• Tidak ada hasil yang ditemukan

P hylo g e ny o f Fr og s o f the Ph ysalae m u s Pu stu lo su s S pe cie s G r oup, W it h a n E x a m ina t io n o f D a ta I ncong r ue nce

N/A
N/A
Protected

Academic year: 2023

Membagikan "P hylo g e ny o f Fr og s o f the Ph ysalae m u s Pu stu lo su s S pe cie s G r oup, W it h a n E x a m ina t io n o f D a ta I ncong r ue nce"

Copied!
25
0
0

Teks penuh

(1)

P hylo g e ny o f Fr og s o f the Ph ysalae m u s Pu stu lo su s S pe cie s G r oup, W it h a n E x a m ina t io n o f D a ta I ncong r ue nce

DAVID C . CANN ATELLA,1,2DAVID M . HILLIS,1 PAULT. CHIPPIND ALE,1,3LEEWEIG T,4 A. STAN LEYRAN D,4,5 ANDMICH AELJ. RYAN1,4

1D ep a rtm ent o f Zoo logy,U niversity o f Texa s,Austin,Texa s 78712,U SA ; E-m a il : (D.M.H.)h illis@bull.zo.utexa s.ed u,(M.J.R.)m rya n@m a il.utexas.edu

2Texas M em o ria l M useum,University o f Texa s,Austin,Texas 78705,US A ; E-m a il : ca t® sh@m a il.utexas.edu

Ab stract C ha racters de rive d from advertisem en t calls, m o rph ology, allozym es, and the se q ue nce s of th e sm a ll su bu nit of the m itoch o nd rial rib osom al gen e (12S ) and th e cytoch rom e o xida se I (C O I) m itoch o ndrial gen e were use d to e stim a te the phylogeny o f frogs of th ePh ysa - la em us p ustulosus grou p (Le ptodactylidae ). T he co m bina bility o f these d ata pa rtitions wa s a sse sse d in several ways : m easures of ph ylogen etic signal, ch aracter su pp ort fo r tre es, con - gruence of tre e topologie s, co m patibility o f da ta p artitions with sub optim a l tree s, a nd hom o - gene ity of da ta partitions. C o m bine d parsim on y ana lysis o f a ll data eq ua lly weigh ted yielded the sam e tre e as th e 12S pa rtition analyzed un de r pa rsim on y a nd m axim u m likelih ood . T he C O I, allozym e, and m orph ology partitions we re gen erally con gruent and co m patible with the tree de rived from co m bine d d ata. T he call d ata were sign i® can tly diƒerent from all oth er p artitions, wh ethe r co nsidered in term s o f tree top ology alone, p artition ho m oge neity, o r co m - p atibility o f d ata with tre es de rive d from o ther p artitions. Th e lack of eƒect o f th e call d ata on the top ology of the com b in ed tree is prob ab ly d ue to th e sm all nu m be r of ca ll ch aracters. T he gene ral inco ngrue nce o f the call d ata with othe r d ata p artition s is con siste nt with the ide a tha t the adve rtisem en t calls of this grou p o f frogs are u nd er strong sexual se le ction.

[ Ad vertisem e nt calls ; b eha vior ; com bine d- da ta a nalysis ; d ata partitions ; frogs ; L eptoda c- tylidae ;Ph y sa laem us; sen sory e xp loitation hyp oth esis.]

W he the r or n ot to com b ine data sets has be e n discusse d widely in the re cen t literature (Bull et al., 1993 ; Eern isse and Kluge , 1993 ; Ch ippindale and W ien s, 1994 ; de Q ue iroz e t al., 1996). Le ss dis- cussed is th e ide nti® cation an d localiza- tion of in congrue n ce am ong data partitions (b ut se e H ue lse n be ck and Bull, 1996 ; Poe , 1996 ; M ason -G am er and Kellogg, 1996 ; Lu tzoni, 1997). It has b ee n argu ed that if diƒere nt data partition s are no m ore diƒere nt than e xpecte d b y sam - pling e rror, the n th e data can be com - bine d in to a single an alysis (Bull et al.,

Ð Ð Ð Ð Ð

3Present ad dress : D epa rtm en t o f B iology, U ni- versity of T exa s, A rlington, T exas 76019, U S A ; E -m a il : pau lc@alb ert.uta.edu

4S m ith sonian T ropica l R esea rch In stitute, U n it 0948, APO AA 34002 ; Presen t dd ress (L .W .) : Fie ld M u seum of N atural History, R o osevelt R o ad at L ake S hore D r., C hicago, Illinois 60605, U S A ; E - m ail : weigt@fm pp r.fm nh.org

5E - m ail : ran d@gam b oa.si.edu

1993). Although th ere are m an y re ason s to favor a com bin e d analysis (Ee rnisse an d Kluge, 1993 ; Ch ippin dale an d W ie ns, 1994), it can b e e nligh te n ing to e xam in e incongru en ce am ong data partition s.

