• Tidak ada hasil yang ditemukan

Path-Length Integral and Robust Incremental Stability Analysis

Chapter 2: Contraction Theory

2.2 Path-Length Integral and Robust Incremental Stability Analysis

which givesH (q)π›Ώπ‘žΒ€+ (C (q,q) + K (Β€ 𝑑))π›Ώπ‘ž =0. We thus have that 𝑑

𝑑 𝑑

(π›Ώπ‘žβŠ€H (q)π›Ώπ‘ž) =π›Ώπ‘žβŠ€( Β€H βˆ’2C βˆ’2K)π›Ώπ‘ž =βˆ’2π›Ώπ‘žβŠ€Kπ›Ώπ‘ž (2.20) where the skew-symmetry ofH βˆ’Β€ 2C is used to obtain the second equality. Since K ≻ 0, (2.20) indicates that the virtual system (2.19)is partially contracting in π‘ž withH defining its contraction metric. Contraction of the full state (q,q)Β€ will be discussed in Example 2.7.

Note that if we treat the arguments(q,q)Β€ ofH andCalso as the virtual stateπ‘ž, we end up having additional terms such asπœ•H /πœ• π‘žπ‘–, which makes proving contraction analytically more involved as in Example 2.5.

As can be seen from Examples 2.5 and 2.6, the role of partial contraction in theo- rem 2.2 is to provide some insight on stability even for cases where it is difficult to prove contraction for all solution trajectories as in Theorem 2.1. Although finding a contraction metric analytically for general nonlinear systems is challenging, we will see in Chapter 3 and Chapter 4 that the convex nature of the contraction condition (2.4) helps us find it numerically.

Then(2.21)and(2.22)are related as

βˆ₯πœ‰1βˆ’πœ‰0βˆ₯ =

∫ πœ‰1 πœ‰0

𝛿π‘₯

≀ 𝑉ℓ

√ π‘š

≀

βˆšοΈ„

𝑉𝑠ℓ π‘š

(2.23) where 𝑀(π‘₯ , 𝑑) βͺ° π‘šI, βˆ€π‘₯ , 𝑑 for βˆƒπ‘š ∈ R>0, and Theorem 2.1 can also be proven by using (2.21) and (2.22) as a Lyapunov-like function, resulting in incremental exponential stability of the system(2.1)(see Definition 2.2). Note that the shortest path integral𝑉ℓof(2.22)with a parameterized stateπ‘₯(i.e.,inf𝑉ℓ =√

inf𝑉𝑠ℓ) defines the Riemannian distance and the path integral of a minimizing geodesic [21].

Proof. Using 𝑀(π‘₯ , 𝑑) βͺ° π‘šI which gives √

π‘šβˆ₯πœ‰1βˆ’πœ‰0βˆ₯ ≀ 𝑉ℓ, we have βˆ₯πœ‰1βˆ’πœ‰0βˆ₯ =

βˆ₯βˆ«πœ‰1 πœ‰0

𝛿π‘₯βˆ₯ ≀ 𝑉ℓ/√

π‘š of (2.23). The inequality𝑉ℓ ≀ √

𝑉𝑠ℓ of (2.23) can be proven by applying the Cauchy–Schwarz inequality [22, p. 316] to the functionsπœ“1(πœ‡) =

βˆ₯Θ(π‘₯ , 𝑑) (πœ• π‘₯/πœ• πœ‡) βˆ₯ andπœ“2(πœ‡) =1.

We can also see that computing𝑉€𝑠ℓof (2.21) using the differential dynamics of (2.2) yields

𝑉€𝑠ℓ =

∫ 1 0

πœ• π‘₯

πœ• πœ‡

⊀

𝑀€ +𝑀

πœ• 𝑓

πœ• π‘₯ + πœ• 𝑓

πœ• π‘₯

⊀

𝑀 πœ• π‘₯

πœ• πœ‡ π‘‘πœ‡

to have𝑉€𝑠ℓ ≀ βˆ’2𝛼𝑉𝑠ℓ and𝑉€ℓ ≀ βˆ’π›Όπ‘‰β„“ by the contraction conditions (2.3) and (2.4).

