• Tidak ada hasil yang ditemukan

KYP Lemma in Contraction Theory

Chapter 3: Robust Nonlinear Control and Estimation via Contraction Theory . 50

3.4 KYP Lemma in Contraction Theory

Analogously to Theorem 3.3, the LMI (3.18) of Theorem 3.1 can be understood using the Kalman-Yakubovich-Popov (KYP) lemma [39, p. 218]. Consider the quadratic Lyapunov function๐‘‰ = ๐œ…โŠคQ๐œ…withQ โ‰ป 0, satisfying the following output strict passivity (dissipativity) condition:

๐‘‰ยค โˆ’2๐œโŠค๐œ+ (2/๐›พ)๐œโŠค๐œ โ‰ค0. (3.31)

This which can be expanded by completing the square to have ๐‘‰ยค โ‰ค โˆ’โˆฅ๐›พ(๐œ โˆ’๐œ/๐›พ) โˆฅ2+๐›พโˆฅ๐œโˆฅ2โˆ’ (1/๐›พ) โˆฅ๐œโˆฅ2

โ‰ค ๐›พโˆฅ๐œโˆฅ2โˆ’ (1/๐›พ) โˆฅ๐œโˆฅ2. (3.32)

This implies that we have โˆฅ (๐œ)๐œโˆฅL2 โ‰ค ๐›พโˆฅ (๐œ)๐œโˆฅL2 +โˆš๏ธ

๐›พ๐‘‰(0) by the comparison lemma [25, pp. 102-103, pp. 350-353], leading to L2 gain stability with its L2 gain less than or equal to ๐›พ [39, p. 218]. The condition (3.31) can be expressed equivalently as an LMI form as follows:

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

Q +ยค 2sym(QA) + 2C๐›พโŠคC QB + CโŠค 2D

๐›พ โˆ’I

BโŠคQ +

2DโŠค ๐›พ โˆ’I

C โˆ’(DโŠค+๐ท) + 2DโŠคD

๐›พ

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป

โชฏ 0 (3.33)

whereA,B, C, andD are as defined in (3.29).

Theorem 3.4. If(3.33)holds, the LMI(3.30)for the bounded real lemma holds with P =๐›พQ, i.e., the system(3.29)isL2gain stable with itsL2gain less than or equal to๐›พ. Thus, for systems withA,B, C, andD defined in Theorem 3.3, the condition (3.33)guarantees the contraction condition(3.18)of Theorem 3.1.

Proof. Writing the inequality in (3.32) in a matrix form, we have that

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

Q +ยค 2sym(QA) + 2CโŠคC

๐›พ QB + CโŠค

2D ๐›พ โˆ’I

BโŠคQ +

2DโŠค ๐›พ โˆ’I

C โˆ’(DโŠค+๐ท) + 2DโŠคD

๐›พ

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป

โชฐ

"Q +ยค 2sym(QA) QB

BโŠคQ 0

# +

"CโŠคC ๐›พ

CโŠคD ๐›พ DโŠคC

๐›พ

DโŠคD ๐›พ

#

โˆ’

"

0 0 0 ๐›พI

#

=

"Q +ยค 2sym(QA) + CโŠค๐›พC QB + CโŠคD

๐›พ

BโŠคQ + DโŠคC

๐›พ

DโŠคD ๐›พ โˆ’๐›พI

# .

Therefore, a necessary condition of (3.33) reduces to (3.30) ifQ = P/๐›พ. The rest follows from Theorem 3.3.

Example 3.5. Theorems 3.3 and 3.4 imply the following statements.

โ€ข If(3.30)holds, the system is finite-gainL2stable with๐›พ as itsL2gain.

โ€ข If(3.33)holds, the system is finite-gainL2stable with๐›พ as itsL2gain.

โ€ข (3.31) is equivalent to(3.33), and to the output strict passivity condition with dissipation1/๐›พ [25, p. 231].

โ€ข If(3.33)holds (KYP lemma),(3.30)holds (bounded real lemma). The converse is not necessarily true.

References

[1] T. Basar and P. Bernhard,HโˆžOptimal Control and Related Minimax Design Problems: A Dynamic Game Approach. Birkhauser, 1995.

[2] W. Zhang and B. Chen, โ€œState feedbackHโˆžcontrol for a class of nonlinear stochastic systems,โ€SIAM J. Control Optim., vol. 44, no. 6, pp. 1973โ€“1991, 2006.

[3] I. R. Manchester and J.-J. E. Slotine, โ€œRobust control contraction metrics:

A convex approach to nonlinear state-feedbackHโˆžcontrol,โ€IEEE Control Syst. Lett., vol. 2, no. 3, pp. 333โ€“338, 2018.

[4] A. J. Van der Schaft, โ€œL2-gain analysis of nonlinear systems and nonlinear state-feedback Hโˆž control,โ€ IEEE Trans. Autom. Control, vol. 37, no. 6, pp. 770โ€“784, Jun. 1992.

[5] A. Isidori and A. Astolfi, โ€œDisturbance attenuation and Hโˆž-control via measurement feedback in nonlinear systems,โ€IEEE Trans. Autom. Control, vol. 37, no. 9, pp. 1283โ€“1293, Sep. 1992.

[6] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, โ€œState-space solutions to standard H2 and Hโˆž control problems,โ€ IEEE Trans. Autom.

Control, vol. 34, no. 8, pp. 831โ€“847, Aug. 1989.

[7] P. P. Khargonekar and M. A. Rotea, โ€œMixed H2/Hโˆž control: A convex optimization approach,โ€IEEE Trans. Autom. Control, vol. 36, no. 7, pp. 824โ€“

837, Jul. 1991.

[8] L. Xie and E. de Souza Carlos, โ€œRobust Hโˆž control for linear systems with norm-bounded time-varying uncertainty,โ€IEEE Trans. Autom. Control, vol. 37, no. 8, pp. 1188โ€“1191, Aug. 1992.

[9] C. Scherer, P. Gahinet, and M. Chilali, โ€œMultiobjective output-feedback control via LMI optimization,โ€IEEE Trans. Autom. Control, vol. 42, no. 7, pp. 896โ€“911, Jul. 1997.

[10] B.-S. Chen and W. Zhang, โ€œStochasticH2/Hโˆžcontrol with state-dependent noise,โ€ IEEE Trans. Autom. Control, vol. 49, no. 1, pp. 45โ€“57, Jan. 2004, issn: 0018-9286.

[11] D. Hinrichsen and A. Pritchard, โ€œStochasticHโˆž,โ€SIAM J. Control Optim., vol. 36, no. 5, pp. 1504โ€“1538, 1998.

[12] H. Tsukamoto and S.-J. Chung, โ€œRobust controller design for stochastic nonlinear systems via convex optimization,โ€ IEEE Trans. Autom. Control, vol. 66, no. 10, pp. 4731โ€“4746, 2021.

[13] H. Tsukamoto and S.-J. Chung, โ€œConvex optimization-based controller de- sign for stochastic nonlinear systems using contraction analysis,โ€ in IEEE Conf. Decis. Control, Dec. 2019, pp. 8196โ€“8203.

[14] R. Wang, R. Tรณth, and I. R. Manchester,Virtual CCMs: Convex nonlinear feedback design via behavioral embedding, arXiv:2003.08513, Mar. 2020.

[15] R. Wang, R. Tรณth, and I. R. Manchester, โ€œA comparison of LPV gain scheduling and control contraction metrics for nonlinear control,โ€ in 3rd IFAC Workshop on LPVS, vol. 52, 2019, pp. 44โ€“49.

