• Tidak ada hasil yang ditemukan

Chapter 4: Convex Optimality in Robust Nonlinear Control and Estimation

4.2 CV-STEM Estimation

We could also design an optimal state estimator analogously to the CV-STEM control of Theorem 4.2, due to the differential nature of contraction theory that enables LTV systems-type approaches to stability analysis. In particular, we exploit the estimation and control duality in differential dynamics similar to that of the Kalman filter and LQR in LTV systems.

Let us consider the following smooth nonlinear systems with a measurement𝑦(𝑑), perturbed by deterministic disturbances𝑑𝑒0(π‘₯ , 𝑑)and𝑑𝑒1(π‘₯ , 𝑑)with supπ‘₯ ,𝑑βˆ₯𝑑𝑒0(π‘₯ , 𝑑) βˆ₯=

Β―

𝑑𝑒0 ∈ Rβ‰₯0and supπ‘₯ ,𝑑βˆ₯𝑑𝑒1(π‘₯ , 𝑑) βˆ₯ = 𝑑¯𝑒1 ∈ Rβ‰₯0, or by Gaussian white noise, driven

by Wiener processes 𝒲0(𝑑) and 𝒲1(𝑑) with supπ‘₯ ,𝑑βˆ₯𝐺𝑒0(π‘₯ , 𝑑) βˆ₯𝐹 = 𝑔¯𝑒0 ∈ Rβ‰₯0 and supπ‘₯ ,𝑑βˆ₯𝐺𝑒1(π‘₯ , 𝑑) βˆ₯𝐹 =𝑔¯𝑒1 ∈Rβ‰₯0:

Β€

π‘₯ = 𝑓(π‘₯ , 𝑑) +𝑑𝑒0(π‘₯ , 𝑑), 𝑦 =β„Ž(π‘₯ , 𝑑) +𝑑𝑒1(π‘₯ , 𝑑) (4.3) 𝑑π‘₯ = 𝑓(π‘₯ , 𝑑)𝑑 𝑑+𝐺𝑒0𝑑𝒲0, 𝑦 𝑑 𝑑 =β„Ž(π‘₯ , 𝑑)𝑑 𝑑+𝐺𝑒1𝑑𝒲1 (4.4) where𝑑 ∈Rβ‰₯0is time,π‘₯ :Rβ‰₯0↦→ R𝑛is the system state,𝑦 :Rβ‰₯0↦→Rπ‘šis the system measurement, 𝑓 : R𝑛×Rβ‰₯0 ↦→ R𝑛 and β„Ž : R𝑛 Γ—Rβ‰₯0 ↦→ Rπ‘š are known smooth functions,𝑑𝑒0:R𝑛×Rβ‰₯0↦→ R𝑛,𝑑𝑒1 :R𝑛×Rβ‰₯0 ↦→R0,𝐺𝑒0:R𝑛×Rβ‰₯0↦→R𝑛×𝑀0, and 𝐺𝑒1:R𝑛×Rβ‰₯0↦→ R𝑛×𝑀1 are unknown bounded functions for external disturbances, 𝒲0 :Rβ‰₯0↦→R𝑀0 and𝒲1:Rβ‰₯0↦→ R𝑀1 are two independent Wiener processes, and the arguments of𝐺𝑒0(π‘₯ , 𝑑)and𝐺𝑒1(π‘₯ , 𝑑)are suppressed for notational convenience.

Let 𝐴(πœšπ‘Ž, π‘₯ ,π‘₯ , 𝑑ˆ )and𝐢(πœšπ‘, π‘₯ ,π‘₯ , 𝑑ˆ ) be the SDC matrices given by Lemma 3.1 with (𝑓 , 𝑠,𝑠,Β― 𝑒¯) replaced by(𝑓 ,π‘₯ , π‘₯ ,Λ† 0)and (β„Ž,π‘₯ , π‘₯ ,Λ† 0), respectively, i.e.

𝐴(πœšπ‘Ž, π‘₯ ,π‘₯ , 𝑑ˆ ) (π‘₯Λ†βˆ’π‘₯) = 𝑓(π‘₯ , 𝑑ˆ ) βˆ’ 𝑓(π‘₯ , 𝑑) (4.5) 𝐢(πœšπ‘, π‘₯ ,π‘₯ , 𝑑ˆ ) (π‘₯Λ†βˆ’π‘₯) =β„Ž(π‘₯ , 𝑑ˆ ) βˆ’β„Ž(π‘₯ , 𝑑). (4.6) We design a nonlinear state estimation law parameterized by a matrix-valued func- tion𝑀(π‘₯ , 𝑑ˆ )as follows:

Β€Λ†

π‘₯ = 𝑓(π‘₯ , 𝑑ˆ ) +𝐿(π‘₯ , 𝑑ˆ ) (π‘¦βˆ’β„Ž(π‘₯ , 𝑑ˆ )) (4.7)

= 𝑓(π‘₯ , 𝑑ˆ ) +𝑀(π‘₯ , 𝑑ˆ )𝐢¯(πœšπ‘,π‘₯ , 𝑑ˆ )βŠ€π‘…(π‘₯ , 𝑑ˆ )βˆ’1(π‘¦βˆ’β„Ž(π‘₯ , 𝑑ˆ ))

where ¯𝐢(πœšπ‘,π‘₯ , 𝑑ˆ ) = 𝐢(πœšπ‘,π‘₯ ,Λ† π‘₯ , 𝑑¯ ) for a fixed trajectory Β―π‘₯ (e.g., Β―π‘₯ = 0, see Theo- rem 3.2), 𝑅(π‘₯ , 𝑑ˆ ) ≻ 0 is a weight matrix on the measurement 𝑦, and 𝑀(π‘₯ , 𝑑ˆ ) ≻ 0 is a positive definite matrix (which satisfies the matrix inequality constraint for a contraction metric, to be given in (4.12) of Theorem 4.5). Note that we could use other forms of estimation laws such as the EKF [2], [6], [7], analytical SLAM [8], or SDC with respect to a fixed point [1], [4], [9], depending on the application of interest, which result in a similar stability analysis as in Theorem 3.2.

4.2.I Nonlinear Stability Analysis of SDC-based State Estimation using Con- traction Theory

Substituting (4.7) into (4.3) and (4.4) yields the following virtual system of a smooth pathπ‘ž(πœ‡, 𝑑), parameterized byπœ‡βˆˆ [0,1]to haveπ‘ž(πœ‡=0, 𝑑) =π‘₯andπ‘ž(πœ‡=1, 𝑑) =π‘₯Λ†:

Β€

π‘ž(πœ‡, 𝑑) =𝜁(π‘ž(πœ‡, 𝑑), π‘₯ ,π‘₯ , 𝑑ˆ ) +𝑑(πœ‡, π‘₯ ,π‘₯ , 𝑑ˆ ) (4.8) π‘‘π‘ž(πœ‡, 𝑑) =𝜁(π‘ž(πœ‡, 𝑑), π‘₯ ,π‘₯ , 𝑑ˆ )𝑑 𝑑+𝐺(πœ‡, π‘₯ ,π‘₯ , 𝑑ˆ )𝑑𝒲(𝑑) (4.9)

where 𝑑(πœ‡, π‘₯ ,π‘₯ , 𝑑ˆ ) = (1 βˆ’ πœ‡)𝑑𝑒0(π‘₯ , 𝑑) + πœ‡ 𝐿(π‘₯ , 𝑑ˆ )𝑑𝑒1(π‘₯ , 𝑑), 𝐺(πœ‡, π‘₯ ,π‘₯ , 𝑑ˆ ) = [(1 βˆ’ πœ‡)𝐺𝑒0(π‘₯ , 𝑑), πœ‡ 𝐿(π‘₯ , 𝑑ˆ )𝐺𝑒1(π‘₯ , 𝑑)],𝒲 = [π’²βŠ€

0 ,𝒲1⊀]⊀, and 𝜁(π‘ž, π‘₯ , π‘₯𝑑, 𝑒𝑑, 𝑑)is defined as

𝜁(π‘ž, π‘₯ ,π‘₯ , 𝑑ˆ ) =(𝐴(πœšπ‘Ž, π‘₯ ,π‘₯ , 𝑑ˆ ) βˆ’πΏ(π‘₯ , 𝑑ˆ )𝐢(πœšπ‘, π‘₯ ,π‘₯ , 𝑑ˆ )) (π‘žβˆ’π‘₯) + 𝑓(π‘₯ , 𝑑). (4.10) Note that (4.10) is constructed to containπ‘ž =π‘₯Λ†andπ‘ž =π‘₯as its particular solutions of (4.8) and (4.9). If𝑑 =0 and𝒲 =0, the differential dynamics of (4.8) and (4.9) forπœ•πœ‡π‘ž=πœ• π‘ž/πœ• πœ‡is given as

πœ•πœ‡π‘žΒ€ =(𝐴(πœšπ‘Ž, π‘₯ ,π‘₯ , 𝑑ˆ ) βˆ’πΏ(π‘₯ , 𝑑ˆ )𝐢(πœšπ‘, π‘₯ ,π‘₯ , 𝑑ˆ ))πœ•πœ‡π‘ž . (4.11) The similarity between (3.14) (πœ•πœ‡π‘žΒ€= (π΄βˆ’π΅πΎ)πœ•πœ‡π‘ž) and (4.11) leads to the following theorem [1]–[4]. Again, note that we could also use the SDC formulation with respect to a fixed point as delineated in Theorem 3.2 and as demonstrated in [1], [4], [9].