Since these hold for anyπœ‰0 and πœ‰1, the incremental exponential stability results in Theorem 2.1 follow from the comparison lemma of Lemma 2.1 (see also [6]–[8], and [21], [23] for the discussion on the geodesic).

2.2.I Deterministic Perturbation

Letπœ‰0(𝑑)be a solution of the system (2.1). It is now perturbed as

Β€

π‘₯ = 𝑓(π‘₯ , 𝑑) +𝑑(π‘₯ , 𝑑) (2.24)

and letπœ‰1(𝑑) denote a trajectory of (2.24). Then a virtual system of a smooth path π‘ž(πœ‡, 𝑑)parameterized byπœ‡ ∈ [0,1], which hasπ‘ž(πœ‡=0, 𝑑)=πœ‰0andπ‘ž(πœ‡=1, 𝑑) =πœ‰1 as its particular solutions is given as follows:

Β€

π‘ž(πœ‡, 𝑑) = 𝑓(π‘ž(πœ‡, 𝑑), 𝑑) +π‘‘πœ‡(πœ‡, πœ‰1, 𝑑) (2.25) whereπ‘‘πœ‡(πœ‡, πœ‰1, 𝑑) = πœ‡ 𝑑(πœ‰1, 𝑑). Since contraction means exponential convergence, a contracting system exhibits a superior property of robustness [1], [5].

Theorem 2.4. If the system(2.1) satisfies(2.3) and(2.4) of Theorem 2.1 (i.e., the system(2.1)is contracting), then the path integral𝑉ℓ(π‘ž, π›Ώπ‘ž, 𝑑) =∫ πœ‰1

πœ‰0 βˆ₯Θ(π‘ž, 𝑑)π›Ώπ‘žβˆ₯of (2.22), where πœ‰0is a solution of the contracting system(2.1), πœ‰1is a solution of the perturbed system(2.24), andπ‘žis the virtual state of(2.25), exponentially converges to a bounded error ball as long asΞ˜π‘‘ ∈ L∞ (i.e.,supπ‘₯ ,𝑑βˆ₯Ξ˜π‘‘βˆ₯ < ∞). Specifically, ifβˆƒπ‘š, π‘š ∈R>0andβˆƒπ‘‘Β―βˆˆRβ‰₯0s.t. 𝑑¯=supπ‘₯ ,𝑑βˆ₯𝑑(π‘₯ , 𝑑) βˆ₯and

π‘šIβͺ― 𝑀(π‘₯ , 𝑑) βͺ― π‘šI, βˆ€π‘₯ , 𝑑 , (2.26)

then we have the following relation:

βˆ₯πœ‰1(𝑑) βˆ’πœ‰0(𝑑) βˆ₯ ≀ 𝑉ℓ(0)

√ π‘š

π‘’βˆ’π›Όπ‘‘+ 𝑑¯ 𝛼

βˆšοΈ„

π‘š π‘š

(1βˆ’π‘’βˆ’π›Όπ‘‘) (2.27)

where𝑉ℓ(𝑑)=𝑉ℓ(π‘ž(𝑑), π›Ώπ‘ž(𝑑), 𝑑)for notational simplicity.

Proof. Using the contraction condition (2.4), we have for 𝑀 = Θ⊀Θ given in Theorem 2.1 that

𝑑 𝑑 𝑑

βˆ₯Θ(π‘ž, 𝑑)πœ•πœ‡π‘žβˆ₯ = (2βˆ₯Θ(π‘ž, 𝑑)πœ•πœ‡π‘žβˆ₯)βˆ’1 𝑑 𝑑 𝑑

πœ•πœ‡π‘žβŠ€π‘€(π‘ž, 𝑑)πœ•πœ‡π‘ž

≀ βˆ’π›Όβˆ₯Θ(π‘ž, 𝑑)πœ•πœ‡π‘žβˆ₯ + βˆ₯Θ(π‘ž, 𝑑)πœ•πœ‡π‘‘πœ‡βˆ₯

where πœ•πœ‡π‘ž = πœ• π‘ž/πœ• πœ‡ and πœ•πœ‡π‘‘πœ‡ = πœ• π‘‘πœ‡/πœ• πœ‡ = 𝑑(πœ‰1, 𝑑). Taking the integral with respect to πœ‡gives

