat-ment(13.2gCkg−1)contained14.1and9.3% higherSOC inthe

0−15cm soil layercompared withNPK and INMtreated plots,

respectively.TheSOCconcentrationincreasedwithevery

succes-siveincrementofFYMapplicationfrom5 to20tFYMha−1.The

amountofSOCunderFYM20 plots(26.6Mgha−1)wasincreased

by2.6and2.1Mgha−1comparedtoNPKandINMtreatedplots.

AlltreatmentssignificantlyimprovedsoilCECthancontrolplots,

exceptplotsunderNPK.ApplicationofFYM20recordedthe

high-est soil CEC value (13.03cmolkg−1), which was 2.5 (24%) and

1.23cmolkg−1 (10%) higher than NPK and INM plots,

respec-tively.

Carbon sequestration potential(CSP), defined as therate of

increaseinSOCcontentovertheinitialsoilinthe0–0.15msoil

depth, ranged from −0.534MgCha−1year−1 in theunfertilized

controlplotsto0.527MgCha−1year−1 intheplotsunderFYM

20

(Fig.2).CSPwasnegativeintheunfertilisedcontrolplots.TheCSP

ofFYM20plotswasabout0.433and0.347MgCha−1year−1more

thanNPKandINMplots,respectively.Therewasanincreasenet

build-uprateoftotalSOCintheplotsunderFYM20,themean

mag-nitudebeing69and49%,respectively,overNPKandINMtreated

plots(Fig.3).Thegardenpeaequivalentpodyieldofthesystemwas

positivelyrelated(R2=0.934)toSOCcontent(Fig.4).TheCO

2

emis-sionreductionunderFYM20plotswasupto9.5and7.6Mgha−1

comparedtoNPKandINMplots,respectively,throughgaininSOC

stock.AgaintheCO2 equivalentannual emissionof GHGsfrom

productionof 20tFYMwas53and 24%less thanapplied

min-eralfertilizerandFYMunderrecommendedNPKandINMplots,

respectively(Table6).

Fig.2.Soilorganiccarbonsequestrationpotential(CSP)ofdifferentnutrient man-agementpracticesunderanirrigatedgardenpea–frenchbeancroppingsystemin theIndianHimalayas(seeSection2fortreatmentdetails).

3.6. CorrelationandPCAofpodyieldwithsoilproperty

Acorrelationmatrix(Table7)showedsignificantcorrelations

(P<0.05)betweenallthedifferentsoilparametersandpodyields

ofbothgardenpeaandfrenchbean,exceptsoilpH.Therewasvery

strongcorrelation(P<0.001)betweenSOCandCEC,SOCandBD,

PAWCwithbacterial,actinomycetepopulation,dehydrogenaseand

(7)

Table6

Effectsoffertilizationonselectedsoilchemicalpropertiesandcarbonequivalentemissionfromirrigatedgardenpea–frenchbeancroppingsystemaftersixyears.

Treatmentsa pH SOCb

concentration (gkg−1)

SOC amount/stock (Mgha−1)

CO2emission

reductionthroughSOC stock(Mgha−1)

CO2equivalentemissionfrom

productionofnutrient (kgha−1yr-1)

SoilCEC (cmolkg−1)

Control 6.11 9.54 20.2 – – 9.07

FYM5 6.65 11.88 24.4 15.5 56 11.36

FYM10 6.72 12.35 25.2 18.4 112 11.92

FYM15 6.78 12.59 25.5 19.5 168 12.30

FYM20 6.85 13.21 26.6 23.3 224 13.03

NPK 5.64 11.57 24.0 13.8 479 10.53

INM 6.30 12.08 24.5 15.7 295 11.80

SEM± 0.13 0.50 1.0 0.53

LSD(P=0.05) 0.39 1.53 3.1 1.63

aSeeSection2fortreatmentdetails.LSD=Leastsignificantdifference.SEM=Standarderrorofmean. b SOC=soilorganiccarbon.

