N P P u rn a d it ya – F T U n ti rt a
Metode Numerik:
Akar-Akar Persamaan (Metode Bracketing)
Oleh:
N. P. Purnaditya – FT Untirta
P P u rn a d it ya – F T U n ti rt a
Fundamental Idea
•
N P P u rn a d it ya – F T U n ti rt a
Ide dasar dari metode bracketing
Metode bracketing  teknik mencari akar persamaan dengan menggunakan 2 (dua) titik estimasi. Dalam metode ini ada beberapa cara yang dapat digunakan:
1. Graphical method 2. Bisection method
3. False position method
P P u rn a d it ya – F T U n ti rt a
Graphical Method
•
N P P u rn a d it ya – F T U n ti rt a
•
x y
1 43.31
2 37.62
3 32.45
4 27.74
5 23.45
6 19.54
7 15.97
8 12.70
9 9.70
10 6.95
11 4.43
12 2.11
13 -0.03 14 -2.01 15 -3.83 16 -5.51
P P u rn a d it ya – F T U n ti rt a
Bisection Method
•
N P P u rn a d it ya – F T U n ti rt a
•
N P P u rn a d it ya – F T U n ti rt a
No x1 x2 f(x1) f(x2) f(x1)f(x2) xr f(xr) error (%)
1 2 20 37.62 -11.12 -418.231002860 11.000 4.43
2 11.000 20.000 4.43 -11.12 -49.229862301 15.500 -4.69 29.0323 3 11.000 15.500 4.43 -4.69 -20.752134968 13.250 -0.54 16.9811
4 11.000 13.250 4.43 -0.54 -2.394191679 12.125 1.83 9.2784
5 12.125 13.250 1.83 -0.54 -0.989003804 12.688 0.62 4.4335
6 12.688 13.250 0.62 -0.54 -0.333703106 12.969 0.03 2.1687
7 12.969 13.250 0.03 -0.54 -0.017128516 13.109 -0.26 1.0727 8 12.969 13.109 0.03 -0.26 -0.008113856 13.039 -0.11 0.5392 9 12.969 13.039 0.03 -0.11 -0.003568061 13.004 -0.04 0.2704
10 12.969 13.004 0.03 -0.04 -0.001285470 12.986 0.00 0.1354
11 12.969 12.986 0.03 0.00 -0.000141742 12.978 0.01 0.0677
12 12.978 12.986 0.01 0.00 -0.000060833 12.982 0.00 0.0339
13 12.982 12.986 0.00 0.00 -0.000020400 12.984 0.00 0.0169
14 12.984 12.986 0.00 0.00 -0.000000189 12.985 0.00 0.0085
15 12.984 12.985 0.00 0.00 -0.000000094 12.985 0.00 0.0042
16 12.984 12.985 0.00 0.00 -0.000000046 12.984 0.00 0.0021
17 12.984 12.984 0.00 0.00 -0.000000022 12.984 0.00 0.0011
18 12.984 12.984 0.00 0.00 -0.000000010 12.984 0.00 0.0005
19 12.984 12.984 0.00 0.00 -0.000000004 12.984 0.00 0.0003
Tabel Hitungan Metode Bisection