[16] H. Tsukamoto and S.-J. Chung, โ€œNeural contraction metrics for robust esti- mation and control: A convex optimization approach,โ€ IEEE Control Syst.

Lett., vol. 5, no. 1, pp. 211โ€“216, 2021.

[17] H. Tsukamoto, S.-J. Chung, and J.-J. E. Slotine, โ€œNeural stochastic contrac- tion metrics for learning-based control and estimation,โ€IEEE Control Syst.

Lett., vol. 5, no. 5, pp. 1825โ€“1830, 2021.

[18] A. P. Dani, S.-J. Chung, and S. Hutchinson, โ€œObserver design for stochastic nonlinear systems via contraction-based incremental stability,โ€IEEE Trans.

Autom. Control, vol. 60, no. 3, pp. 700โ€“714, Mar. 2015.

[19] I. R. Manchester and J.-J. E. Slotine, โ€œControl contraction metrics: Convex and intrinsic criteria for nonlinear feedback design,โ€ IEEE Trans. Autom.

Control, vol. 62, no. 6, pp. 3046โ€“3053, Jun. 2017.

[20] S. Singh, A. Majumdar, J.-J. E. Slotine, and M. Pavone, โ€œRobust online motion planning via contraction theory and convex optimization,โ€ inIEEE Int. Conf. Robot. Automat., May 2017, pp. 5883โ€“5890.

[21] J.-J. E. Slotine and W. Li,Applied Nonlinear Control. Upper Saddle River, NJ: Pearson, 1991.

[22] F. Tan, W. Lohmiller, and J.-J. E. Slotine, โ€œAnalytical SLAM without lin- earization,โ€Int. J. Robot. Res., vol. 36, no. 13-14, pp. 1554โ€“1578, 2017.

[23] E. Sontag, โ€œA Lyapunov-like characterization of asymptotic controllability,โ€

SIAM J. Control Optim., vol. 21, no. 3, pp. 462โ€“471, 1983.

[24] E. D. Sontag, โ€œA โ€˜universalโ€™ construction of Artsteinโ€™s theorem on nonlinear stabilization,โ€Syst. Control Lett., vol. 13, no. 2, pp. 117โ€“123, 1989.

[25] H. K. Khalil,Nonlinear Systems, 3rd. Upper Saddle River, NJ: Prentice-Hall, 2002.

[26] W. Li and E. Todorov, โ€œIterative linear quadratic regulator design for non- linear biological movement systems,โ€ inInt. Conf. Inform. Control Automat.

Robot., 2004, pp. 222โ€“229.

[27] W. Li and E. Todorov, โ€œAn iterative optimal control and estimation design for nonlinear stochastic system,โ€ inIEEE Conf. Decis. Control, 2006, pp. 3242โ€“

3247.

[28] S. Bonnabel and J.-J. E. Slotine, โ€œA contraction theory-based analysis of the stability of the deterministic extended Kalman filter,โ€ IEEE Trans. Autom.

Control, vol. 60, no. 2, pp. 565โ€“569, Feb. 2015.

[29] J. R. Cloutier, โ€œState-dependent Riccati equation techniques: An overview,โ€

inProc. Amer. Control Conf., vol. 2, 1997, pp. 932โ€“936.

[30] H. T. Banks, B. M. Lewis, and H. T. Tran, โ€œNonlinear feedback controllers and compensators: A state-dependent Riccati equation approach,โ€Comput.

Optim. Appl., vol. 37, no. 2, pp. 177โ€“218, Jun. 2007, issn: 1573-2894.

[31] I. Chang and S.-J. Chung, โ€œExponential stability region estimates for the state-dependent Riccati Equation controllers,โ€ inIEEE Conf. Decis. Control, 2009, pp. 1974โ€“1979.

[32] T. ร‡imen, โ€œSurvey of state-dependent Riccati equation in nonlinear optimal feedback control synthesis,โ€ AIAA J. Guid. Control Dyn., vol. 35, no. 4, pp. 1025โ€“1047, Jul. 2012.

[33] S. Singh, S. M. Richards, V. Sindhwani, J.-J. E. Slotine, and M. Pavone,

โ€œLearning stabilizable nonlinear dynamics with contraction-based regular- ization,โ€Int. J. Robot. Res., Aug. 2020.

[34] Q. C. Pham and J.-J. E. Slotine,Stochastic contraction in Riemannian met- rics, arXiv:1304.0340, Apr. 2013.

[35] I. R. Manchester, โ€œContracting nonlinear observers: Convex optimization and learning from data,โ€ in Proc. Amer. Control Conf., 2018, pp. 1873โ€“

1880.

[36] H. Tsukamoto and S.-J. Chung, โ€œLearning-based robust motion planning with guaranteed stability: A contraction theory approach,โ€ IEEE Robot.

Automat. Lett., vol. 6, no. 4, pp. 6164โ€“6171, 2021.

[37] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix In- equalities in System and Control Theory(Studies in Applied Mathematics).

Philadelphia, PA: SIAM, Jun. 1994, vol. 15, isbn: 0-89871-334-X.

[38] T. BaลŸar and P. Bernhard,HโˆžOptimal Control and Related Minimax Design Problems, A Dynamic Game Approach(Modern Birkhรคuser Classics), 2nd.

Birkhรคuser Basel, 2008, isbn: 978-0-387-98945-7.

[39] G. E. Dullerud and F. Paganini, A Course in Robust Control Theory, A Convex Approach (Texts in Applied Mathematics), 1st. Springer, 2000, isbn: 978-0-387-98945-7.

C h a p t e r 4

CONVEX OPTIMALITY IN ROBUST NONLINEAR CONTROL AND ESTIMATION VIA CONTRACTION THEORY

[1] H. Tsukamoto and S.-J. Chung, โ€œRobust controller design for stochastic nonlinear systems via convex optimization,โ€ IEEE Trans. Autom. Control, vol. 66, no. 10, pp. 4731โ€“4746, 2021.

[2] H. Tsukamoto and S.-J. Chung, โ€œConvex optimization-based controller de- sign for stochastic nonlinear systems using contraction analysis,โ€ in IEEE Conf. Decis. Control, Dec. 2019, pp. 8196โ€“8203.

Theorem 3.1 indicates that the problem of finding contraction metrics for general nonlinear systems could be formulated as a convex feasibility problem. This chap- ter thus delineates one approach, called the method of ConVex optimization-based Steady-state Tracking Error Minimization (CV-STEM) [1]โ€“[4], to optimally design ๐‘€ of Theorem 3.1 that defines a contraction metric and minimizes an upper bound of the steady-state tracking error in Theorem 2.4 or in Theorem 2.5 via convex optimization. In particular, we present an overview of the SDC- and CCM-based CV-STEM frameworks for provably stable and optimal feedback control and state estimation of nonlinear systems, perturbed by deterministic and stochastic distur- bances. It is worth noting that the steady-state bound is expressed as a function of the condition number ๐œ’ =๐‘š/๐‘šas to be seen in (4.1) and (4.17), which renders the CV-STEM applicable and effective even to learning-based and data-driven control frameworks as shall be seen in Chapter 5.

4.1 CV-STEM Control

As a result of Theorems 2.4, 2.5, and 3.1, the control law๐‘ข = ๐‘ข๐‘‘ โˆ’๐พ(๐‘ฅ โˆ’๐‘ฅ๐‘‘) of (3.10) gives a convex steady-state upper bound of the Euclidean distance between the system trajectories, which can be used as an objective function for the CV-STEM control framework in Theorem 4.2 [1]โ€“[4].

