• Tidak ada hasil yang ditemukan

LMI Conditions for Contraction Metrics

Chapter 3: Robust Nonlinear Control and Estimation via Contraction Theory . 50

3.2 LMI Conditions for Contraction Metrics

We design a nonlinear feedback tracking control law parameterized by a matrix- valued function𝑀(π‘₯ , π‘₯𝑑, 𝑒𝑑, 𝑑) (or𝑀(π‘₯ , 𝑑), see Theorem 3.2) as follows:

𝑒 =π‘’π‘‘βˆ’πΎ(π‘₯ , π‘₯𝑑, 𝑒𝑑, 𝑑) (π‘₯βˆ’π‘₯𝑑) (3.10)

=π‘’π‘‘βˆ’π‘…(π‘₯ , π‘₯𝑑, 𝑒𝑑, 𝑑)βˆ’1𝐡(π‘₯ , 𝑑)βŠ€π‘€(π‘₯ , π‘₯𝑑, 𝑒𝑑, 𝑑) (π‘₯βˆ’π‘₯𝑑)

where 𝑅(π‘₯ , π‘₯𝑑, 𝑒𝑑, 𝑑) ≻ 0 is a weight matrix on the input𝑒 and𝑀(π‘₯ , π‘₯𝑑, 𝑒𝑑, 𝑑) ≻ 0 is a positive definite matrix (which satisfies the matrix inequality constraints for a contraction metric, to be given in Theorem 3.1). As discussed in Sec. 3.1.III, the extended linear form of the tracking control (3.10) enables LTV systems-type ap- proaches to Lyapunov function construction, while being general enough to capture the nonlinearity of the underlying dynamics due to Lemma 3.2 [36].

Lemma 3.2. Consider a general feedback controller𝑒defined as𝑒= π‘˜(π‘₯ , π‘₯𝑑, 𝑒𝑑, 𝑑) withπ‘˜(π‘₯𝑑, π‘₯𝑑, 𝑒𝑑, 𝑑) =𝑒𝑑, whereπ‘˜ :R𝑛×R𝑛×Rπ‘š Γ—Rβ‰₯0↦→ Rπ‘š. Ifπ‘˜ is piecewise continuously differentiable, then βˆƒπΎ : R𝑛 Γ— R𝑛 Γ— Rπ‘š Γ— Rβ‰₯0 ↦→ Rπ‘šΓ—π‘› s.t. 𝑒 = π‘˜(π‘₯ , π‘₯𝑑, 𝑒𝑑, 𝑑) =π‘’π‘‘βˆ’πΎ(π‘₯ , π‘₯𝑑, 𝑒𝑑, 𝑑) (π‘₯βˆ’π‘₯𝑑).

Proof. Usingπ‘˜(π‘₯𝑑, π‘₯𝑑, 𝑒𝑑, 𝑑) =𝑒𝑑,𝑒can be decomposed as𝑒=𝑒𝑑+(π‘˜(π‘₯ , π‘₯𝑑, 𝑒𝑑, 𝑑)βˆ’

π‘˜(π‘₯𝑑, π‘₯𝑑, 𝑒𝑑, 𝑑)). Since we haveπ‘˜(π‘₯ , π‘₯𝑑, 𝑒𝑑, 𝑑) βˆ’π‘˜(π‘₯𝑑, π‘₯𝑑, 𝑒𝑑, 𝑑) =∫1

0 (𝑑 π‘˜(𝑐π‘₯+ (1βˆ’ 𝑐)π‘₯𝑑, π‘₯𝑑, 𝑒𝑑, 𝑑)/𝑑𝑐)𝑑𝑐, selecting𝐾as

𝐾 =βˆ’

∫ 1 0

πœ• π‘˜

πœ• π‘₯

(𝑐π‘₯+ (1βˆ’π‘)π‘₯𝑑, π‘₯𝑑, 𝑒𝑑, 𝑑)𝑑𝑐 gives the desired relation [36].

Remark 3.4. Lemma 3.2 implies that designing optimal π‘˜ of𝑒 = π‘˜(π‘₯ , π‘₯𝑑, 𝑒𝑑, 𝑑) re- duces to designing the optimal gain𝐾(π‘₯ , π‘₯𝑑, 𝑒𝑑, 𝑑)of𝑒=π‘’π‘‘βˆ’πΎ(π‘₯ , π‘₯𝑑, 𝑒𝑑, 𝑑) (π‘₯βˆ’π‘₯𝑑). We could also generalize this idea further using the CCM-based differential feedback controller𝛿𝑒= π‘˜(π‘₯ , 𝛿π‘₯ , 𝑒, 𝑑)[3], [14], [15], [19], [20], [33] (see Theorem 4.6).