acidphosphatase activity,frenchbeanpodyieldwithCEC,SOC

andBD,andIRwithfungal,actinomycetal,Trichodermalpopulation,

dehydrogenaseandacidphosphataseactivity.Therewerealsovery

strong(P<0.001)tostrong(P<0.01)relationshipsamongmicrobial

populationsandenzymatic activities.Themicrobial populations

andsoilenzymaticactivityweremorecorrelatedtoCEC(P<0.01)

thanorganiccarbon(P<0.05).Therewasalsoverystrongpositive

(P<0.001)correlationsbetweenIRandPAWCascontrarytogeneral

perception.SoilpHhadnocorrelation(P>0.05)toanyofthesoil

parametersandpodyieldofbothcrops,exceptTrichoderma

popu-lation.TheBD,soilcrackingvolumeandsurfacearea,temperature

athottestweekafternoonanddiurnaltemperaturedifferenceof

hottestweekwerenegativelycorrelatedwithotherparameters.

PCAisausefulstatisticaltechniquewhichhadfound

applica-tioninreductionoftheoriginalvariablesinasmallernumberof

underlyingvariables(principalcomponent)inordertorevealthe

interrelationshipsbetweenthedifferentvariablesandtofindthe

optimumnumberofextractedprincipalcomponents.Thedifferent

soilpropertiesandpodyieldofcropsweredepictedinFig.5.The

PCAcomprisingtwoprincipalcomponents(F1andF2)accounted

for93.1% and93.9% of variancefor gardenpeaand frenchbean

crops,respectively.

ThelongerthelineinPCA,thehigheristhevariance.The

vari-anceamongthevariablesinthebiplotwasalmostsimilarforboth

gardenpeaandfrenchbean(Fig.5).Thecosineoftheanglebetween

thelinesapproximatesthecorrelationbetweenthevariablesthey

represent.The closer theangle to90 or 270◦, thesmallerwas

thecorrelation.Anangleof0or180◦ reflectsa correlationof1

or−1,respectively(KohlerandLuniak,2005).ThebiplotinFig.5

showedastrongpositiverelationshipbetweenthepodyieldand

CEC,SOC,allmicrobialpopulationcount,bothenzymaticactivity,

IRandPAWCforbothvegetables.Thecutpointofaperpendicular

fromatreatmentpointtoavariablelineapproximatesthevalue

ofthatobservationonthevariablethatthelinerepresents.Ifthe

cutpointfallsontheorigin,thevalueoftheobservationis

approx-imatelytheaverageoftherespectivevariable.Cutpointsfaroff

inthedirectionofthevariablelineindicatehighvalues,whilecut

pointsfaroffonthevariableline,whichhasbeenextendedthrough

theorigin,representlowvalues(KohlerandLuniak,2005).

Super-impositionofnutrientmanagementpracticesandyieldalongwith

soilpropertiesshowedthatFYM20andFYM15showedhigher

corre-lationwiththeseparameters.Itwasconfirmedfromthecorrelation

inTable7andPCAinFig.5thatsoilCECfollowedbySOCwerevery

closelycorrelatedwithpodyieldofbothvegetables.Hence,SoilCEC

followedbySOCwerethemostimportantyieldcontributingsoil

properties.SoilpHwasleastimportantpropertyforcontributing

productivityandinfluencingothersoilproperty.

ThePCAofnutrientmanagementpracticescomprisingtwo

prin-cipalcomponents(F152.3%;F240.8%forgardenpeaandF189.4%;

F24.5%forfrenchbean)accountedfor93.1and93.9%ofvariancefor

gardenpeaandfrenchbean,respectively.TheF1andF2hada

clus-terofnutrientmanagementpractices(FYM20,FYM15andINM)with

largepositiveloadingforthefirstcomponent.Thesecond

compo-nentalsopositiveforgardenpea,exceptslightnegativeforINM,

whilethesewereslightnegativefor frenchbeancrop.Nutrient

managementpracticesNPKandcontrolhadnegativeloadingfor

firstandsecondcomponentforbothcrops.Othernutrient

man-agementpracticesoccupiedpositionseitheronleftupperorright

uppersideofthebiplot.

Thepositionof17parametersinrelationtotheirinfluenceby

nutrientmanagementpracticesaccountedfor93.1and93.9%

vari-anceforgardenpeaandfrenchbean,respectively.Forgardenpea,

allparametersexceptBD,soilcrackingvolumeandsoilcracking

surfaceareaoccupiedpositionssolelyontherightupperpartof

(8)

D.