Theorem 4.1. If one of the matrix inequalities of Theorem 3.1 holds, we have the following bound for ๐œ’ =๐‘š/๐‘š:

lim

๐‘กโ†’โˆž

โˆš๏ธƒ

E

โˆฅ๐‘ฅโˆ’๐‘ฅ๐‘‘โˆฅ2

โ‰ค ๐‘0(๐›ผ, ๐›ผ๐บ)โˆš

๐œ’ โ‰ค ๐‘0(๐›ผ, ๐›ผ๐บ)๐œ’ (4.1)

where ๐‘0(๐›ผ, ๐›ผ๐บ) = ๐‘”ยฏ๐‘

โˆš๏ธƒ

(2๐›ผโˆ’1

๐บ +1)/(2๐›ผ) for stochastic systems and ๐‘0(๐›ผ, ๐›ผ๐บ) = ๐‘‘ยฏ๐‘/๐›ผfor deterministic systems, with the variables given in Theorem 3.1.

Proof. Taking lim๐‘กโ†’โˆžin the exponential tracking error bounds (3.20) and (3.21) of Theorem 3.1 gives the first inequality of (4.1). The second inequality follows from the relation 1โ‰ค โˆš๏ธ

๐‘š/๐‘š โ‰ค ๐‘š/๐‘š= ๐œ’due to๐‘š โ‰ค ๐‘š.

The convex optimization problem of minimizing (4.1), subject to the contraction constraint of Theorem 3.1, is given in Theorem 4.2, thereby introducing the CV- STEM control [1]โ€“[4] for designing an optimal contraction metric and contracting control policy as depicted in Fig. 4.1.

Theorem 4.2. Suppose that๐›ผ,๐›ผ๐บ,๐‘‘ยฏ๐‘, and๐‘”ยฏ๐‘in(4.1)and the Lipschitz constant๐ฟ๐‘š of๐œ• ๐‘€/๐œ• ๐‘ฅ๐‘–in Theorem 3.1 are given. If the pair(๐ด, ๐ต)is uniformly controllable, the non-convex optimization problem of minimizing the upper bound(4.1)is equivalent to the following convex optimization problem, with the convex contraction constraint (3.17)or(3.18)of Theorem 3.1 andI โชฏ๐‘Šยฏ โชฏ ๐œ’Iof(3.19):

๐ฝโˆ—

๐ถ๐‘‰ = min

๐œˆโˆˆR>0, ๐œ’โˆˆR,๐‘Šยฏโ‰ป0

๐‘0๐œ’+๐‘1๐œˆ+๐‘2๐‘ƒ(๐œ’, ๐œˆ,๐‘Šยฏ) (4.2)

s.t.(3.17) and (3.19) for deterministic systems s.t.(3.18) and (3.19) for stochastic systems

where๐‘Š = ๐‘€(๐‘ฅ , ๐‘ฅ๐‘‘, ๐‘ข๐‘‘, ๐‘ก)โˆ’1 for Theorem 3.1 or๐‘Š = ๐‘€(๐‘ฅ , ๐‘ก)โˆ’1for Theorem 3.2,

ยฏ

๐‘Š =๐œˆ๐‘Š, ๐œˆ =๐‘š, ๐œ’ =๐‘š/๐‘š, ๐‘0 is as defined in(4.1)of Theorem 4.1, ๐‘1, ๐‘2 โˆˆ Rโ‰ฅ0, and๐‘ƒis a performance-based convex cost function.

The weight ๐‘1 for ๐œˆ can be viewed as a penalty on the 2-norm of the feedback control gain ๐พ of ๐‘ข = ๐‘ข๐‘‘ โˆ’๐พ(๐‘ฅ โˆ’๐‘ฅ๐‘‘) in (3.10). Using non-zero ๐‘1 and ๐‘2 thus enables finding contraction metrics optimal in a different sense. Furthermore, the coefficients of the SDC parameterizations ๐œšin Lemma 3.1 (i.e.,๐ด =ร

๐œš๐‘–๐ด๐‘–in(3.6)) can also be treated as decision variables by convex relaxation, thereby adding a design flexibility to mitigate the effects of external disturbances while verifying the system controllability.

Proof. As proven in Theorems 3.1 and 4.1,๐‘šIโชฏ ๐‘€ โชฏ ๐‘šI of (2.26), the contraction constraint (3.15), and the objective (4.1) reduce to (4.2) with ๐‘1 = 0 and ๐‘2 = 0.

Since the resultant constraints are convex and the objective is affine in terms of the decision variables๐œˆ, ๐œ’, and ยฏ๐‘Š, the problem (4.2) is indeed convex. Since we have

๐‘ข๐‘‘

CV-STEMdesigns contraction metric

& robust control CV-STEM

Robust Control

Contracting Policy ๐‘ขโˆ— Contraction Metric w.r.t.๐‘€

๐‘ฅ๐‘ฅ๐‘‘ ๐‘ก ๐‘€

CV-STEM Robust Control

๐‘ขโˆ— State ๐‘ฅ

Time ๐‘ก

Target Trajectory

(๐‘ฅ๐‘‘, ๐‘ข๐‘‘)

Convex Program (CV-STEM)

Figure 4.1: Block diagram of CV-STEM.

sup๐‘ฅ ,๐‘กโˆฅ๐‘€โˆฅ โ‰ค ๐‘š = ๐œˆ, ๐‘1 can be used as a penalty to optimally adjust the induced 2-norm of the control gain (see Example 4.1). The SDC coefficients ๐œšcan also be utilized as decision variables for controllability due to Proposition 1 of [1].

Example 4.1. The weights ๐‘0 and ๐‘1 of the CV-STEM control of Theorem 4.2 establish an analogous trade-off to the case of the LQR with the cost weight matrices of๐‘„for state and ๐‘… for control, since the upper bound of the steady-state tracking error(4.1)is proportional to ๐œ’, and an upper bound ofโˆฅ๐พโˆฅfor the control gain ๐พ in(3.10),๐‘ข=๐‘ข๐‘‘โˆ’๐พ(๐‘ฅโˆ’๐‘ฅ๐‘‘), is proportional to๐œˆ. In particular [2], [3],

โ€ข if ๐‘1 is much greater than ๐‘0 in (4.2) of Theorem 4.2, we get smaller control effort but with a large steady-state tracking error, and

โ€ข if๐‘1is much smaller than๐‘0in(4.2)of Theorem 4.2, we get a smaller steady-state state tracking error but with larger control effort.

This is also because the solution ๐‘ƒ โ‰ป 0 of the LQR Riccati equation [5, p. 89],

โˆ’ ยค๐‘ƒ= ๐‘ƒ ๐ด+๐ดโŠค๐‘ƒโˆ’๐‘ƒ ๐ต ๐‘…โˆ’1๐ตโŠค๐‘ƒ+๐‘„, can be viewed as a positive definite matrix๐‘€ that defines a contraction metric as discussed in Example 2.3.

4.2 CV-STEM Estimation

We could also design an optimal state estimator analogously to the CV-STEM control of Theorem 4.2, due to the differential nature of contraction theory that enables LTV systems-type approaches to stability analysis. In particular, we exploit the estimation and control duality in differential dynamics similar to that of the Kalman filter and LQR in LTV systems.