Substituting (3.10) into (3.1) and (3.2) yields the following virtual system of a smooth pathπ‘ž(πœ‡, 𝑑), parameterized by πœ‡ ∈ [0,1] to haveπ‘ž(0, πœ‡) =π‘₯𝑑 andπ‘ž(1, 𝑑) =π‘₯, for partial contraction in Theorem 2.2:

Β€

π‘ž(πœ‡, 𝑑) =𝜁(π‘ž(πœ‡, 𝑑), π‘₯ , π‘₯𝑑, 𝑒𝑑, 𝑑) +𝑑(πœ‡, π‘₯ , 𝑑) (3.11) π‘‘π‘ž(πœ‡, 𝑑) =𝜁(π‘ž(πœ‡, 𝑑), π‘₯ , π‘₯𝑑, 𝑒𝑑, 𝑑)𝑑 𝑑+𝐺(πœ‡, π‘₯ , 𝑑)𝑑𝒲(𝑑) (3.12) where𝑑(πœ‡, π‘₯ , 𝑑) =πœ‡ 𝑑𝑐(π‘₯ , 𝑑),𝐺(πœ‡, π‘₯ , 𝑑) =πœ‡πΊπ‘(π‘₯ , 𝑑), and𝜁(π‘ž, π‘₯ , π‘₯𝑑, 𝑒𝑑, 𝑑)is defined as

𝜁 =(𝐴(𝜚, π‘₯ , π‘₯𝑑, 𝑒𝑑, 𝑑) βˆ’π΅(π‘₯ , 𝑑)𝐾(π‘₯ , π‘₯𝑑, 𝑒𝑑, 𝑑)) (π‘žβˆ’π‘₯𝑑) + 𝑓(π‘₯𝑑, 𝑑) +𝐡(π‘₯𝑑, 𝑑)𝑒𝑑 (3.13) where𝐴is the SDC matrix of Lemma 3.1 with(𝑠,𝑠,Β― 𝑒¯) =(π‘₯ , π‘₯𝑑, 𝑒𝑑). Settingπœ‡=1 in (3.11) and (3.12) results in (3.1) and (3.2), respectively, and settingπœ‡=0 simply results in (3.3). Consequently, both π‘ž = π‘₯ and π‘ž = π‘₯𝑑 are particular solutions of (3.11) and (3.12). If there is no disturbance acting on the dynamics (3.1) and (3.2), the differential dynamics of (3.11) and (3.12) forπœ•πœ‡π‘ž=πœ• π‘ž/πœ• πœ‡is given as

πœ•πœ‡π‘žΒ€ =(𝐴(𝜚, π‘₯ , π‘₯𝑑, 𝑒𝑑, 𝑑) βˆ’π΅(π‘₯ , 𝑑)𝐾(π‘₯ , π‘₯𝑑, 𝑒𝑑, 𝑑))πœ•πœ‡π‘ž . (3.14) In [12], [13], [16], [17], it is proposed that the contraction conditions of Theorems 2.1 and 2.5 for the closed-loop dynamics (3.11) and (3.12) can be expressed as convex constraints as summarized in Theorem 3.1.

Theorem 3.1. Let 𝛽be defined as 𝛽=0for deterministic systems(3.1)and 𝛽=𝛼𝑠 = πΏπ‘šπ‘”Β―2

𝑐(𝛼𝐺 +1/2)

for stochastic systems (3.2), respectively, where 𝑔¯𝑐 is given in (3.2), πΏπ‘š is the Lipschitz constant of πœ• 𝑀/πœ• π‘₯𝑖 for 𝑀 of (3.10), and 𝛼𝐺 ∈ R>0 is an arbitrary constant as in Theorem 2.5. Also, letπ‘Š = 𝑀(π‘₯ , π‘₯𝑑, 𝑒𝑑, 𝑑)βˆ’1(orπ‘Š =𝑀(π‘₯ , 𝑑)βˆ’1, see

Theorem 3.2),π‘ŠΒ― = πœˆπ‘Š, and 𝜈 = π‘š. Then the following three matrix inequalities are equivalent:

𝑀€ +𝑀

πœ• 𝜁

πœ• π‘ž + πœ• 𝜁

πœ• π‘ž

⊀

𝑀 βͺ― βˆ’2𝛼 π‘€βˆ’π›½I, βˆ€πœ‡βˆˆ [0,1] (3.15) 𝑀€ +2 sym(𝑀 𝐴) βˆ’2𝑀 𝐡 π‘…βˆ’1π΅βŠ€π‘€ βͺ― βˆ’2𝛼 π‘€βˆ’ 𝛽I (3.16)

βˆ’ Β€π‘ŠΒ― +2 sym(π΄π‘ŠΒ―) βˆ’2𝜈 𝐡 π‘…βˆ’1𝐡⊀ βͺ― βˆ’2π›Όπ‘ŠΒ― βˆ’ 𝛽 𝜈

Β―

π‘Š2 (3.17)

where 𝜁 is as defined in (3.13). For stochastic systems with 𝛽 = 𝛼𝑠 > 0, these inequalities are also equivalent to

"

βˆ’ Β€π‘ŠΒ― +2 sym(π΄π‘ŠΒ―) βˆ’2𝜈 𝐡 π‘…βˆ’1𝐡⊀+2π›Όπ‘ŠΒ― π‘ŠΒ―

π‘ŠΒ― βˆ’πœˆ

𝛽I

#

βͺ―0. (3.18)

Note that𝜈andπ‘ŠΒ― are required for(3.17)and(3.18)and the arguments(π‘₯ , π‘₯𝑑, 𝑒𝑑, 𝑑) for each matrix are suppressed for notational simplicity.

Furthermore, under these equivalent contraction conditions, Theorems 2.4 and 2.5 hold for the virtual systems (3.11) and (3.12), respectively. In particular, if π‘šIβͺ― 𝑀 βͺ― π‘šIof(2.26)holds, or equivalently

Iβͺ― π‘ŠΒ―(π‘₯ , π‘₯𝑑, 𝑒𝑑, 𝑑) βͺ― πœ’I (3.19)

holds for πœ’=π‘š/π‘š, then we have the following bounds:

βˆ₯π‘₯(𝑑) βˆ’π‘₯𝑑(𝑑) βˆ₯ ≀ 𝑉ℓ(0)

√ π‘š

π‘’βˆ’π›Όπ‘‘+ 𝑑¯𝑐 𝛼

√

πœ’(1βˆ’π‘’βˆ’π›Όπ‘‘) (3.20)

E

βˆ₯π‘₯(𝑑) βˆ’π‘₯𝑑(𝑑) βˆ₯2

≀ E[𝑉𝑠ℓ(0)]

π‘š

π‘’βˆ’2𝛼𝑑+ 𝐢𝐢 2𝛼

πœ’ (3.21)

where𝑉𝑠ℓ =∫π‘₯

π‘₯𝑑

π›Ώπ‘žβŠ€π‘€ π›Ώπ‘žand𝑉ℓ =∫π‘₯

π‘₯𝑑

βˆ₯Ξ˜π›Ώπ‘žβˆ₯are as given in Theorem 2.3 with𝑀 = Θ⊀Θ, the disturbance bounds 𝑑¯𝑐 and𝑔¯𝑐 are given in (3.1) and(3.2), respectively, and 𝐢𝐢 = 𝑔¯2

𝑐(2π›ΌπΊβˆ’1 +1). Note that for stochastic systems, the probability that

βˆ₯π‘₯βˆ’π‘₯𝑑βˆ₯is greater than or equal toπœ€ ∈R>0is given as P[βˆ₯π‘₯(𝑑) βˆ’π‘₯𝑑(𝑑) βˆ₯ β‰₯πœ€] ≀ 1

πœ€2

E[𝑉𝑠ℓ(0)]

π‘š

π‘’βˆ’2𝛼𝑑+ 𝐢𝐢 2𝛼

πœ’

. (3.22)

Proof. Substituting (3.13) into (3.15) gives (3.16). Since 𝜈 > 0 and π‘Š ≻ 0, multiplying (3.16) by𝜈and then byπ‘Šfrom both sides preserves matrix definiteness.

Also, the resultant inequalities are equivalent to the original ones [37, p. 114]. These operations performed on (3.16) yield (3.17). If 𝛽 = 𝛼𝑠 > 0 for stochastic systems,

applying Schur’s complement lemma [37, p. 7] to (3.17) results in the Linear Matrix Inequality (LMI) constraint (3.18) in terms of Β―π‘Š and𝜈. Therefore, (3.15) – (3.18) are indeed equivalent.