𝑑 𝑑 𝑑

∫ 1 0

βˆ₯Ξ˜πœ•πœ‡π‘žβˆ₯π‘‘πœ‡ ≀

∫ 1 0

βˆ’π›Όβˆ₯Ξ˜πœ•πœ‡π‘žβˆ₯ + βˆ₯Ξ˜π‘‘(πœ‰1, 𝑑) βˆ₯π‘‘πœ‡

which implies 𝑉€ℓ(𝑑) ≀ βˆ’π›Όπ‘‰β„“(𝑑) + supπ‘ž,πœ‰1,𝑑 βˆ₯Θ(π‘ž, 𝑑)𝑑(πœ‰1, 𝑑) βˆ₯ for 𝑉ℓ in (2.22) of Theorem 2.3. Thus, applying the comparison lemma (see Lemma 2.1) results in 𝑉ℓ(𝑑) β‰€π‘’βˆ’π›Όπ‘‘π‘‰β„“(0) + sup

π‘ž,πœ‰1,𝑑

βˆ₯Θ(π‘ž, 𝑑)𝑑(πœ‰1, 𝑑) βˆ₯1βˆ’π‘’βˆ’π›Όπ‘‘ 𝛼

. (2.28)

By usingπœ‰1βˆ’πœ‰0=βˆ«πœ‰1

πœ‰0

𝛿π‘₯andβˆ₯πœ‰1βˆ’πœ‰0βˆ₯ =βˆ₯βˆ«πœ‰1

πœ‰0

𝛿π‘₯βˆ₯ β‰€βˆ« πœ‰1

πœ‰0 βˆ₯𝛿π‘₯βˆ₯ β‰€βˆ« πœ‰1

πœ‰0 βˆ₯Ξ˜βˆ’1βˆ₯ βˆ₯𝛿 𝑧βˆ₯, we obtain√︁

infπ‘‘πœ†min(𝑀) βˆ₯πœ‰1βˆ’πœ‰0βˆ₯ ≀𝑉ℓ =βˆ«πœ‰1

πœ‰0 βˆ₯𝛿 𝑧βˆ₯, and thus

βˆ₯πœ‰1βˆ’πœ‰0βˆ₯ ≀ π‘’βˆ’π›Όπ‘‘π‘‰β„“(0)

√︁infπ‘‘πœ†min(𝑀)

+ supπ‘ž,πœ‰1,𝑑βˆ₯Ξ˜π‘‘βˆ₯

√︁infπ‘‘πœ†min(𝑀)

1βˆ’π‘’βˆ’π›Όπ‘‘ 𝛼

.

This relation with the bounds on𝑀 and𝑑gives (2.27).

2.2.II Stochastic Perturbation

Next, consider the following dynamical system modeled by the ItΓ΄ stochastic differ- ential equation:

𝑑π‘₯ = 𝑓(π‘₯ , 𝑑)𝑑 𝑑+𝐺(π‘₯ , 𝑑)𝑑𝒲(𝑑) (2.29)

where𝐺 : R𝑛×Rβ‰₯0 β†’ R𝑛×𝑀 is a matrix-valued function and𝒲 :Rβ‰₯0↦→ R𝑀 is a 𝑀-dimensional Wiener process [24, p. 100] (see also [24, p. xii] for the notations used). For the sake of existence and uniqueness of the solution, we assume in (2.29) that

βˆƒπΏ ∈Rβ‰₯0s.t. βˆ₯𝑓(π‘₯ , 𝑑) βˆ’ 𝑓(π‘₯β€², 𝑑) βˆ₯ + βˆ₯𝐺(π‘₯ , 𝑑) βˆ’πΊ(π‘₯β€², 𝑑) βˆ₯𝐹

≀ 𝐿βˆ₯π‘₯βˆ’π‘₯β€²βˆ₯, βˆ€π‘‘ ∈Rβ‰₯0, βˆ€π‘₯ , π‘₯β€²βˆˆR𝑛 (2.30)