Let us consider the following smooth nonlinear systems with a measurement๐‘ฆ(๐‘ก), perturbed by deterministic disturbances๐‘‘๐‘’0(๐‘ฅ , ๐‘ก)and๐‘‘๐‘’1(๐‘ฅ , ๐‘ก)with sup๐‘ฅ ,๐‘กโˆฅ๐‘‘๐‘’0(๐‘ฅ , ๐‘ก) โˆฅ=

ยฏ

๐‘‘๐‘’0 โˆˆ Rโ‰ฅ0and sup๐‘ฅ ,๐‘กโˆฅ๐‘‘๐‘’1(๐‘ฅ , ๐‘ก) โˆฅ = ๐‘‘ยฏ๐‘’1 โˆˆ Rโ‰ฅ0, or by Gaussian white noise, driven

by Wiener processes ๐’ฒ0(๐‘ก) and ๐’ฒ1(๐‘ก) with sup๐‘ฅ ,๐‘กโˆฅ๐บ๐‘’0(๐‘ฅ , ๐‘ก) โˆฅ๐น = ๐‘”ยฏ๐‘’0 โˆˆ Rโ‰ฅ0 and sup๐‘ฅ ,๐‘กโˆฅ๐บ๐‘’1(๐‘ฅ , ๐‘ก) โˆฅ๐น =๐‘”ยฏ๐‘’1 โˆˆRโ‰ฅ0:

ยค

๐‘ฅ = ๐‘“(๐‘ฅ , ๐‘ก) +๐‘‘๐‘’0(๐‘ฅ , ๐‘ก), ๐‘ฆ =โ„Ž(๐‘ฅ , ๐‘ก) +๐‘‘๐‘’1(๐‘ฅ , ๐‘ก) (4.3) ๐‘‘๐‘ฅ = ๐‘“(๐‘ฅ , ๐‘ก)๐‘‘ ๐‘ก+๐บ๐‘’0๐‘‘๐’ฒ0, ๐‘ฆ ๐‘‘ ๐‘ก =โ„Ž(๐‘ฅ , ๐‘ก)๐‘‘ ๐‘ก+๐บ๐‘’1๐‘‘๐’ฒ1 (4.4) where๐‘ก โˆˆRโ‰ฅ0is time,๐‘ฅ :Rโ‰ฅ0โ†ฆโ†’ R๐‘›is the system state,๐‘ฆ :Rโ‰ฅ0โ†ฆโ†’R๐‘šis the system measurement, ๐‘“ : R๐‘›ร—Rโ‰ฅ0 โ†ฆโ†’ R๐‘› and โ„Ž : R๐‘› ร—Rโ‰ฅ0 โ†ฆโ†’ R๐‘š are known smooth functions,๐‘‘๐‘’0:R๐‘›ร—Rโ‰ฅ0โ†ฆโ†’ R๐‘›,๐‘‘๐‘’1 :R๐‘›ร—Rโ‰ฅ0 โ†ฆโ†’R0,๐บ๐‘’0:R๐‘›ร—Rโ‰ฅ0โ†ฆโ†’R๐‘›ร—๐‘ค0, and ๐บ๐‘’1:R๐‘›ร—Rโ‰ฅ0โ†ฆโ†’ R๐‘›ร—๐‘ค1 are unknown bounded functions for external disturbances, ๐’ฒ0 :Rโ‰ฅ0โ†ฆโ†’R๐‘ค0 and๐’ฒ1:Rโ‰ฅ0โ†ฆโ†’ R๐‘ค1 are two independent Wiener processes, and the arguments of๐บ๐‘’0(๐‘ฅ , ๐‘ก)and๐บ๐‘’1(๐‘ฅ , ๐‘ก)are suppressed for notational convenience.

Let ๐ด(๐œš๐‘Ž, ๐‘ฅ ,๐‘ฅ , ๐‘กห† )and๐ถ(๐œš๐‘, ๐‘ฅ ,๐‘ฅ , ๐‘กห† ) be the SDC matrices given by Lemma 3.1 with (๐‘“ , ๐‘ ,๐‘ ,ยฏ ๐‘ขยฏ) replaced by(๐‘“ ,๐‘ฅ , ๐‘ฅ ,ห† 0)and (โ„Ž,๐‘ฅ , ๐‘ฅ ,ห† 0), respectively, i.e.

๐ด(๐œš๐‘Ž, ๐‘ฅ ,๐‘ฅ , ๐‘กห† ) (๐‘ฅห†โˆ’๐‘ฅ) = ๐‘“(๐‘ฅ , ๐‘กห† ) โˆ’ ๐‘“(๐‘ฅ , ๐‘ก) (4.5) ๐ถ(๐œš๐‘, ๐‘ฅ ,๐‘ฅ , ๐‘กห† ) (๐‘ฅห†โˆ’๐‘ฅ) =โ„Ž(๐‘ฅ , ๐‘กห† ) โˆ’โ„Ž(๐‘ฅ , ๐‘ก). (4.6) We design a nonlinear state estimation law parameterized by a matrix-valued func- tion๐‘€(๐‘ฅ , ๐‘กห† )as follows:

ยคห†

๐‘ฅ = ๐‘“(๐‘ฅ , ๐‘กห† ) +๐ฟ(๐‘ฅ , ๐‘กห† ) (๐‘ฆโˆ’โ„Ž(๐‘ฅ , ๐‘กห† )) (4.7)

= ๐‘“(๐‘ฅ , ๐‘กห† ) +๐‘€(๐‘ฅ , ๐‘กห† )๐ถยฏ(๐œš๐‘,๐‘ฅ , ๐‘กห† )โŠค๐‘…(๐‘ฅ , ๐‘กห† )โˆ’1(๐‘ฆโˆ’โ„Ž(๐‘ฅ , ๐‘กห† ))

where ยฏ๐ถ(๐œš๐‘,๐‘ฅ , ๐‘กห† ) = ๐ถ(๐œš๐‘,๐‘ฅ ,ห† ๐‘ฅ , ๐‘กยฏ ) for a fixed trajectory ยฏ๐‘ฅ (e.g., ยฏ๐‘ฅ = 0, see Theo- rem 3.2), ๐‘…(๐‘ฅ , ๐‘กห† ) โ‰ป 0 is a weight matrix on the measurement ๐‘ฆ, and ๐‘€(๐‘ฅ , ๐‘กห† ) โ‰ป 0 is a positive definite matrix (which satisfies the matrix inequality constraint for a contraction metric, to be given in (4.12) of Theorem 4.5). Note that we could use other forms of estimation laws such as the EKF [2], [6], [7], analytical SLAM [8], or SDC with respect to a fixed point [1], [4], [9], depending on the application of interest, which result in a similar stability analysis as in Theorem 3.2.