Also, since we have βˆ₯πœ•πœ‡π‘‘(πœ‡, π‘₯ , 𝑑) βˆ₯ ≀ 𝑑¯𝑐 for𝑑 in (3.11) andβˆ₯πœ•πœ‡πΊ(πœ‡, π‘₯ , 𝑑) βˆ₯2

𝐹 ≀ 𝑔¯2

𝑐

for𝐺in (3.12), the virtual systems in (3.11) and (3.12) clearly satisfy the conditions of Theorems 2.4 and 2.5 if it is equipped with (3.15), which is equivalent to (3.16) – (3.18). This implies the exponential bounds (3.20) – (3.22) rewritten usingπœ’=π‘š/π‘š, following the proofs of Theorems 2.4 and 2.5.

Because of the control and estimation duality in differential dynamics similar to that of the Kalman filter and Linear Quadratic Regulator (LQR) in LTV systems, we have an analogous robustness result for the contraction theory-based state estimator as to be derived in Sec. 4.2.

Although the conditions (3.15) – (3.18) depend on (π‘₯𝑑, 𝑒𝑑), we could also use the SDC formulation with respect to a fixed point [12], [13] in Lemma 3.1 to make them independent of the target trajectory as in the following theorem.

Theorem 3.2. Let (π‘₯ ,Β― 𝑒¯) be a fixed point selected arbitrarily in R𝑛 Γ— Rπ‘š, e.g., (π‘₯ ,Β― 𝑒¯)= (0,0), and let𝐴(π‘₯ , 𝑑)be an SDC matrix constructed with(𝑠,𝑠,Β― 𝑒¯)= (π‘₯ ,π‘₯ ,Β― 𝑒¯) in Lemma 3.1, i.e.,

𝐴(𝜚, π‘₯ , 𝑑) (π‘₯βˆ’π‘₯Β―) = 𝑓(π‘₯ , 𝑑) +𝐡(π‘₯ , 𝑑)π‘’Β―βˆ’ 𝑓(π‘₯ , 𝑑¯ ) βˆ’π΅(π‘₯ , 𝑑¯ )𝑒 .Β― (3.23) Suppose that the contraction metric of Theorem 3.1 is designed by 𝑀(π‘₯ , 𝑑) with 𝐴 of(3.23), independently of the target trajectory (π‘₯𝑑, 𝑒𝑑), and that the systems(3.1) and(3.2)are controlled by

𝑒 =π‘’π‘‘βˆ’π‘…(π‘₯ , 𝑑)βˆ’1𝐡(π‘₯ , 𝑑)βŠ€π‘€(π‘₯ , 𝑑) (π‘₯βˆ’π‘₯𝑑) (3.24) with such 𝑀(π‘₯ , 𝑑), where 𝑅(π‘₯ , 𝑑) ≻ 0 is a weight matrix on 𝑒. If the function πœ™(π‘₯ , π‘₯𝑑, 𝑒𝑑, 𝑑) = 𝐴(𝜚, π‘₯ , 𝑑) (π‘₯π‘‘βˆ’π‘₯Β―) +𝐡(π‘₯ , 𝑑) (π‘’π‘‘βˆ’π‘’Β―) is Lipschitz inπ‘₯ with its Lips- chitz constant𝐿¯, then Theorem 3.1 still holds with𝛼of the conditions(3.15)–(3.18) replaced by𝛼+𝐿¯√︁

π‘š/π‘š. The same argument holds for state estimation of Theo- rem 4.3 to be discussed in Sec. 4.2.

Proof. The unperturbed virtual system of (3.1), (3.2), and (3.3) with 𝐴 of (3.23) and𝑒of (3.24) is given as follows:

Β€

π‘ž =(𝐴(𝜚, π‘₯ , 𝑑) βˆ’π΅(π‘₯ , 𝑑)𝐾(π‘₯ , 𝑑)) (π‘žβˆ’π‘₯𝑑) +𝐴(𝜚, π‘ž, 𝑑) (π‘₯π‘‘βˆ’π‘₯Β―) +𝐡(π‘ž, 𝑑) (π‘’π‘‘βˆ’π‘’Β―)

+ 𝑓(π‘₯ , 𝑑¯ ) +𝐡(π‘₯ , 𝑑¯ )𝑒¯ (3.25)

where𝐾(π‘₯ , 𝑑) = 𝑅(π‘₯ , 𝑑)βˆ’1𝐡(π‘₯ , 𝑑)βŠ€π‘€(π‘₯ , 𝑑). Following the proof of Theorem 3.1, the computation of𝑉€, where𝑉 =π›Ώπ‘žβŠ€π‘€(π‘₯ , 𝑑)π›Ώπ‘ž, yields an extra term