Beh avioral data are re ce ivin g in cre as- ing atte ntion in ph yloge ne tic an alysis (de Q ueiroz and W im b e rge r, 1993 ; Foster et al., 1996 ; G ittle m an et al., 1996 ; Irwin , 1996 ; Ken ne dy e t al., 1996 ; W im be rge r an d de Q ueiroz, 1996). In th is article we use a diverse, origin al data set from advertisem en t calls, m orp h ology, allozym e s, and th e 12S and cytochrom e oxidase I (CO I) m itoch ondrial gen es to e stim ate th e phylogen y of frogs of th e Ph ysalaem us p ustulosus group (C an natella an d D ue llm an , 1984). Th is clade h as se rve d as a m ode l for exam in ing aspe cts of b e havioral evolution such as sexual se lection and sign al-rece ive r e volution (Ryan and R an d, 1993, 1995 ; Ryan, 1996).

Additionally, we assess in congrue n ce am ong data partition s with se ve ral 311

(2)

m e thods, an d discuss th e ph yloge ne tic utility of th e advertisem en t calls of th ese frogs.

MATER IALS AN DMETHO DS

S pe cim en s we re colle cte d in th e ® e ld, tissue s e xtracted, an d the vouch er sp eci- m e n s preserved or pre pared as ske le tons (Appe ndix 1). S pe cim en s are de posited at the Un ited S tates National M use um and the Texas M em orial M use um , U n ive rsity of Te xas. S om e ske le tal m ate ria l was borrowed from the Am e rican M use um of N atural History ; U niversity of Kan sas M use um of N atural H istory ; the M use um of Com parative Zoology, Harvard Un ive rsity ; and the Louisian a S tate U nive rsity M useum of Natural S cien ce.

Ta xon Sa mp ling

Th e sp ecie s sam ple d are listed in Appe n dix 1. All known valid spe cie s in the in group we re sam ple d ; we treated a population ofP. p etersithat m ay be refer- ab le to th e nom inal taxon P. freibergi (Cann ate lla and D ue llm an, 1984) as a dis- tinct taxon. M on oph yly of the in group is supported b y four syn apom orphie s (Cann ate lla an d D uellm an, 1984). O ut- group taxa we re Ph ysalaem us ep hipp ifer, Ph ysa la em us sp. A, an d Ph ysa la em us ene sefa e. The se spe cie s were ch ose n be cause our prelim in ary survey of m or- ph ology an d calls am on g 75% of th e sp e cies sugge ste d that the y are th e m ost sim ilar to th e pustulosusgroup in exte rn al m orp hology, oste ology, an d th e ge ne ral characte ristics of th e call. A m ore com - pre he nsive ph yloge ne tic analysis of relationships in the gen us is in progre ss.

Da ta Pa rtitions

Th e following ch aracter se ts we re de sig- nated as data partitions : m orph ological characte rs (n5 12 ; M O R PH O LO G Y), ad- ve rtise m en t calls (n5 12 ; CALLS ), allo- zym e ele ctrom orph s (n5 27 ; ALLO - ZYM ES ), DN A seq ue nce of the cyto- chrom e oxida se I ge ne (n5 543 ; C O I ),

an d D NA se q ue nce of th e sm all sub- unit of th e m itochon dria l rib osom al ge n e (n5 1214 ; 12S ). The com b in ed data se t was de sign ated as C O M BINED (n5 1808).

M orphological characte rs (Appe n dix 2) we re take n from disse ction s of wh ole specim en s and alizarin -an d- alcian±

staine d skele tons (Din ge rku s and U hle r, 1977). Although sam ple sizes of ske leton s for m ost spe cie s were two or thre e , a survey of . 30 ske leton s of Ph ysala em us p ustulosus (C an nate lla and D ue llm an , 1984) in dicated no intrasp eci® c polym or- phism in th e ch aracters exam ine d, an d n one was n oted in the pre sen t study.