Theorem 4.3. Suppose βˆƒπœŒ,Β― 𝑐¯ ∈ Rβ‰₯0 s.t. βˆ₯π‘…βˆ’1(π‘₯ , 𝑑ˆ ) βˆ₯ ≀ 𝜌¯, βˆ₯𝐢(πœšπ‘, π‘₯ ,π‘₯ , 𝑑ˆ ) βˆ₯ ≀

Β―

𝑐, βˆ€π‘₯ ,π‘₯ , 𝑑ˆ . Suppose also that π‘šI βͺ― 𝑀 βͺ― π‘š 𝐼 of (2.26) holds, or equivalently, I βͺ― π‘ŠΒ― βͺ― πœ’ 𝐼 of(3.19)holds withπ‘Š = 𝑀(π‘₯ , 𝑑ˆ )βˆ’1,π‘ŠΒ― = πœˆπ‘Š, 𝜈 =π‘š, and πœ’ = π‘š/π‘š. As in Theorem 3.1, let𝛽be defined as𝛽 =0for deterministic systems(4.3)and 𝛽=𝛼𝑠 =𝛼𝑒0+𝜈2𝛼𝑒1 =πΏπ‘šπ‘”Β―2

𝑒0(𝛼𝐺 +1/2)/2+𝜈2πΏπ‘šπœŒΒ―2𝑐¯2𝑔¯2

𝑒1(𝛼𝐺 +1/2)/2 for stochastic systems(4.4), where2𝛼𝑒0= πΏπ‘šπ‘”Β―2

𝑒0(𝛼𝐺+1/2),2𝛼𝑒1= πΏπ‘šπœŒΒ―2𝑐¯2𝑔¯2

𝑒1(𝛼𝐺+ 1/2), πΏπ‘š is the Lipschitz constant of πœ•π‘Š/πœ• π‘₯𝑖, 𝑔¯𝑒0 and 𝑔¯𝑒1 are given in(4.4), and

βˆƒπ›ΌπΊ ∈R>0is an arbitrary constant as in Theorem 2.5.

If 𝑀(π‘₯ , 𝑑ˆ ) in (4.7) is constructed to satisfy the following convex constraint for

βˆƒπ›ΌβˆˆR>0:

€¯

π‘Š+2 sym(π‘Š 𝐴¯ βˆ’πœˆπΆΒ―βŠ€π‘…βˆ’1𝐢) βͺ― βˆ’2π›Όπ‘ŠΒ― βˆ’πœˆ 𝛽I (4.12) then Theorems 2.4 and 2.5 hold for the virtual systems(4.8)and(4.9), respectively, i.e., we have the following bounds fore =π‘₯Λ†βˆ’π‘₯with𝜈 =π‘šand πœ’=π‘š/π‘š:

βˆ₯e(𝑑) βˆ₯ ≀

√

π‘šπ‘‰β„“(0)π‘’βˆ’π›Όπ‘‘+

Β― 𝑑𝑒0

√

πœ’+πœŒΒ―π‘Β―π‘‘Β―π‘’1𝜈 𝛼

(1βˆ’π‘’βˆ’π›Όπ‘‘) (4.13)

E

βˆ₯e(𝑑) βˆ₯2

≀ π‘šE[𝑉𝑠ℓ(0)]π‘’βˆ’2𝛼𝑑+ 𝐢𝑒0πœ’+𝐢𝑒1πœ’ 𝜈2 2𝛼

(4.14) where 𝑉𝑠ℓ = ∫π‘₯Λ†

π‘₯

π›Ώπ‘žβŠ€π‘Š π›Ώπ‘ž and 𝑉ℓ = ∫π‘₯Λ†

π‘₯ βˆ₯Ξ˜π›Ώπ‘žβˆ₯ are given in Theorem 2.3 with π‘Š = π‘€βˆ’1 = Θ⊀Θ defining a contraction metric, the disturbance bounds 𝑑¯𝑒0, 𝑑¯𝑒1,

Β―

𝑔𝑒0, and 𝑔¯𝑒1 are given in (4.3)and (4.4), respectively,𝐢𝑒0 = 𝑔¯2

𝑒0(2π›ΌπΊβˆ’1+1), and 𝐢𝑒1 = 𝜌¯2𝑐¯2𝑔¯2

𝑒1(2π›ΌπΊβˆ’1+1). Note that for stochastic systems, the probability that

βˆ₯eβˆ₯ is greater than or equal toπœ€βˆˆR>0is given as P[βˆ₯e(𝑑) βˆ₯ β‰₯ πœ€] ≀ 1

πœ€2

π‘šE[𝑉𝑠ℓ(0)]π‘’βˆ’2𝛼𝑑+ 𝐢𝐸 2𝛼

(4.15) where𝐢𝐸 =𝐢𝑒0πœ’+𝐢𝑒1πœ’ 𝜈2.