Correlationbetweenpodyieldofgardenpeaandfrenchbeanandsoilproperties.

aGPY FBY SOC CEC pH Bact Fungi Actino Tricho DHA AcP PAWC BD SCV SCSA IR CWM HWA HWD

GPY 1.000 0.951** 0.959** 0.664 0.833* 0.894** 0.602** 0.899** 0.895** 0.846* 0.907** 0.945** 0.852* 0.832* 0.872* 0.913**

aGPY=Gardenpeapoyield;FBY=Frenchbeanpodyield;SOC=Soilorganiccarboncontent;CEC=Soilcationexchangecapacity;Bact=Bacterialpopulationcount[colonyformingunit(CFU)g−1soil];Fungi=Fungalpopulation

count(CFUg−1soil);Actino=Actinomycetepopulationcount(CFUg−1soil);Tricho=Trichodermaspeciespopulationcount(CFUg−1soil);DHA=Dehydrogenaseactivity(gTPFg−1soil24h−1);AcP=Acidphosphataseactivity

(␮gPNPg−1soilh−1);PAWC=Plantavailablewatercapacity(%);SCV=Soilcrackvolume(cm3m−2);SCSA=Soilcracksurfacearea(cm2m−2);IR=Infiltrationrate(cmh−1);CWM=Morningtemperatureofthecoldestweekinthe

year(◦C);HWA=afternoontemperatureofthehottestweekintheyear(C);HWD=Diurnaltemperaturedifferenceofthehottestweekintheyear(C).

*p<0.05.

Variables (axes F1 and F2: 93.8

(9)

Fig.6.Groupingofnutrientmanagementpracticesbasedonprincipalcomponentscores(seeSection2fortreatmentdetails).

highestmeanvaluesofpositiveinfluencing soilparameters and

lowestmeanvaluesfornegativeinfluencingsoilparameters.The

nextbestclusterwasII,whichretainedFYM5andFYM10nutrient

managementpractices,followedbyclusterIII(controlandNPK).

Thegroupingpatternofnutrientmanagementpracticesobserved

inclusterasderivedfromFIandF2ofcropproductivityandsoil

properties.

SOCandCECinfluencedsignificantlytothecropproductivity

(Table7,Figs.4and5).Thiswasfurtherillustratedwhenalinear

and quadratic increase in yield oftotal systemwithincreasing

ratewasobservedwithSOCandCEC,respectively(Fig.4).Close

dependence of system yield with SOC (R2=0.9686) and CEC

(R2=0.9636) indicated that gardenpea–french beansystemwas

highlyresponsivetoSOCandCEC.ThehighervalueofSYIwith

FYM20alsosuggeststhatproductivityofgardenpea–frenchbean

cropping system can not only be improved but also sustained

inthelong-runwithFYM.SOCwasfoundtobeoneofthemost

importantparameterinfluencingothersoilpropertiesasevident

fromFigs.5–9andTable7.Itisclearlyindicatedfromthe

regres-sion analysis of soil CEC, dehydrogenase activity, BD, cracking

volumeandmorningsoiltemperatureofcoldestweekwithSOC

(Figs.7–9).NearperfectlinearrelationshipofCECandBDwithSOC

showedthatdifferencesintheseparameterswereassociatedwith

differencesinSOC.Themoderationofsoiltemperaturethrough

nutrientmanagementduringcoldestandhottestweekcompared

toun-amendedcontrolplotswaspositivelyandlinearlycorrelated

withgardenpeaand frenchbeancrop, respectively.(R2=0.8339

and0.9075).TheplotsunderFYM20moderatedthesoil

temper-atureupto1.50,0.60and0.47◦Cduringmorningofcoldestweek

oftheyear2007–2008,whilethemoderationwasupto5.00,2.93

and0.73◦Cduringafternoonofthehottestweekoftheyear2008

comparedtoun-amendedcontrol,NPKandINMplots,respectively.