Adve rtise m en t calls we re re corde d in th e ® eld on to m e tal tape with e ithe r a S ony TC D 5M , M aran tz PM D 420, or S ony Profession al W alkm an usin g a M E-80 S e nn he ise r m icrophon e with a K3-U powe r m odule and wind scre en . Te m pe rature s at the callin g sites of e ach frog were re corde d and usually we re 256 2°C . S uch a sm all te m perature dif- feren tial has no sub stantial in ¯ uen ce on call variation .

The adve rtise m e nt calls of the Ph ysa - laem us pustulosus spe cie s group (exce pt specie s C ) and th e thre e outgroup spe cie s are all sim ilar in that the y are rathe r long fre q uen cy swee ps. W e refer to th ese calls as wh ine s, which de scrib es the sound to th e h um an ob server. S om e sp ecies m ay add to th eir call a suffix, which is de scrib ed as a ch uck. TuÂn gara, th e com m on n am e for P. pustulosus, is an on om atopoe ia for the wh in e followe d b y two ch ucks. Be cause the whin e is th e com pon en t re q uired for sp e cies re cogni- tion (Ryan, 1985 ; R an d et al., 1992 ; R yan an d R an d, 1995), it is th e only call com - pone nt conside red. Th e whin e s diƒer in th eir spe ctral prope rties (th e on se t, oƒse t, an d dom inan t fre q uen cy) as well as in th e duration an d shape of the fre q uen cy swee p. All of th e whine s h ave upper h ar- m onics, b ut in P. pustulosusthe se harm o- n ics h ave no in¯ ue nce on th e calls’

attractiven ess to fem ales (Ran d et al., 1992 ; W ilczyn ski e t al., 1995). Th ese h ar- m onics are n ot con sidere d h ere ; all

(3)

TABLE1. Allozym e loci exam ine d, and b uƒer system s and tissu es u sed. E . C . n um b er5 E nzym e C o m - m ission num b er from In tern ation al U n ion o f B ioch e m istry (1984). B uƒe r system s follow M urphy et a l.

(1996) ; 15 T ris- citrate II, pH 8.0 ; 25 T ris- citrate- ED T A, p H 7.0 ; 35 T ris-b orate -E D T A II, p H 8.6 ; 45 T ris- citrate/bo rate , ge l p H 8.7.

Locu s A bb reviation E . C . nu m b er Buƒer system

Acon itase h ydra tase- 1 A co- 1 4.1.1.3 11 NAD P

Ade nylate kin ase A k 2.7.4.3 1

As pa rtate am ino tran sfe rase A at-M 2.6.1.1 3

(m itoch on d rial form )

As pa rtate am ino tran sfe rase A at-S 2.6.1.1 1, 3

(sup ern atan t form )

C reatine kina se C k 2.7.3.2 1

C ytosol am inop eptidase C ap 3.4.11.1 1

Este rase D E st-D 3.1.1.-

Fructose -b iph osph atase Fbp 3.1.3.11 11 NAD P

G lucose- 6- pho spha te d ehyd rogen ase G 6pd h 1.1.1.49 41 NAD P

G lucose- 6- pho spha te isom erase G p i 5.3.1.9 4

G lutam ate de hydrogena se G tdh 1.4.1.4 1

G lutath ione red ucta se G r 1.6.4.2 1

G lycerol-3- pho spha te de hyd rogena se G 3pd h 1.1.1.8 2

Iso citrate de hydroge nase -1 Id h- 2 1.1.1.42 2

Iso citrate de hydroge nase -2 Id h- 2 1.1.1.42 2

Lactate d ehyd rogen ase- A L dh -A 1.1.1.27 2

Lactate d ehyd rogen ase- B L dh -B 1.1.1.27 2

M alate de hydrogena se -1 M dh -1 1.1.1.37 1

M alate de hydrogena se -2 M dh -2 1.1.1.37 1

M alate de hydrogena se -1 (N AD P+) M dh p- 1 1.1.1.40 21 NAD P

M alate de hydrogena se -2 (N AD P+) M dh p- 2 1.1.1.40 21 NAD P

Pe p tidase A (glycyl-L- le ucine ) P ep- A 3.4.-.- 1

Ph osph ogluco m utase P gm 5.4.2.2 21 NAD

Ph osph ogluco nate de hydrogena se P gd h 1.1.1.44 11 NAD P

S u pe roxide d ism u tase S od - S 1.15.1.1 2

(sup ern atan t form )

Triose- ph osph ate isom e rase T p i 5.3.1.1 2

values re fer to th e fundam en tal fre - q uen cy.