Proof. Theorem 3.1 indicates that (4.12) is equivalent to

π‘ŠΒ€ +2 sym(π‘Š π΄βˆ’πΆΒ―βŠ€π‘…βˆ’1𝐢) βͺ― βˆ’2π›Όπ‘Šβˆ’π›½I. (4.16) Computing the time derivative of a Lyapunov function𝑉 =πœ•πœ‡π‘žβŠ€π‘Š πœ•πœ‡π‘žwithπœ•πœ‡π‘ž=

πœ• π‘ž/πœ• πœ‡for the unperturbed virtual dynamics (4.11), we have using (4.16) that 𝑉€ =πœ•πœ‡π‘žβŠ€π‘Š πœ•πœ‡π‘ž =πœ•πœ‡π‘žβŠ€( Β€π‘Š +2π‘Š π΄βˆ’2 Β―πΆβŠ€π‘…βˆ’1𝐢)πœ•πœ‡π‘ž ≀ βˆ’2𝛼𝑉 βˆ’π›½βˆ₯πœ•πœ‡π‘žβˆ₯2

which implies thatπ‘Š = π‘€βˆ’1defines a contraction metric. Since we have π‘šβˆ’1I βͺ― π‘Š βͺ― π‘šβˆ’1I,𝑉 β‰₯ π‘šβˆ’1βˆ₯πœ•πœ‡π‘žβˆ₯2, and

βˆ₯Θ(π‘₯ , 𝑑ˆ )πœ•πœ‡π‘‘βˆ₯ ≀ 𝑑¯𝑒0/√

π‘š+𝑑¯𝑒1πœŒΒ―π‘Β―

√ π‘š

βˆ₯πœ•πœ‡πΊβˆ₯2𝐹 ≀ 𝑔¯2

𝑒0+𝜌¯2𝑐¯2𝑔¯2

𝑒1π‘š2

for 𝑑 in (4.8) and𝐺 in (4.9), the bounds (4.13) – (4.15) follow from the proofs of Theorems 2.4 and 2.5 [2], [3].

Remark 4.1. Although (4.12) is not an LMI due to the nonlinear term βˆ’πœˆ 𝛽I on its right-hand side for stochastic systems(4.4), it is a convex constraint asβˆ’πœˆ 𝛽 =

βˆ’πœˆπ›Όπ‘  =βˆ’πœˆπ›Όπ‘’0βˆ’πœˆ3𝛼𝑒1is a concave function for𝜈 ∈R>0[3], [10].

4.2.II CV-STEM Formulation for State Estimation

The estimator (4.7) gives a convex steady-state upper bound of the Euclidean distance betweenπ‘₯and Λ†π‘₯ as in Theorem 4.1 [1]–[4].

Theorem 4.4. If(4.12)of Theorem 4.3 holds, then we have the following bound:

π‘‘β†’βˆžlim

βˆšοΈƒ

E

βˆ₯π‘₯Λ†βˆ’π‘₯βˆ₯2

≀ 𝑐0(𝛼, 𝛼𝐺)πœ’+𝑐1(𝛼, 𝛼𝐺)πœˆπ‘  (4.17) where 𝑐0 = 𝑑¯𝑒0/𝛼, 𝑐1 = πœŒΒ―π‘Β―π‘‘Β―π‘’1/𝛼, 𝑠 = 1 for deterministic systems (4.8), and 𝑐0=√︁

𝐢𝑒0/(2𝛼),𝑐1=𝐢𝑒1/(2√

2𝛼𝐢𝑒0), and𝑠=2for stochastic systems(4.9), with 𝐢𝑒0and𝐢𝑒0given as𝐢𝑒0=𝑔¯2

𝑒0(2π›Όβˆ’1

𝐺 +1)and𝐢𝑒1= 𝜌¯2𝑐¯2𝑔¯2

𝑒1(2π›Όβˆ’1

𝐺 +1).