4.2.I Nonlinear Stability Analysis of SDC-based State Estimation using Con- traction Theory

Substituting (4.7) into (4.3) and (4.4) yields the following virtual system of a smooth path๐‘ž(๐œ‡, ๐‘ก), parameterized by๐œ‡โˆˆ [0,1]to have๐‘ž(๐œ‡=0, ๐‘ก) =๐‘ฅand๐‘ž(๐œ‡=1, ๐‘ก) =๐‘ฅห†:

ยค

๐‘ž(๐œ‡, ๐‘ก) =๐œ(๐‘ž(๐œ‡, ๐‘ก), ๐‘ฅ ,๐‘ฅ , ๐‘กห† ) +๐‘‘(๐œ‡, ๐‘ฅ ,๐‘ฅ , ๐‘กห† ) (4.8) ๐‘‘๐‘ž(๐œ‡, ๐‘ก) =๐œ(๐‘ž(๐œ‡, ๐‘ก), ๐‘ฅ ,๐‘ฅ , ๐‘กห† )๐‘‘ ๐‘ก+๐บ(๐œ‡, ๐‘ฅ ,๐‘ฅ , ๐‘กห† )๐‘‘๐’ฒ(๐‘ก) (4.9)

where ๐‘‘(๐œ‡, ๐‘ฅ ,๐‘ฅ , ๐‘กห† ) = (1 โˆ’ ๐œ‡)๐‘‘๐‘’0(๐‘ฅ , ๐‘ก) + ๐œ‡ ๐ฟ(๐‘ฅ , ๐‘กห† )๐‘‘๐‘’1(๐‘ฅ , ๐‘ก), ๐บ(๐œ‡, ๐‘ฅ ,๐‘ฅ , ๐‘กห† ) = [(1 โˆ’ ๐œ‡)๐บ๐‘’0(๐‘ฅ , ๐‘ก), ๐œ‡ ๐ฟ(๐‘ฅ , ๐‘กห† )๐บ๐‘’1(๐‘ฅ , ๐‘ก)],๐’ฒ = [๐’ฒโŠค

0 ,๐’ฒ1โŠค]โŠค, and ๐œ(๐‘ž, ๐‘ฅ , ๐‘ฅ๐‘‘, ๐‘ข๐‘‘, ๐‘ก)is defined as

๐œ(๐‘ž, ๐‘ฅ ,๐‘ฅ , ๐‘กห† ) =(๐ด(๐œš๐‘Ž, ๐‘ฅ ,๐‘ฅ , ๐‘กห† ) โˆ’๐ฟ(๐‘ฅ , ๐‘กห† )๐ถ(๐œš๐‘, ๐‘ฅ ,๐‘ฅ , ๐‘กห† )) (๐‘žโˆ’๐‘ฅ) + ๐‘“(๐‘ฅ , ๐‘ก). (4.10) Note that (4.10) is constructed to contain๐‘ž =๐‘ฅห†and๐‘ž =๐‘ฅas its particular solutions of (4.8) and (4.9). If๐‘‘ =0 and๐’ฒ =0, the differential dynamics of (4.8) and (4.9) for๐œ•๐œ‡๐‘ž=๐œ• ๐‘ž/๐œ• ๐œ‡is given as

๐œ•๐œ‡๐‘žยค =(๐ด(๐œš๐‘Ž, ๐‘ฅ ,๐‘ฅ , ๐‘กห† ) โˆ’๐ฟ(๐‘ฅ , ๐‘กห† )๐ถ(๐œš๐‘, ๐‘ฅ ,๐‘ฅ , ๐‘กห† ))๐œ•๐œ‡๐‘ž . (4.11) The similarity between (3.14) (๐œ•๐œ‡๐‘žยค= (๐ดโˆ’๐ต๐พ)๐œ•๐œ‡๐‘ž) and (4.11) leads to the following theorem [1]โ€“[4]. Again, note that we could also use the SDC formulation with respect to a fixed point as delineated in Theorem 3.2 and as demonstrated in [1], [4], [9].

Theorem 4.3. Suppose โˆƒ๐œŒ,ยฏ ๐‘ยฏ โˆˆ Rโ‰ฅ0 s.t. โˆฅ๐‘…โˆ’1(๐‘ฅ , ๐‘กห† ) โˆฅ โ‰ค ๐œŒยฏ, โˆฅ๐ถ(๐œš๐‘, ๐‘ฅ ,๐‘ฅ , ๐‘กห† ) โˆฅ โ‰ค

ยฏ

๐‘, โˆ€๐‘ฅ ,๐‘ฅ , ๐‘กห† . Suppose also that ๐‘šI โชฏ ๐‘€ โชฏ ๐‘š ๐ผ of (2.26) holds, or equivalently, I โชฏ ๐‘Šยฏ โชฏ ๐œ’ ๐ผ of(3.19)holds with๐‘Š = ๐‘€(๐‘ฅ , ๐‘กห† )โˆ’1,๐‘Šยฏ = ๐œˆ๐‘Š, ๐œˆ =๐‘š, and ๐œ’ = ๐‘š/๐‘š. As in Theorem 3.1, let๐›ฝbe defined as๐›ฝ =0for deterministic systems(4.3)and ๐›ฝ=๐›ผ๐‘  =๐›ผ๐‘’0+๐œˆ2๐›ผ๐‘’1 =๐ฟ๐‘š๐‘”ยฏ2

๐‘’0(๐›ผ๐บ +1/2)/2+๐œˆ2๐ฟ๐‘š๐œŒยฏ2๐‘ยฏ2๐‘”ยฏ2

๐‘’1(๐›ผ๐บ +1/2)/2 for stochastic systems(4.4), where2๐›ผ๐‘’0= ๐ฟ๐‘š๐‘”ยฏ2

๐‘’0(๐›ผ๐บ+1/2),2๐›ผ๐‘’1= ๐ฟ๐‘š๐œŒยฏ2๐‘ยฏ2๐‘”ยฏ2

๐‘’1(๐›ผ๐บ+ 1/2), ๐ฟ๐‘š is the Lipschitz constant of ๐œ•๐‘Š/๐œ• ๐‘ฅ๐‘–, ๐‘”ยฏ๐‘’0 and ๐‘”ยฏ๐‘’1 are given in(4.4), and

โˆƒ๐›ผ๐บ โˆˆR>0is an arbitrary constant as in Theorem 2.5.

If ๐‘€(๐‘ฅ , ๐‘กห† ) in (4.7) is constructed to satisfy the following convex constraint for

โˆƒ๐›ผโˆˆR>0:

ยคยฏ

๐‘Š+2 sym(๐‘Š ๐ดยฏ โˆ’๐œˆ๐ถยฏโŠค๐‘…โˆ’1๐ถ) โชฏ โˆ’2๐›ผ๐‘Šยฏ โˆ’๐œˆ ๐›ฝI (4.12) then Theorems 2.4 and 2.5 hold for the virtual systems(4.8)and(4.9), respectively, i.e., we have the following bounds fore =๐‘ฅห†โˆ’๐‘ฅwith๐œˆ =๐‘šand ๐œ’=๐‘š/๐‘š:

โˆฅe(๐‘ก) โˆฅ โ‰ค

โˆš

๐‘š๐‘‰โ„“(0)๐‘’โˆ’๐›ผ๐‘ก+

ยฏ ๐‘‘๐‘’0

โˆš

๐œ’+๐œŒยฏ๐‘ยฏ๐‘‘ยฏ๐‘’1๐œˆ ๐›ผ

(1โˆ’๐‘’โˆ’๐›ผ๐‘ก) (4.13)

E

โˆฅe(๐‘ก) โˆฅ2

โ‰ค ๐‘šE[๐‘‰๐‘ โ„“(0)]๐‘’โˆ’2๐›ผ๐‘ก+ ๐ถ๐‘’0๐œ’+๐ถ๐‘’1๐œ’ ๐œˆ2 2๐›ผ

(4.14) where ๐‘‰๐‘ โ„“ = โˆซ๐‘ฅห†

๐‘ฅ

๐›ฟ๐‘žโŠค๐‘Š ๐›ฟ๐‘ž and ๐‘‰โ„“ = โˆซ๐‘ฅห†

๐‘ฅ โˆฅฮ˜๐›ฟ๐‘žโˆฅ are given in Theorem 2.3 with ๐‘Š = ๐‘€โˆ’1 = ฮ˜โŠคฮ˜ defining a contraction metric, the disturbance bounds ๐‘‘ยฏ๐‘’0, ๐‘‘ยฏ๐‘’1,

ยฏ

๐‘”๐‘’0, and ๐‘”ยฏ๐‘’1 are given in (4.3)and (4.4), respectively,๐ถ๐‘’0 = ๐‘”ยฏ2

๐‘’0(2๐›ผ๐บโˆ’1+1), and ๐ถ๐‘’1 = ๐œŒยฏ2๐‘ยฏ2๐‘”ยฏ2

๐‘’1(2๐›ผ๐บโˆ’1+1). Note that for stochastic systems, the probability that

โˆฅeโˆฅ is greater than or equal to๐œ€โˆˆR>0is given as P[โˆฅe(๐‘ก) โˆฅ โ‰ฅ ๐œ€] โ‰ค 1

๐œ€2

๐‘šE[๐‘‰๐‘ โ„“(0)]๐‘’โˆ’2๐›ผ๐‘ก+ ๐ถ๐ธ 2๐›ผ

(4.15) where๐ถ๐ธ =๐ถ๐‘’0๐œ’+๐ถ๐‘’1๐œ’ ๐œˆ2.