S pe ctral prope rtie s of calls, e xce pt for dom inan t fre q ue ncy, we re an alyzed on a U niscan sonogra ph . Tem poral prope rtie s were an alyze d on a D ATA 6000 digita l waveform analyze r. C alls were digitize d at a rate of 20 kHz ; the refore the N yq uist freq ue ncy is 10 kH z, sub stantially ab ove the h igh e st fre q uen cies in any of the calls an alyze d. Th e dom in an t fre q uen cy of th e call also was analyzed on th e DATA 6000 by takin g a fast Fourier tran sform of th e en tire call. The followin g call varia ble s were q uanti® ed : D uration (TLD U R, m se c), freq ue n cy at onse t of call (INHZ, Hz), m axim um fre q ue ncy (M XH Z, H z), tim e to the m axim um fre q uen cy (TM M X, m se c), tim e to m id-fre q ue ncy (TM H FHZ, m se c), fre q uen cy at oƒse t of call (FN HZ,

H z), dom inant fre q uen cy (D O M H Z, Hz), duration of am plitu de -m odulated com - pone nt (AM D UR , m sec), rise tim e (RS TM , in m se c), tim e to m id-rise (TM H FRS , m sec), fall tim e (FLTM , m sec), an d tim e to m id-fall (TM HFFL , m sec).

C alls an d tissues for D NA an d allozym e an alysis are from the sam e in di- viduals, e xce pt forPh ysala em us pustulosus, in wh ich the y are from diƒere nt in divid- uals in the sam e population . Th e C O I an d 12S seq ue nce data for P. p ustulosus we re ob taine d from diƒe ren t individu als, b ut the se cam e from th e sam e popu- lation. Each spe cies is represen ted b y on e population ; intrasp eci® c variation was n ot asse ssed. Alth ough the re are sign i® - can t diƒe re n ces in call param e ters with in a spe cies (e.g., R yan and W ilczynski, 1988, 1991), from studie s of Ph ysala em us

(4)

pustulosus we kn ow that in traspe ci® c varia tion is far less th an varia tion am on g the spe cies (Ryan e t al., 1996).

Live r, he art, an d th igh m uscle were dissecte d from 10 in divid uals from each population in the ® e ld an d im m ediate ly frozen in liq uid n itroge n un til transporta- tion to the U niversity of Texas, Austin , at which tim e th ey were m aintaine d in an ultra cold fre ezer at le ss than ± 70(C.

M e thods for allozym e ele ctroph ore sis fol- lowed the h orizon tal starch ge l protocols de scrib e d b y M urph y e t al. (1996). G e ls were m ade from 12% starch (S tarch Art lot W 561-2). Table 1 shows the e nzym e loci score d an d b uƒe r syste m used to score e ach locus. Appe ndix 1 lists th e localities of the spe cim en s exam in ed.

M e th ods for D NA isolation, am pli® ca- tion, clon in g, an d seq ue ncing followe d Hillis e t al. (1996) ; protocol num b e rs in the followin g description re fer to that pape r. W h ole gen om ic D NA was isolate d usin g protocol 1.

D ata partition 12S con siste d of th e com ple te m itoch ondrial 12S rR NA gen e, com ple te valin e-tR NA ge ne , and th e

adjacen t approxim ate ly 200 b p of the 16S rR NA ge n e. Th ese were am pli® ed by th e polym e rase chain reaction (se e Palum b i, 1996) usin g prim e rs 12S h an d 16S h (Table 2). The am pli® e d product was clone d using TA clonin g (protocol 18, part B).

Plasm id D NA was isolate d according to protocol 14, an d se q ue nce d (protocols 21, 22, and 25) usin g th e prim e rs shown in Tab le 2. The 12S se q ue nce s we re align e d using M ALIG N (W h e ele r an d G ladstein , 1992).