Proof. The upper bound (4.17) for deterministic systems (4.8) follows from (4.13) with the relation 1 ≀ √

πœ’ ≀ πœ’due toπ‘š ≀ π‘š. For stochastic systems, we have using (4.14) that

𝐢𝑒0πœ’+𝐢𝑒1𝜈2πœ’ ≀ 𝐢𝑒0(πœ’+ (𝐢𝑒1/(2𝐢𝑒0))𝜈2)2

due to 1≀ πœ’ ≀ πœ’2and𝜈 ∈R>0. This gives (4.17) for stochastic systems (4.9).

Finally, the CV-STEM estimation framework is summarized in Theorem 4.5 [1]–[4].

Theorem 4.5. Suppose that𝛼, 𝛼𝐺, 𝑑¯𝑒0, 𝑑¯𝑒1, 𝑔¯𝑒0, 𝑔¯𝑒1, andπΏπ‘š in(4.12) and(4.17) are given. If the pair (𝐴, 𝐢) is uniformly observable, the non-convex optimization problem of minimizing the upper bound(4.17)is equivalent to the following convex optimization problem with the contraction constraint (4.12) and I βͺ― π‘ŠΒ― βͺ― πœ’I of (3.19):

π½βˆ—

𝐢𝑉 = min

𝜈∈R>0, πœ’βˆˆR,π‘ŠΒ―β‰»0

𝑐0πœ’+𝑐1πœˆπ‘ +𝑐2𝑃(πœ’, 𝜈,π‘ŠΒ―) (4.18) s.t.(4.12) and (3.19)

where𝑐0,𝑐1, and𝑠are as defined in(4.17)of Theorem 4.4,𝑐2 ∈Rβ‰₯0, and𝑃is some performance-based cost function as in Theorem 4.2.

The weight 𝑐1 for πœˆπ‘  indicates how much we trust the measurement 𝑦(𝑑). Using non-zero𝑐2enables finding contraction metrics optimal in a different sense in terms of 𝑃. Furthermore, the coefficients of the SDC parameterizations πœšπ‘Ž and πœšπ‘ in Lemma 3.1 (i.e., 𝐴 = Í

πœšπ‘Ž,𝑖𝐴𝑖 and𝐢 = Í

πœšπ‘,𝑖𝐢𝑖 in (4.5) and (4.6)) can also be treated as decision variables by convex relaxation [9], thereby adding a design flexibility to mitigate the effects of external disturbances while verifying the system observability.

Proof. The proposed optimization problem is convex as its objective and constraints are convex in terms of decision variables πœ’, 𝜈, and Β―π‘Š (see Remark 4.1). Also, larger ¯𝑑𝑒1and ¯𝑔𝑒1in (4.3) and (4.4) imply larger measurement uncertainty. Thus by definition of𝑐1in Theorem 4.4, the larger the weight of𝜈, the less confident we are in 𝑦(𝑑)(see Example 4.2). The last statement on the SDC coefficients for guaranteeing observability follows from Proposition 1 of [9] and Proposition 1 of [1].

Example 4.2. The weights 𝑐0 and𝑐1 of the CV-STEM estimation of Theorem 4.5 has an analogous trade-off to the case of the Kalman filter with the process and

sensor noise covariance matrices,𝑄and𝑃, respectively, since the term𝑐0πœ’in upper bound of the steady-state tracking error in(4.17)becomes dominant if measurement noise is much smaller than process noise (𝑑¯𝑒0 ≫ 𝑑¯𝑒1 or𝑔¯𝑒0 ≫ 𝑔¯𝑒1), and the term 𝑐1πœˆπ‘  becomes dominant if measurement noise is much greater than process noise (𝑑¯𝑒0 β‰ͺ 𝑑¯𝑒1or𝑔¯𝑒0β‰ͺ 𝑔¯𝑒1). In particular [2], [3],

β€’ if𝑐1is much greater than𝑐0, large measurement noise leads to state estimation that responds slowly to unexpected changes in the measurement 𝑦 (i.e. small estimation gain due to𝜈 =π‘š β‰₯ βˆ₯𝑀βˆ₯), and

β€’ if 𝑐1is much smaller than𝑐0, large process noise leads to state estimation that responds fast to changes in the measurement (i.e. large𝜈 =π‘š β‰₯ βˆ₯𝑀βˆ₯).

This is also because the solution 𝑄 = π‘ƒβˆ’1 ≻ 0of the Kalman filter Riccati equa- tion [7, p. 375], 𝑃€ = 𝐴𝑃+𝑃 𝐴⊀ βˆ’π‘ƒπΆβŠ€π‘…βˆ’1𝐢 𝑃+𝑄, can be viewed as a positive definite matrix that defines a contraction metric as discussed in Example 2.3.