4. Discussion

Interestingly,thehighestproductivitywasnotachievedwith

mineral fertilization (NPK) and the yields were significantly

improvedwithINMandhigherlevelsofFYM.Evidently,the

rec-ommendedNPKwasinadequateorimbalancedinthelong-run,as

itlackedotheressentialnutrientsincludingmicronutrientswhich

mighthavebeenavailablefromFYM.Theresultshowedthat

max-imumyieldofcropcouldbeobtainedwhenhigherlevelofFYM

wasincorporated,indicatingthatpotentialproductivitywasnot

Table9

Meanvalueofcropproductivityandsoilpropertiesofthreeclustersofnutrientmanagementpractices.

Cropproductivity/soilproperty Clusters

I II III

Gardenpeapodyield(tha−1) 8.36 6.82 4.69

Frenchbeanpodyield(tha−1) 12.75 10.06 6.63

Soilorganiccarbon(gkg−1) 1.26 1.21 1.06

SoilCECa(cmolkg−1) 18.61 11.64 9.90

SoilpH 6.65 6.69 5.88

Bacteriapopulationcount(×107CFUg–1soil) 3.07 1.82 1.39

Fungipopulationcount(×105CFUg−1soil) 4.40 2.68 1.12

Actinomycetepopulationcount(×104CFUg−1soil) 20.6 13.0 9.1

Trichodermapopulationcount(×103CFUg−1soil) 4.17 2.34 1.19

Dehydrogenaseactivity(␮gTPFg−1soil24h−1) 136 90 73

Acidphiosphataseactivity(␮gPNPg−1soilh−1) 1335 1090 1012

PAWC(%) 14.41 10.96 9.73

SoilBD(Mgm−3) 1.35 1.37 1.40

Soilcrackingvolume(cm3m−2) 174 196 363

SCSA(Soilcrackingsurfaceareacm2m−2) 1735 1905 3672

Infiltrationrate(cmh−1) 0.90 0.75 0.65

Coldestweekmorningtemperature(◦C) 12.2 11.7 11.5

Hottestweekafternoontemperature(◦C) 24.5 26.8 28.0

Hottestweekdiurnaltemperaturedifference(◦C) 0.91 3.05 3.95

(10)

D.Mahantaetal./ScientiaHorticulturae164(2013)414–427 423

Fig.7.Responseofsoilorganiccarbon(SOC)tosoilcationexchangecapacityanddehydrogenaseactivity(SOC,soilcationexchangecapacityandsoildehydrogenaseactivity valuesofdifferenttreatmentsweretakenforthisresponsecalculation).

Fig.8.Responseofsoilorganiccarbon(SOC)tosoilbulkdensityandcrackingvolume(SOC,bulkdensityandsoilcrackingvolumevaluesofdifferenttreatmentsweretaken forthisresponsecalculation).

possiblewithapplicationofmineralfertilizersalone(Sharmaand

Behera,2009).Useoforganicmanureensuredprolonged

availabil-ityofnutrientsevenbeyondthegrowthperiodandtherebyshowed

itsresidualeffectonthenextcropintherotation.Itseemslikely

thattherewasacontinuousandregulatedsupplyofnutrientsin

theFYMamendedplotsduetotheslowreleaseactioncompared

withtherapidsolubilityofmineralfertilizers(Beheraetal.,2007).