Proof. Theorem 3.1 indicates that (4.12) is equivalent to

๐‘Šยค +2 sym(๐‘Š ๐ดโˆ’๐ถยฏโŠค๐‘…โˆ’1๐ถ) โชฏ โˆ’2๐›ผ๐‘Šโˆ’๐›ฝI. (4.16) Computing the time derivative of a Lyapunov function๐‘‰ =๐œ•๐œ‡๐‘žโŠค๐‘Š ๐œ•๐œ‡๐‘žwith๐œ•๐œ‡๐‘ž=

๐œ• ๐‘ž/๐œ• ๐œ‡for the unperturbed virtual dynamics (4.11), we have using (4.16) that ๐‘‰ยค =๐œ•๐œ‡๐‘žโŠค๐‘Š ๐œ•๐œ‡๐‘ž =๐œ•๐œ‡๐‘žโŠค( ยค๐‘Š +2๐‘Š ๐ดโˆ’2 ยฏ๐ถโŠค๐‘…โˆ’1๐ถ)๐œ•๐œ‡๐‘ž โ‰ค โˆ’2๐›ผ๐‘‰ โˆ’๐›ฝโˆฅ๐œ•๐œ‡๐‘žโˆฅ2

which implies that๐‘Š = ๐‘€โˆ’1defines a contraction metric. Since we have ๐‘šโˆ’1I โชฏ ๐‘Š โชฏ ๐‘šโˆ’1I,๐‘‰ โ‰ฅ ๐‘šโˆ’1โˆฅ๐œ•๐œ‡๐‘žโˆฅ2, and

โˆฅฮ˜(๐‘ฅ , ๐‘กห† )๐œ•๐œ‡๐‘‘โˆฅ โ‰ค ๐‘‘ยฏ๐‘’0/โˆš

๐‘š+๐‘‘ยฏ๐‘’1๐œŒยฏ๐‘ยฏ

โˆš ๐‘š

โˆฅ๐œ•๐œ‡๐บโˆฅ2๐น โ‰ค ๐‘”ยฏ2

๐‘’0+๐œŒยฏ2๐‘ยฏ2๐‘”ยฏ2

๐‘’1๐‘š2

for ๐‘‘ in (4.8) and๐บ in (4.9), the bounds (4.13) โ€“ (4.15) follow from the proofs of Theorems 2.4 and 2.5 [2], [3].

Remark 4.1. Although (4.12) is not an LMI due to the nonlinear term โˆ’๐œˆ ๐›ฝI on its right-hand side for stochastic systems(4.4), it is a convex constraint asโˆ’๐œˆ ๐›ฝ =

โˆ’๐œˆ๐›ผ๐‘  =โˆ’๐œˆ๐›ผ๐‘’0โˆ’๐œˆ3๐›ผ๐‘’1is a concave function for๐œˆ โˆˆR>0[3], [10].

4.2.II CV-STEM Formulation for State Estimation

The estimator (4.7) gives a convex steady-state upper bound of the Euclidean distance between๐‘ฅand ห†๐‘ฅ as in Theorem 4.1 [1]โ€“[4].

Theorem 4.4. If(4.12)of Theorem 4.3 holds, then we have the following bound:

๐‘กโ†’โˆžlim

โˆš๏ธƒ

E

โˆฅ๐‘ฅห†โˆ’๐‘ฅโˆฅ2

โ‰ค ๐‘0(๐›ผ, ๐›ผ๐บ)๐œ’+๐‘1(๐›ผ, ๐›ผ๐บ)๐œˆ๐‘  (4.17) where ๐‘0 = ๐‘‘ยฏ๐‘’0/๐›ผ, ๐‘1 = ๐œŒยฏ๐‘ยฏ๐‘‘ยฏ๐‘’1/๐›ผ, ๐‘  = 1 for deterministic systems (4.8), and ๐‘0=โˆš๏ธ

๐ถ๐‘’0/(2๐›ผ),๐‘1=๐ถ๐‘’1/(2โˆš

2๐›ผ๐ถ๐‘’0), and๐‘ =2for stochastic systems(4.9), with ๐ถ๐‘’0and๐ถ๐‘’0given as๐ถ๐‘’0=๐‘”ยฏ2

๐‘’0(2๐›ผโˆ’1

๐บ +1)and๐ถ๐‘’1= ๐œŒยฏ2๐‘ยฏ2๐‘”ยฏ2

๐‘’1(2๐›ผโˆ’1

๐บ +1).

Proof. The upper bound (4.17) for deterministic systems (4.8) follows from (4.13) with the relation 1 โ‰ค โˆš

๐œ’ โ‰ค ๐œ’due to๐‘š โ‰ค ๐‘š. For stochastic systems, we have using (4.14) that

๐ถ๐‘’0๐œ’+๐ถ๐‘’1๐œˆ2๐œ’ โ‰ค ๐ถ๐‘’0(๐œ’+ (๐ถ๐‘’1/(2๐ถ๐‘’0))๐œˆ2)2

due to 1โ‰ค ๐œ’ โ‰ค ๐œ’2and๐œˆ โˆˆR>0. This gives (4.17) for stochastic systems (4.9).

Finally, the CV-STEM estimation framework is summarized in Theorem 4.5 [1]โ€“[4].

Theorem 4.5. Suppose that๐›ผ, ๐›ผ๐บ, ๐‘‘ยฏ๐‘’0, ๐‘‘ยฏ๐‘’1, ๐‘”ยฏ๐‘’0, ๐‘”ยฏ๐‘’1, and๐ฟ๐‘š in(4.12) and(4.17) are given. If the pair (๐ด, ๐ถ) is uniformly observable, the non-convex optimization problem of minimizing the upper bound(4.17)is equivalent to the following convex optimization problem with the contraction constraint (4.12) and I โชฏ ๐‘Šยฏ โชฏ ๐œ’I of (3.19):

๐ฝโˆ—

๐ถ๐‘‰ = min

๐œˆโˆˆR>0, ๐œ’โˆˆR,๐‘Šยฏโ‰ป0

๐‘0๐œ’+๐‘1๐œˆ๐‘ +๐‘2๐‘ƒ(๐œ’, ๐œˆ,๐‘Šยฏ) (4.18) s.t.(4.12) and (3.19)

where๐‘0,๐‘1, and๐‘ are as defined in(4.17)of Theorem 4.4,๐‘2 โˆˆRโ‰ฅ0, and๐‘ƒis some performance-based cost function as in Theorem 4.2.