βˆƒπΏΒ― ∈Rβ‰₯0s.t. βˆ₯𝑓(π‘₯ , 𝑑) βˆ₯2+ βˆ₯𝐺(π‘₯ , 𝑑) βˆ₯2𝐹 ≀ 𝐿¯(1+ βˆ₯π‘₯βˆ₯2), βˆ€π‘‘ ∈Rβ‰₯0, βˆ€π‘₯ ∈R𝑛. (2.31) In order to analyze the incremental stability property of (2.29) as in Theorem 2.3, we consider two trajectories πœ‰0(𝑑) and πœ‰1(𝑑) of stochastic nonlinear systems with Gaussian white noise, driven by two independent Wiener processes 𝒲0(𝑑) and 𝒲1(𝑑):

𝑑 πœ‰π‘– = 𝑓(πœ‰π‘–, 𝑑)𝑑 𝑑+𝐺𝑖(πœ‰π‘–, 𝑑)𝑑𝒲𝑖(𝑑), 𝑖 =0,1. (2.32) One can show that (2.29) has a unique solution π‘₯(𝑑) which is continuous with probability one under the conditions (2.30) and (2.31) (see [24, p. 105] and [4], [7]), leading to the following lemma as in the comparison lemma of Lemma 2.1.

Lemma 2.2. Suppose that𝑉𝑠ℓ of(2.21)satisfies the following inequality:

ℒ𝑉𝑠ℓ ≀ βˆ’π›Ύπ‘‰π‘ β„“+𝑐 (2.33)

where 𝛾 ∈ R>0, 𝑐 ∈ Rβ‰₯0, andβ„’ denotes the infinitesimal differential generator of the ItΓ΄ process given in [25, p. 15]. Then we have the following bound [4]:

E

βˆ₯πœ‰1(𝑑) βˆ’πœ‰0(𝑑) βˆ₯2

≀ 1 π‘š

E[𝑉𝑠ℓ(0)]π‘’βˆ’π›Ύπ‘‘ + 𝑐 𝛾

(2.34) where𝑉𝑠ℓ(0) =𝑉𝑠ℓ(π‘₯(0), 𝛿π‘₯(0),0) for𝑉𝑠ℓ in(2.21),π‘šis given in(2.26),πœ‰0andπœ‰1 are given in (2.32), and E denotes the expected value operator. Furthermore, the probability that βˆ₯πœ‰1βˆ’πœ‰0βˆ₯is greater than or equal toπœ€βˆˆR>0is given as

P[βˆ₯πœ‰1(𝑑) βˆ’πœ‰0(𝑑) βˆ₯ β‰₯ πœ€] ≀ 1 πœ€2π‘š

E[𝑉𝑠ℓ(0)]π‘’βˆ’π›Ύπ‘‘ + 𝑐 𝛾

. (2.35)

Proof. The bound (2.34) follows from Theorem 2 of [4] (see also [6]–[8], [26], [27]

and [25, p. 10] (Dynkin’s formula)). The probability tracking error bound (2.35) then follows from Markov’s inequality [28, pp. 311-312].

Remark 2.3. Although Lemma 2.2 considers the second moment ofβˆ₯πœ‰1(𝑑) βˆ’πœ‰0(𝑑) βˆ₯, i.e.,E[βˆ₯πœ‰1(𝑑) βˆ’πœ‰0(𝑑) βˆ₯2], it can be readily generalized to the𝑝-th moment ofβˆ₯πœ‰1(𝑑) βˆ’ πœ‰0(𝑑) βˆ₯, i.e.,E[βˆ₯πœ‰1(𝑑) βˆ’πœ‰0(𝑑) βˆ₯𝑝], applying the Lyapunov-based technique proposed in [29].

A virtual system of a smooth pathπ‘ž(πœ‡, 𝑑) parameterized by πœ‡ ∈ [0,1], which has π‘ž(πœ‡ = 0, 𝑑) = πœ‰0 andπ‘ž(πœ‡ =1, 𝑑) =πœ‰1of (2.32) as its particular solutions, is given as follows:

π‘‘π‘ž(πœ‡, 𝑑) = 𝑓(π‘ž(πœ‡, 𝑑), 𝑑)𝑑 𝑑+𝐺(πœ‡, πœ‰0, πœ‰1, 𝑑)𝑑𝒲(𝑑) (2.36) where𝐺(πœ‡, πœ‰0, πœ‰1, 𝑑) = [(1βˆ’πœ‡)𝐺0(πœ‰0, 𝑑), πœ‡πΊ1(πœ‰1, 𝑑)] and𝒲 = [π’²βŠ€

0 ,π’²βŠ€

1 ]⊀. As a consequence of Lemma 2.2, showing stochastic incremental stability betweenπœ‰0 andπœ‰1 of (2.32) reduces to proving the relation (2.33), similar to the deterministic case in Theorems 2.1 and 2.4.