Itisoftenassumedthatahighlevelofsynchronybetween

nutri-entreleasefromFYMandcropnutrientuptakemighthavetaken

place,becausethesameenvironmentalfactorsregulatethe

pro-cessesofdecompositionaswellasnetprimaryproductivityand

nutrientdemand(CrewsandPeoples,2005).Inadditiontomajor

andmicro-nutrientsupply,organicmanuringalsoprovidesother

beneficialeffectstocropplantslikereleaseofvariousgrowth

pro-motingsubstances(SharmaandBehera,2009).Again,increased

acidphosphatase activitycouldberesponsiblefor hydrolysisof

organicallyboundphosphateintofreeions,whichweretakenup

byplants.TarafdarandJungk(1987)reportedthatplantscanutilize

organicPfractionsfromthesoilbymeansofphosphataseactivity

enrichedinthesoil-rootinterface.Reddyetal.(1987)reportedthat

duetothereactionsofphosphatase,H2PO4−wasmadeavailable

toplants fromorganicsubstancesinsoils.Highersoilmicrobial

anddehydrogenaseactivityalsofavoredforsignificantlymorepod

yieldinplotsunderFYM20thanNPKandINMingardenpea–french

beansystem.Moreover,FYM20 providedbettersoilquality (soil

physico-bio-chemicalproperties)asrecordedinthisexperiment

(Tables 4–6), whichultimately reflectedhigherpodyieldofthe

gardenpea–frenchbeansysteminplotsunderFYM20thanNPKand

INM.Gardenpeaprovidedthehighestpodyieldwithapplication

of15tFYMha-1,butfrenchbeanachievedthehighest

productiv-itywithFYM20tha−1.ItmightbeduetohighNrequirementfor

frenchbeanthangardenpea,asfrenchbeanisalowN2fixingcrop

(Yadav,2010).TheavailableNcontentmighthavebeenhigherdue

tomoreadditionofNinFYM20thanFYM15treatedplots,which

mighthavereducedtheperformanceofgardenpeainFYM20with

comparisontolaterplots.

(11)

Application of FYM has several indirect long-term benefits

(improvementinnutrient-useefficiency,providingfavorablesoil

health with better soil physical, chemical and biological

envi-ronment), which also accounted for greater adoption ensuring

sustainableproductivity(SharmaandBehera,2009)underFYM20

plots withcomparisonto NPKand INMtreated plots. The

pro-ductivityofcropswasshowntobestabilizedorimprovedwith

gradualbuild-upofbettersoilquality(Tables4–6)following

appli-cation of higher level (FYM20) of organic manures than plots

under NPK and INM. However, the addition of leaf litter and

root biomass of crops might have increased with higher level

of FYM, which might have also helped in sustaining the

sys-temproductivity (Beheraet al., 2007)under FYM20 plots than

NPK and INM. Application of FYM enhances sustainability of

cropping system was also further supported by Nayak et al.

(2012).

Continuousapplication of organicamendmentsfor six years

decreasedtheBDofsoilsignificantlyandsimilarresultshavebeen

corroboratedbyMosavietal.(2012)andGeetal.(2013).

Applica-tionofFYMmighthaveimpactedsoilaggregationwithmoreroot

biomass,therebyreducingsoilBD(Bhattacharyyaetal.,2010).The

increaseinorganicmatter(carbon)(Table6)contentresultedin

greatertotalporosityandbettersoilstructure,whichcontributed

inloweringsoilBD(Herenciaetal.,2011;Celiketal.,2010).SoilBD

decreasedwithFYMapplicationduetohigherSOC(Table6)that

resultedinbettersoilaerationandimprovementofsoilstructural

properties(Kunduetal.,2007).ThereductionofBDinFYM20had

improvedtheporosityandthatmighthavehelpedsoilaggregation

andwaterholdingcapacityofsoilwithcomparisontoNPKandINM

plots.AnincreaseofSOCcontentanddecreaseinsoilBDinthesoil

underFYM20plotsmighthavecausedanincreaseinPAWC.Geetal.

(2013)havealsorecentlyreportedthesimilarresults.

LowSCVwithFYM20applicationmaybeattributedtogreater

soilwater contents thanNPK and INM plots (Table 4)and the

dataweresupportedby thepreviousresearch(Bandyopadhyay

etal.,2003).TheeffectofFYMapplicationoncrackvolumemaybe

attributedtoagreaterrootbiomassthantheplotsunderNPKand

INMtreatments.ThehighernumbersofrootsproducedduetoFYM

applicationmighthavereducedtheshrinkageprocessbyanchoring

thesoilmass.ApplicationofFYMreducedSCSAbyreducingcrack

width(Bandyopadhyayetal.,2003).

Theabilityofasoiltotransmitwaterdependsonthe

arrange-mentofthesoilparticlesandstability oftheaggregates.Higher

IRwith FYM20 couldbe attributed tohigher SOC content. The

applicationofFYMovertheyearsnotonlyincreasedtotal

poros-ity, as evident from reduced soil BD (Table 4), but also might

haveimprovedporesizedistribution,continuityandstabilityof

pores(Bhattacharyyaetal.,2006).FYMoftenmodifiessoil

struc-tureandimprovessoilaggregationandinfiltrationcharacteristics

(Bhattacharyyaetal.,2010).Inaddition,highersteady-stateIRmay

bethedirectresultofacceleratedwaterflowthrough

macropo-resandbio-channels(Bhattacharyyaetal.,2010).Applicationof

organicmanuretosoilgreatlyincreasedwaterinfiltration(Essien,

2011)andwasdirectlyrelatedtothequantityoforganicmaterial

applied(ParkerandJenny,1945).