The weight ๐‘1 for ๐œˆ๐‘  indicates how much we trust the measurement ๐‘ฆ(๐‘ก). Using non-zero๐‘2enables finding contraction metrics optimal in a different sense in terms of ๐‘ƒ. Furthermore, the coefficients of the SDC parameterizations ๐œš๐‘Ž and ๐œš๐‘ in Lemma 3.1 (i.e., ๐ด = ร

๐œš๐‘Ž,๐‘–๐ด๐‘– and๐ถ = ร

๐œš๐‘,๐‘–๐ถ๐‘– in (4.5) and (4.6)) can also be treated as decision variables by convex relaxation [9], thereby adding a design flexibility to mitigate the effects of external disturbances while verifying the system observability.

Proof. The proposed optimization problem is convex as its objective and constraints are convex in terms of decision variables ๐œ’, ๐œˆ, and ยฏ๐‘Š (see Remark 4.1). Also, larger ยฏ๐‘‘๐‘’1and ยฏ๐‘”๐‘’1in (4.3) and (4.4) imply larger measurement uncertainty. Thus by definition of๐‘1in Theorem 4.4, the larger the weight of๐œˆ, the less confident we are in ๐‘ฆ(๐‘ก)(see Example 4.2). The last statement on the SDC coefficients for guaranteeing observability follows from Proposition 1 of [9] and Proposition 1 of [1].

Example 4.2. The weights ๐‘0 and๐‘1 of the CV-STEM estimation of Theorem 4.5 has an analogous trade-off to the case of the Kalman filter with the process and

sensor noise covariance matrices,๐‘„and๐‘ƒ, respectively, since the term๐‘0๐œ’in upper bound of the steady-state tracking error in(4.17)becomes dominant if measurement noise is much smaller than process noise (๐‘‘ยฏ๐‘’0 โ‰ซ ๐‘‘ยฏ๐‘’1 or๐‘”ยฏ๐‘’0 โ‰ซ ๐‘”ยฏ๐‘’1), and the term ๐‘1๐œˆ๐‘  becomes dominant if measurement noise is much greater than process noise (๐‘‘ยฏ๐‘’0 โ‰ช ๐‘‘ยฏ๐‘’1or๐‘”ยฏ๐‘’0โ‰ช ๐‘”ยฏ๐‘’1). In particular [2], [3],

โ€ข if๐‘1is much greater than๐‘0, large measurement noise leads to state estimation that responds slowly to unexpected changes in the measurement ๐‘ฆ (i.e. small estimation gain due to๐œˆ =๐‘š โ‰ฅ โˆฅ๐‘€โˆฅ), and

โ€ข if ๐‘1is much smaller than๐‘0, large process noise leads to state estimation that responds fast to changes in the measurement (i.e. large๐œˆ =๐‘š โ‰ฅ โˆฅ๐‘€โˆฅ).

This is also because the solution ๐‘„ = ๐‘ƒโˆ’1 โ‰ป 0of the Kalman filter Riccati equa- tion [7, p. 375], ๐‘ƒยค = ๐ด๐‘ƒ+๐‘ƒ ๐ดโŠค โˆ’๐‘ƒ๐ถโŠค๐‘…โˆ’1๐ถ ๐‘ƒ+๐‘„, can be viewed as a positive definite matrix that defines a contraction metric as discussed in Example 2.3.

4.3 Control Contraction Metrics (CCMs)

As briefly discussed in Remark 3.4, the concept of a CCM [11]โ€“[16] is introduced to extend contraction theory to design differential feedback control laws for control- affine deterministic nonlinear systems (3.1), ๐‘ฅยค = ๐‘“(๐‘ฅ , ๐‘ก) + ๐ต(๐‘ฅ , ๐‘ก)๐‘ข. Let us show that the CCM formulation could also be considered in the CV-STEM control of Theorem 4.2, where similar ideas have been investigated in [12], [17], [18].

Theorem 4.6. Suppose the CV-STEM control of Theorem 4.2 is designed with its contraction condition replaced by the following set of convex constraints along with Iโชฏ ๐‘Šยฏ โชฏ ๐œ’Iof(3.19):

๐ตโŠคโŠฅ

โˆ’๐œ•๐‘Šยฏ

๐œ• ๐‘ก

โˆ’๐œ•๐‘“๐‘Šยฏ +2 sym ๐œ• ๐‘“

๐œ• ๐‘ฅ

ยฏ ๐‘Š

+2๐›ผ๐‘Šยฏ

๐ตโŠฅ โ‰บ0 (4.19)

๐ตโŠคโŠฅ

๐œ•๐‘

๐‘–๐‘Šยฏ โˆ’2 sym ๐œ• ๐‘๐‘–

๐œ• ๐‘ฅ

ยฏ

๐‘Š ๐ตโŠฅ =0,โˆ€๐‘ฅ , ๐‘ก , ๐‘– (4.20)

where ๐ตโŠฅ(๐‘ฅ , ๐‘ก) is a matrix whose columns span the cokernel of ๐ต(๐‘ฅ , ๐‘ก) defined as coker(๐ต) = {๐‘Ž โˆˆ R๐‘›|๐ตโŠค๐‘Ž = 0} satisfying ๐ตโŠค๐ตโŠฅ = 0, ๐‘๐‘–(๐‘ฅ , ๐‘ก) is the ๐‘–th column of ๐ต(๐‘ฅ , ๐‘ก), ๐‘Šยฏ (๐‘ฅ , ๐‘ก) = ๐œˆ๐‘Š(๐‘ฅ , ๐‘ก), ๐‘Š(๐‘ฅ , ๐‘ก) = ๐‘€(๐‘ฅ , ๐‘ก)โˆ’1 for ๐‘€(๐‘ฅ , ๐‘ก) that defines a contraction metric,๐œˆ =๐‘š, ๐œ’=๐‘š/๐‘š, and๐œ•๐‘๐น =ร๐‘›

๐‘˜=1(๐œ• ๐น/๐œ• ๐‘ฅ๐‘˜)๐‘๐‘˜for ๐‘(๐‘ฅ , ๐‘ก) โˆˆR๐‘› and ๐น(๐‘ฅ , ๐‘ก) โˆˆ R๐‘›ร—๐‘›. Then the controlled system (3.1) with ๐‘‘๐‘ = 0, i.e., ๐‘ฅยค =

๐‘“(๐‘ฅ , ๐‘ก) +๐ต(๐‘ฅ , ๐‘ก)๐‘ข, is

1) universally exponentially open-loop controllable

2) universally exponentially stabilizable via sampled-data feedback with arbitrary sample times

3) universally exponentially stabilizable using continuous feedback defined almost everywhere, and everywhere in a neighborhood of the target trajectory

all with rate๐›ผ and overshoot ๐‘… = โˆš๏ธ

๐‘š/๐‘š for ๐‘š and๐‘š given in ๐‘šI โชฏ ๐‘€ โชฏ ๐‘šIof (2.26). Such a positive definite matrix๐‘€(๐‘ฅ , ๐‘ก)defines a CCM.