Theorem 2.5. Suppose thatβˆƒπ‘”Β―0 ∈Rβ‰₯0andβˆƒπ‘”Β―1 ∈Rβ‰₯0s.t. supπ‘₯ ,𝑑βˆ₯𝐺1(π‘₯ , 𝑑) βˆ₯𝐹 =𝑔¯0 and supπ‘₯ ,𝑑βˆ₯𝐺1(π‘₯ , 𝑑) βˆ₯𝐹 = 𝑔¯1 in (2.32). Suppose also that there exists 𝑀(π‘₯ , 𝑑) ≻ 0, βˆ€π‘₯ , 𝑑, s.t. 𝑀π‘₯

𝑖 = πœ• 𝑀/πœ• π‘₯𝑖 is Lipschitz with respect toπ‘₯ for all𝑖 = 1,Β· Β· Β· , 𝑛, i.e.,

βˆƒπΏπ‘š ∈Rβ‰₯0s.t.

βˆ₯𝑀π‘₯

𝑖(π‘₯ , 𝑑) βˆ’π‘€π‘₯

𝑖(π‘₯β€², 𝑑) βˆ₯ ≀ πΏπ‘šβˆ₯π‘₯βˆ’π‘₯β€²βˆ₯, βˆ€π‘₯ , π‘₯β€², 𝑑 , 𝑖 . (2.37) Also, suppose that 𝑀 of (2.37) satisfies (2.26) and (2.4) with its right-hand side replaced byβˆ’2𝛼 π‘€βˆ’π›Όπ‘ Ifor𝛼𝑠 = πΏπ‘š(𝑔¯2

0+𝑔¯2

1) (𝛼𝐺 +1/2), i.e., 𝑀€ +𝑀

πœ• 𝑓

πœ• π‘₯ + πœ• 𝑓

πœ• π‘₯

⊀

𝑀 βͺ― βˆ’2𝛼 𝑀 βˆ’π›Όπ‘ I (2.38)

where 𝛼𝐺 ∈ R>0 is an arbitrary constant (see (2.42)). Then, the following error bound of incremental stability holds:

E

βˆ₯πœ‰1(𝑑) βˆ’πœ‰0(𝑑) βˆ₯2

≀ E[𝑉𝑠ℓ(0)]

π‘š

π‘’βˆ’2𝛼𝑑+ 𝐢 2𝛼

π‘š

π‘š (2.39)

where πœ‰0 and πœ‰1 are the trajectories given in(2.32), 𝑉𝑠ℓ(𝑑) = 𝑉𝑠ℓ(π‘ž(𝑑), π›Ώπ‘ž(𝑑), 𝑑) =

βˆ«πœ‰1 πœ‰0

π›Ώπ‘žβŠ€π‘€(π‘ž, 𝑑)π›Ώπ‘ž is given in (2.21) with the virtual state π‘ž of (2.36), π‘š and π‘š are given in (2.26), 𝐢 = (𝑔¯2

0+𝑔¯2

1) (2π›ΌπΊβˆ’1+1), and E denotes the expected value

operator. Furthermore, the probability that βˆ₯πœ‰1βˆ’πœ‰0βˆ₯ is greater than or equal to πœ€ ∈R>0is given as

P[βˆ₯πœ‰1(𝑑) βˆ’πœ‰0(𝑑) βˆ₯ β‰₯ πœ€] ≀ 1 πœ€2

E[𝑉𝑠ℓ(0)]

π‘š

π‘’βˆ’2𝛼𝑑+ 𝐢 2𝛼

π‘š π‘š

. (2.40)

Proof. By definition of the infinitesimal differential generator given in Lemma 2.2 [25, p. 15], we have [6], [8]