Continuousapplicationoforganicamendments(FYM20tha−1)

forsixyearsimprovedtheSOCandPAWCsignificantlycompared

toplotsunderNPKandINMtreatmentsandsimilarresultshave

beenreportedbyGeetal.(2013).Again,theplantgrowthmight

havealsoimprovedasindicatedfrompodyieldunderFYM20plots,

which enhanced moisture retention capacity of soil by cooling

effecttothe soilthrough higher shadowand canopy coverage.

Due to high SOC, PAWC, moisture holding capacity and

cool-ingeffect,thesoilmoisturestatuswasimprovedandmoderated

thesoil temperature better in FYM20 plots than NPK and INM

plots.Hence, thesoiltemperature increasedduringmorning of

coldestweekanddecreasedduringafternoonofcoldestandhottest

weekand morningofhottestweek.Themoderationofextreme

soil temperature through high SOC,moisture holding capacity,

shadingandcanopyeffectwashighestunderFYM20plots,which

finallypositivelyreflectedinthepodyieldofbothgardenpeaand

frenchbean compared to NPK and INMtreated plots (Fig.10).

ItclearlyindicatedthatapplicationofFYMcouldbemore

adap-tivetoclimatechange (evenin theIndian Himalayas)for both

crops.

ThehighestmicrobialpopulationunderFYM20treatedplotswas

duetothepresenceofeasilywatersolubleC(Maliketal.,2013)

andNinFYM,whichactsasasourceofenergyforsoilorganisms,

whereastheeasilysolubleCcomponentwasmissinginmineral

fer-tilizer(Beheraetal.,2007)and,hence,themicrobialpopulationwas

lessintheplotsunderNPK.Theseareintheagreementwithresults

obtainedbyBonillaetal.(2012),Leeetal.(2004)andZhangetal.

(2012).AdditionofFYMprovidedtheeasilysolubleCandincreased

themicrobialpopulationinsurfacelayer(0–15cm)ofsoilinthe

plotsunderINM.Trichodermaspecies arecosmopolitanfungiin

soilsdecayingorganicsubstances.Theypossessdiversemetabolic

activityandareaggressiveinnature.Thesecharacteristicsmake

them significant decomposersand necrotrophicto other fungi,

whichhelp inplaying keyrolesin suppressingsoil-borneplant

diseasesandpromotingplantgrowth.TheserenderTrichoderma

as a beneficial ecosystem of soil (Doiand Ranamukhaarachchi,

2009).

Soildehydrogenaseactivityisagoodindicatorofoverall

micro-bial activity in soil and it can serve as a good indicator of

soilcondition(DoiandRanamukhaarachchi,2009).Theenzymes

assayedinthisstudywerechosenbecausetheyplaycentralrolesin

mediatingbiochemicaltransformationsinvolvingorganicresidue

decompositionandC,NandPcyclinginsoils.Itisbelievedthat

mostsoilenzymesoriginatefromsoilfungi,bacteriaandplantroots

(Tarafdaretal.,1988).Thevariableeffectoforganicamendment

applicationonexo-cellularenzyme activitywasdueto

interac-tion ofseveral factors.Firstly, organicamendment applications

increasedorganicmattercontentandmicrobialbiomass.Therefore,

thesoilhasthebetterpotentialforgreaterenzymeproduction.This

mayexplainthesignificantlyhigherdehydrogenaseandacid

phos-phataseactivitiesinplotsunderFYM20thanNPKandINM.These

areintheagreementwithresultsobtainedbyLiuetal.(2013).