2π›Ώπ‘žβŠ€π‘€

πœ• πœ™

πœ• π‘ž

(π‘ž, π‘₯𝑑, 𝑒𝑑, 𝑑)π›Ώπ‘ž ≀ 2 ¯𝐿

βˆšοΈ„

π‘š π‘š

π›Ώπ‘žβŠ€π‘€ π›Ώπ‘ž (3.26)

due to the Lipschitz condition on πœ™, where πœ™(π‘ž, π‘₯𝑑, 𝑒𝑑, 𝑑) = 𝐴(π‘ž, 𝑑) (π‘₯𝑑 βˆ’ π‘₯Β―) + 𝐡(π‘ž, 𝑑) (𝑒𝑑 βˆ’π‘’Β―). This indeed implies that the system (3.25) is contracting as long as the conditions (3.15) – (3.18) hold with 𝛼 replaced by 𝛼+ 𝐿¯√︁

π‘š/π‘š. The last statement on state estimation follows from the nonlinear control and estimation duality to be discussed in Sec. 4.2.

Remark 3.5. As in [12], we could directly use the extra term2π›Ώπ‘žβŠ€π‘€(πœ• πœ™/πœ• π‘ž)π›Ώπ‘žof (3.26)in(3.15)–(3.18)without upper-bounding it, although now the constraints of Theorem 3.2 depend on(π‘₯ , π‘ž, 𝑑)instead of(π‘₯ , 𝑑). Also, the following two inequalities given in [12] with𝛾¯ =𝜈 𝛾, 𝛾 ∈Rβ‰₯0:

βˆ’ Β€π‘ŠΒ― + π΄π‘ŠΒ― +π‘Š 𝐴¯ ⊀+𝛾¯Iβˆ’πœˆ 𝐡 π‘…βˆ’1𝐡⊀ βͺ―0

"

Β―

𝛾I+𝜈 𝐡 π‘…βˆ’1π΅βŠ€βˆ’π‘Š πœ™Β― βŠ€βˆ’πœ™π‘ŠΒ― βˆ’2π›Όπ‘ŠΒ― π‘ŠΒ―

Β―

π‘Š 𝜈

2𝛼𝑠I

#

βͺ° 0. are combined as one LMI(3.18)in Theorems 3.1 and 3.2.

Example 3.4. The inequalities in Theorem 3.1 can be interpreted as in the Riccati inequality inH∞control. Consider the following system:

Β€

π‘₯ = 𝐴π‘₯+𝐡𝑒𝑒+𝐡𝑀𝑀 , 𝑧=𝐢𝑧π‘₯ (3.27)

where 𝐴 ∈ R𝑛×𝑛, 𝐡𝑒 ∈ Rπ‘›Γ—π‘š, 𝐡𝑀 ∈ R𝑛×𝑀, and 𝐢𝑧 ∈ Rπ‘œΓ—π‘› are constant matrices, 𝑀 ∈ R𝑀 is an exogenous input, and 𝑧 ∈ Rπ‘œ is a system output. As shown in [4]

and [37, p. 109], there exists a state feedback gain𝐾 = π‘…βˆ’1𝐡⊀

𝑒𝑃 such that theL2 gain of the closed-loop system(3.27),supβˆ₯𝑀βˆ₯β‰ 0βˆ₯𝑧βˆ₯/βˆ₯𝑀βˆ₯, is less than or equal to𝛾 if

2 sym(𝑃 𝐴) βˆ’2𝑃 π΅π‘’π‘…βˆ’1𝐡⊀

𝑒𝑃+ 𝑃 π΅π‘€π΅βŠ€

𝑀𝑃 𝛾2

+𝐢⊀

𝑧𝐢𝑧 βͺ― 0 (3.28)

has a solution𝑃 ≻ 0, where𝑅 ≻ 0is a constant weight matrix on the input𝑒. If we select 𝐡𝑀 and𝐢𝑧 to have π΅π‘€π΅βŠ€

𝑀 βͺ° (π‘ƒβˆ’1)2 and𝐢⊀

𝑧 𝐢𝑧 βͺ° 2𝛼 𝑃 for some𝛼 > 0, the contraction condition(3.16)in Theorem 3.1 can be satisfied with 𝑀 = 𝑃, 𝐡 = 𝐡𝑒, and𝛽 =1/𝛾2due to(3.28).

In Sec. 3.3 and Sec. 3.4, we will discuss the relationship to input-output stability theory as in Example 3.4, using the results of Theorem 3.1.