ℒ𝑉𝑠ℓ =

∫ 1 0

𝑉𝑑 +

𝑛

βˆ‘οΈ

𝑖=1

π‘‰π‘ž

𝑖

𝑓𝑖+π‘‰πœ•

πœ‡π‘žπ‘–

πœ• 𝑓

πœ• π‘ž

πœ•πœ‡π‘ž

𝑖

(2.41) + 1

2

𝑛

βˆ‘οΈ

𝑖, 𝑗=1

π‘‰π‘ž

π‘–π‘žπ‘—(𝐺 𝐺⊀)𝑖 𝑗 +2π‘‰π‘ž

π‘–πœ•πœ‡π‘žπ‘—(𝐺 πœ•πœ‡πΊβŠ€)𝑖 𝑗 +π‘‰πœ•

πœ‡π‘žπ‘–πœ•πœ‡π‘žπ‘—(πœ•πœ‡πΊ πœ•πœ‡πΊβŠ€)𝑖 𝑗

π‘‘πœ‡

where 𝑉 = πœ•πœ‡π‘žβŠ€π‘€(π‘ž, 𝑑)πœ•πœ‡π‘ž, πœ•πœ‡π‘ž = πœ• π‘ž/πœ• πœ‡, πœ•πœ‡πΊ = πœ• 𝐺/πœ• πœ‡, 𝑉𝑝 = πœ•π‘‰/πœ• 𝑝, and 𝑉𝑝

1𝑝2 =πœ•2𝑉/(πœ• 𝑝1πœ• 𝑝2). Since 𝑀π‘₯

𝑖 is Lipschitz as in (2.37), we have βˆ₯𝑀π‘₯

𝑖π‘₯𝑗βˆ₯ ≀ πΏπ‘š and 𝑀π‘₯

𝑖

≀ √

2πΏπ‘šπ‘š using (2.26) as derived [20]. Computing ℒ𝑉𝑠ℓ of (2.41) using these bounds, the bounds of βˆ₯𝐺0βˆ₯𝐹 andβˆ₯𝐺1βˆ₯𝐹, andπœ•πœ‡πΊ =πœ• 𝐺/πœ• πœ‡= [βˆ’πΊ0, 𝐺1] as in [6], [8] yields ℒ𝑉𝑠ℓ ≀

∫ 1 0

πœ•πœ‡π‘žβŠ€( €𝑀+2 sym(𝑀 𝑓π‘₯))πœ•πœ‡π‘ž π‘‘πœ‡ + (𝑔¯2

0+𝑔¯2

1) (πΏπ‘šβˆ₯πœ•πœ‡π‘žβˆ₯2/2+2√︁

2πΏπ‘šπ‘šβˆ₯πœ•πœ‡π‘žβˆ₯ +π‘š)

≀

∫ 1 0

πœ•πœ‡π‘žβŠ€( €𝑀+2 sym(𝑀 𝑓π‘₯) +𝛼𝑠I)πœ•πœ‡π‘ž π‘‘πœ‡+𝐢 π‘š (2.42) where 𝛼𝑠 = πΏπ‘š(𝑔¯2

0+𝑔¯2

1) (𝛼𝐺 +1/2), 𝐢 = (𝑔¯2

0 +𝑔¯2

1) (2π›ΌπΊβˆ’1+1), and the relation 2π‘Ž 𝑏 ≀ π›Όβˆ’1

𝐺

π‘Ž2 + 𝛼𝐺𝑏2, which holds for any π‘Ž, 𝑏 ∈ R and 𝛼𝐺 ∈ R>0, is used with π‘Ž =

√

2π‘š and 𝑏 = √

πΏπ‘šβˆ₯πœ•πœ‡π‘žβˆ₯ to get the second inequality. This reduces to ℒ𝑉𝑠ℓ ≀ βˆ’2𝛼𝑉𝑠ℓ+π‘šπΆ under the condition (2.38), resulting in (2.39) and (2.40) as a result of (2.34) and (2.35) in Lemma 2.2.

Remark 2.4. Although we consider the Gaussian white noise stochastic differential equation (2.32) when referring to stochastic systems in this thesis, other types of stochastic noises, including compound Poisson shot noise and bounded-measure LΓ©vy noise, could be considered as in Theorem 2.5 using contraction theory [30].

2.3 Finite-Gain Stability and Contraction of Hierarchically Combined Sys-