Sec-ondly,soilpHcangreatlyinfluencetherateofenzymecatalyzed

reactions,asachangeinH+ionconcentrationinfluencesenzymes,

substrates,andcofactorsbyalteringtheirionizationandsolubility

(Tabatabai,1994).Underacidsoilconditions(i.e.pH5.64inNPK

plots),largeincreaseinconcentrations ofaluminium(Al3+)and

manganese(Mn2+)cationsinsoilsolutionoccur(Rowell,1988),and

highconcentrationsoftheseionscouldhaveinfluencedenzyme

functionadversely(Dick, 1997)inplotsunderNPK. ThesoilpH

of6.85(almostneutral)inplotsunderFYM20mighthavefavored

dehydrogenaseandacidphosphataseactivitiescomparedtoNPK

and INMplots.Thirdly, beingthesubstrate for microbial

activ-ity,soilorganicmatterplaysanimportantroleinprotectingsoil

enzymes,whichbecomeimmobilizedinathree-dimensional

net-workofclayandhumuscomplexes(Tabatabai,1994).Soilsunder

FYM20recorded14.1and9.3%higherSOCthanNPKandINMtreated

plots,respectively.ThelinearrelationshipbetweenSOCandsoil

organicmatter(SOM)providedhigherSOMinFYM20treatedplots

thanNPK and INMand,hence, moreenzymatic activity.It was

alsoreportedthatdehydrogenaseandacidphosphataseactivities

weremuchhigher insoilsunderFYMthaninmineral

fertiliza-tionandINMtreatedplots.AdditionofFYMtomineralfertilization

improvedbothenzymaticactivitiesinINMtreatedplotsthanNPK

(Giusquianietal.,1994).

Thesoilreactionwasmoreacidicwithapplicationofmineral

(12)

D.Mahantaetal./ScientiaHorticulturae164(2013)414–427 425

Fig.10. Responseofmorningsoiltemperatureofthecoldestweekandafternoonsoiltemperatureofhottestweekonproductivityofrespectivecrops.

ofsuccessiverateofFYM.Theapproachtoneutralsoilreaction

withapplicationoforganicmanurehasalsobeenreportedbyGe

etal.(2013).ApplicationofFYMtosoilresultedinincreasedsoil

pHby improvingsoil bufferingcapacity compared tothe plots

undermineralfertilization(Gopinathetal.,2009).Theacidification

withapplicationofmineralfertilizerisattributabletonitrification

ofappliedfertilizerNandsubsequentleachingofnitrate(NO3–)

formedduringmineralizationofmineralfertilizers(Grahametal.,

2002).

SOCistheoverallindicatorofsoilquality(Lopezetal.,2012).SOC

isattributabletohigheryieldsunderFYM20plots,whichmighthave

resultedinhigherinputsoforganicmattertothesoilintheform

ofFYM,rootturnoverandcropresidues(Braretal.,2013;Ghosh

etal.,2012)andfinallyincreaseinSOC(Maltasetal.,2013).The

enhancementoforganicCinFYM-treatedplotsisobviousbecause

theadditionofFYMitselfincreasestheCcontentinsoilascompared

tonoexternalCadditionthroughmineralfertilizers(Bhattacharyya

etal.,2009).

The concentration and amount of SOC under FYM20 plots

(Table6)providedhigherstoragepotentialoforganiccarbon,

car-bonsequestrationpotentialandSOCbuild-upratethanNPKand

INMtreatedplots.Fronningetal.(2008)alsoobservedthattotal

SOC in the 0−0.25m profile increased by 41 and 25% for the

compostandmanuretreatments,respectively,atMichigan,USA.

Manureisalreadypartlydecomposedandcontainsalarger

pro-portionofchemicallyrecalcitrantorganiccompounds,whichmight

haveenhanced C retention inmanureamended plots (Paustian

etal.,1992).ThehighestCO2emissionreductionthroughSOCstock

underFYM20plotswasobvious,asitwasdirectlyproportionalto

SOCamountinsoil.TheperunitCO2equivalentemissionofGHGs

forproductionofmanureislessthanmanufactureofmineral

fertil-izerofN,PandKtogether(Lal,2004)andhencethelowemissionfor

20tFYMha−1withcomparisontoNPKandINM.Itisclearlyproved

fromtheaboveemissionfactorthatapplicationof20tFYMha−1is

highlyclimateresilientandsustainablethanmineralfertilization

andINM.