Given a CCM, there exists a differential feedback controller๐›ฟ๐‘ข= ๐‘˜(๐‘ฅ , ๐›ฟ๐‘ฅ , ๐‘ข, ๐‘ก)that stabilizes the following differential dynamics of(3.1)with๐‘‘๐‘ =0along all solutions (i.e., the closed-loop dynamics is contracting as in Definition 2.3):

๐›ฟ๐‘ฅยค = ๐ด(๐‘ฅ , ๐‘ข, ๐‘ก)๐›ฟ๐‘ฅ+๐ต(๐‘ฅ , ๐‘ก)๐›ฟ๐‘ข (4.21)

where ๐ด=๐œ• ๐‘“/๐œ• ๐‘ฅ+ร๐‘š

๐‘–=1(๐œ• ๐‘๐‘–/๐œ• ๐‘ฅ)๐‘ข๐‘–and๐›ฟ๐‘ขis a tangent vector to a smooth path of controls at๐‘ข. Furthermore, it can be computed as follows [11], [12], [16]:

๐‘ข(๐‘ฅ(๐‘ก), ๐‘ก) =๐‘ข๐‘‘+

โˆซ 1 0

๐‘˜(๐›พ(๐œ‡, ๐‘ก), ๐œ•๐œ‡๐›พ(๐œ‡, ๐‘ก), ๐‘ข(๐›พ(๐œ‡, ๐‘ก), ๐‘ก), ๐‘ก)๐‘‘๐œ‡ (4.22) where๐œ•๐œ‡๐›พ =๐œ• ๐›พ/๐œ• ๐œ‡,๐›พ is the minimizing geodesic with๐›พ(0, ๐‘ก)=๐‘ฅ๐‘‘and๐›พ(1, ๐‘ก) =๐‘ฅ for ๐œ‡ โˆˆ [0,1], (๐‘ฅ๐‘‘, ๐‘ข๐‘‘) is a given target trajectory in ๐‘ฅยค๐‘‘ = ๐‘“(๐‘ฅ๐‘‘, ๐‘ก) + ๐ต(๐‘ฅ๐‘‘, ๐‘ก)๐‘ข๐‘‘ of (3.3), and the computation of ๐‘˜ is given in [11], [12] (see Remark 4.2). Further- more, Theorem 2.4 for deterministic disturbance rejection still holds and the CCM controller (4.22) thus possesses the same sense of oplimality as for the CV-STEM control in Theorem 4.2.

Proof. Since the columns of๐ตโŠฅ(๐‘ฅ , ๐‘ก) span the cokernel of ๐ต(๐‘ฅ , ๐‘ก), the constraints (4.19) and (4.20) can be equivalently written as๐ตโŠฅ(๐‘ฅ , ๐‘ก)replaced by๐‘Žin coker(๐ต)= {๐‘Ž โˆˆR๐‘›|๐ตโŠค๐‘Ž=0}. Let๐‘Ž = ๐‘€ ๐›ฟ๐‘ฅ =๐‘Šโˆ’1๐›ฟ๐‘ฅ. Then multiplying (4.19) and (4.20) by ๐œˆโˆ’1> 0 and rewriting them using๐‘Žyields

๐›ฟ๐‘ฅโŠค๐‘€ ๐ต=0 โ‡’ ๐›ฟ๐‘ฅโŠค( ยค๐‘€+2 sym(๐‘€ ๐ด) +2๐›ผ ๐‘€)๐›ฟ๐‘ฅ <0 (4.23) where ๐ด = ๐œ• ๐‘“/๐œ• ๐‘ฅ + ร๐‘š

๐‘–=1(๐œ• ๐‘๐‘–/๐œ• ๐‘ฅ)๐‘ข๐‘– for the differential dynamics (4.21). The relation (4.23) states that ๐›ฟ๐‘ฅ orthogonal to the span of actuated directions ๐‘๐‘– is naturally contracting, thereby implying the stabilizability of the system (3.1) with ๐‘‘๐‘ =0, i.e.,๐‘ฅยค = ๐‘“(๐‘ฅ , ๐‘ก) +๐ต(๐‘ฅ , ๐‘ก)๐‘ข. See [11], [12], [16] (and [17] on the CV-STEM formulation) for the rest of the proof.

Example 4.3. Let us consider a case where๐‘˜of the differential feedback controller does not depend on๐‘ข, and is defined explicitly by๐‘€(๐‘ฅ , ๐‘ก) โ‰ป0as follows [17]:

๐‘ข =๐‘ข๐‘‘โˆ’

โˆซ ๐‘ฅ ๐‘ฅ๐‘‘

๐‘…(๐‘ž, ๐‘ก)โˆ’1๐ต(๐‘ž, ๐‘ก)โŠค๐‘€(๐‘ž, ๐‘ก)๐›ฟ๐‘ž (4.24) where ๐‘…(๐‘ฅ , ๐‘ก) โ‰ป 0 is a given weight matrix and ๐‘ž is a smooth path that connects ๐‘ฅ to ๐‘ฅ๐‘‘. Since (4.24) yields ๐›ฟ๐‘ข = โˆ’๐‘…(๐‘ฅ , ๐‘ก)โˆ’1๐ต(๐‘ฅ , ๐‘ก)โŠค๐‘€(๐‘ฅ , ๐‘ก)๐›ฟ๐‘ฅ, the contraction conditions(4.19)and(4.20)could be simplified as

โˆ’ ๐œ•๐‘Šยฏ

๐œ• ๐‘ก

โˆ’๐œ•๐‘“๐‘Šยฏ +2 sym ๐œ• ๐‘“

๐œ• ๐‘ฅ

ยฏ ๐‘Š

โˆ’๐œˆ ๐ต ๐‘…โˆ’1๐ตโŠค โชฏ โˆ’2๐›ผ๐‘Šยฏ

โˆ’๐œ•๐‘

๐‘–

ยฏ

๐‘Š +2 sym ๐œ• ๐‘๐‘–

๐œ• ๐‘ฅ

ยฏ ๐‘Š

=0 (4.25)

yielding the convex optimization-based control synthesis algorithm of Theorem 4.6 independently of(๐‘ฅ๐‘‘, ๐‘ข๐‘‘) similar to that of Theorem 4.2 (see [17] for details).

Example 4.4. If๐ตis of the form [0,I]โŠค for the zero matrix0 โˆˆR๐‘›1ร—๐‘š and identity matrix I โˆˆ R๐‘›2ร—๐‘š with ๐‘› = ๐‘›1+๐‘›2, the condition (4.25) says that ๐‘€ should not depend on the last๐‘›2state variables [11].

Remark 4.2. We could consider stochastic perturbation in Theorem 4.6 using Theorem 2.5, even with the differential control law of the form (4.22) or (4.24) as demonstrated in [17]. Also, although the relation(4.20)or(4.25)is not included as a constraint in Theorem 4.2 for simplicity of discussion, the dependence of๐‘Šยคยฏ on ๐‘ขin Theorem 4.2 can be removed by using it in a similar way to [17].

As stated in(4.22), the computation of the differential feedback gain ๐‘˜(๐‘ฅ , ๐›ฟ๐‘ฅ , ๐‘ข, ๐‘ก) and minimizing geodesics ๐›พ is elaborated in [11], [12]. For example, if ๐‘€ is state-independent, then geodesics are just straight lines.

Let us again emphasize that, as delineated in Sec. 3.1, the differences between the SDC- and CCM-based CV-STEM frameworks in Theorems 4.2 and 4.6 arise only from their different form of controllers in ๐‘ข = ๐‘ข๐‘‘ โˆ’๐พ(๐‘ฅ โˆ’๐‘ฅ๐‘‘) of (3.10) and ๐‘ข =๐‘ข๐‘‘+โˆซ1

0 ๐‘˜ ๐‘‘๐œ‡of (4.22), leading to the trade-offs outlined in Table 3.1.

4.4 Remarks in CV-STEM Implementation

We propose some useful techniques for the practical application of the CV-STEM in Theorems 4.2, 4.5, and 4.6. Note that the CV-STEM requires solving a convex optimization problem at each time instant, but its solution can be approximated with formal stability guarantees to enable faster computation using machine learning techniques as shall be seen in Chapter 6.