SeveralfactorsdeterminethesoilCEC.HighCECinFYM20plots

mightbeduetohigherSOCandpH(nearneutral)recordedinthese

plotsthanNPKplots.ThisisinagreementwithGoladiandAgbenin,

1997,whoobservedSOCandpHareamongmostimportantfactors

contributingCECofsoil.FYMalsocontributesnutrients(Ca2+,Mg2+)

tosoils,resultinginrelativelyhighCEC(Geetal.,2013).Thisis

furthersupportedbythestrongcorrelationbetweenCECandSOC

(R2=0.983***).

5. Conclusion

Theresultsobtainedonasix-yearcycleofgardenpea–french

bean cropping system provide us withmajor findings on

sus-tainability and climate resilience of the system in the Indian

Himalayas.Through thePCAanalysis,soilCECwasfoundtobe

themost importantsoil propertyfor enhancingproductivityof

gardenpea–frenchbeancroppingsystem.Fromtheregression

anal-ysisand correlation,itwasfoundthatSOCmarkedlyinfluenced

othersoilparameters.Additionof20tFYMha−1(FYM

20)increased

soilorganicC(SOC)byabout14and9%,respectively,over

mineral-fertilized(NPK)andINMtreatedplots.IncreasedSOCmighthave

beenthecauseofbettersoilphysicalconditions,throughimproved

PAWCandIRandreducedsoilBDandsoilcrackingparametersin

FYM20treatedplotscomparedtoNPKandINMplots.Application

ofFYM20showedsignificantlyhighersoilCEC,microbial

popula-tion,dehydrogenaseandacidphosphataseactivitiesoverNPKand

INMplotsinthe0–15cmsoillayer.TheSYIincreasedwith

suc-cessiverateofFYMapplicationandFYM20treatedplotsprovided

higher sustainabilityindex thanNPK and INM.Thiswould also

providemorecarbonstoragepotentialtomaintainenvironment

friendlysituationthanNPKandINMtreatedplots.SoilC

seques-tration alsobenefitstheclimate, which is threatenedby global

increaseinatmospheric CO2.Fromthetemperaturemoderation

andCemissionreduction,itwasfoundthatapplicationofFYM20is

moreclimateresilientthanNPKandINMplots.ThePCAputFYM20,

FYM15andINMamongtreatmentsina singleclusterfor

differ-entsoilpropertiesandpodyieldofbothvegetables.UseofFYM

isabetteralternativetoachievesustainability.Theresultsofthis

studyindicatethat20tFYMha−1toeachcropcanbeusedfor

sus-tainableyield,climateresilientcropproductionandsoilqualityof

gardenpea–frenchbeancroppingsystem.

Acknowledgments

Theauthors aregratefultoMr.LaxmiDattMalkani and Mr.

Sanjayformaintainingthefield experiment overtheyears and

Referensi

Dokumen terkait

Kompetensi Dasar : 3.6 Mengidentifikasi desain produk dan pengemasan karya produk kosmetik dari bahan nabati dan hewani dengan pendekatan budaya setempat 4.7 Mendesain produk

Sebagai implementasi dari pelaksanaan Hak Asasi Manusia (HAM) yang harus dijunjung tinggi sebagai hak yang secara kodrati melekat pada dan tidak terpisahkan dari penduduk,

Sejalan dengan kekhawatiran akan pertambahan jumlah penduduk yang cepat, perhatian para perencana pembangunan dipusatkan pada usaha untuk memahami

Hasil Uji Mann - Whitney perbedaan pertumbuhan kultur bakteri Mycobacterium tuberculosis metode media kultur bifasik agar – darah dengan media Lowenstein –

Dengan demikian para mahasiswa yang memiliki pengetahuan tentang penelitian cenderung akan meningkatkan semangat belajarnya agar dapat mencapai cita-citanya dan

Pelumasan adalah suatu cara untuk mengurangi dan memperkecil gesekan dan keausan diantara permukaan-perrnukaan yang bergerak relatif satu sama lain dengan menempatkan bahan

Nilai wajar liabilitas keuangan yang diukur pada nilai wajar melalui laporan laba rugi komprehensif adalah liabilitas keuangan yang dapat dipindahtangankan dalam waktu dekat..

'Ientukan jarak berhe,nti minimum yang ditempuh tmk rlari kecepatan. 72 km/jam dengan