The sam e e xtracted D N A sam ple s we re use d to se q ue nce th e cytochrom e oxidase I ge ne . D N A from the following specie s was am pli® e d usin g the poly- m e rase chain re action with CO If an d C O Ia prim e rs (Palum b i, 1996) : P. ep h ipp ifer, P. freibergi, P. sp . B, P. sp . A, and P. p ustulosus. The re m ain ing specie s we re am pli® ed with C O If an d C O Ia2 (design e d for th ese spe cie s) : P. coloradorum, P. enesefa e, P. petersi, P. p ustula tus,P. sp . C . Th e region of an alysis include d site s 55 ± 597.

Afte r am pli® cation , the produ ct was se parate d and e xcise d from an agarose

TABLE 2. Prim e rs u sed to se q ue nce 12S rR NA , valine -tR N A, and 16S rR N A ge nes (up per pa rt of tab le ) an d C O I gene (lower pa rt). Th e 12S p rim er loca tions refe r to the p ositions in the P.p ustulosus seq uen ce . T he d esigna tions pp 6 ± pp9 are inte rna l p rim ers for C O I.

12S p rim er na m e P rim er se q u ence P osition

12S a 5’- A AAC TG G G AT T AG AT AC C C C AC T AT - 3’ 413± 437

12S ar 5’- A TA G T G G G G T AT C T AA TC C C AG T T T -3’ 437± 413

12S b 5’- G AG G G T G AC G G G C G G T G T G T -3’ 835± 816

12S c 5’- A AG G C G G AT T T AG C A G TA AA- 3’ 754± 773

12S d 5’- T C G TG C C A G C C R C C G C G G T - 3’ 230± 248

12S e 5’- G G G AA G AAAT G G G C TA C AT T T TC T - 3’ 689± 712

12S h 5’- A AAG G T TT G G T C C T AG C C T T -3’ 1± 20

12S k 5’- G G G AA C T AC G AG C AAAG C T T- 3’ 475± 494

12S l 5’- G G AC AG G C T C C TC T AG G T G G -3’ 545± 526

16S h 5’- G C T AG AC C AT KAT G C AAAAG G T A- 3’ 1202± 1180

M 13re v 5’- C AG G AA AC A G C T AT G AC -3’ ve ctor

T 7 prom ote r 5’- A AT AC G A C T C A C T AT AG - 3’ ve ctor

C O I prim e r n am e P rim er se q u ence P osition

C O If 5’- C C T G C A G G A G G A G G A G AY C C - 3’ 1± 20

C O Ia 5’- A G T A TA AG C G T C T G G G TA G TC - 3’ 660± 681

C O Ia 2 5’- C C T G C Y AR Y C C T AR R AA R T G T T G A G G - 3’ 616± 641

p p6 5’- T C T G C A AC A A TA AT Y AT Y G C A AT T C C A AC - 3’ 256± 284

p p7 5’- G T T G G A AT T G C R A TR AT T AT T G T T G C A G A- 3’ 284± 256

p p8 5’- T C T C T A G AY A TT G T A T T A C AT G A- 3’ 421± 443

p p9 5’- T C A T G T A AT AC A AT R TC T AG A G A -3’ 443± 421

(5)

gel an d re susp e nded for a secon d round of PC R am pli® cation . Th e produ ct was puri® e d via G en ecle an III (BIO 101, La Jolla, California). C ycle se q uen cing was don e with the ABI Prism m ix se q ue ncin g kit. S e q uen ce s we re run on an ABI 377 autom ated D N A se q uen cer (Applie d Bio- syste m s, Pe rkin ± Elm e r, Foster C ity, C alifornia) usin g the m an ufacturer’ s recom m e n de d protocols. S e q ue nce s were read, ve ri® e d an d align e d with the ABI software package S e q Ed.

G e nb an k acce ssion n um b ers are AF058957-66. Th e NEXU S ® le (M addison et al., 1997) is availab le at h ttp ://

www.ute xas.e du/de pts/systb iol.

Phylogenetic Ana lysis

C odin g of the call variab le s followed a proce du re in sp ired by M addison and S latkin (1990). Th e m in im um and m axim um value s of a varia b le (data poole d ove r all spe cie s) were scaled to 0 an d 25, re spe ctive ly (Tab le 3). The sp ecie s m e an was th en scale d m onotonically to the ne are st inte ge r. Each characte r was down we igh te d to unity an d analyze d as orde red. In th is way th e re lative distan ce be twee n each pair of value s was m ain - tain e d, and calculation of h om oplasy indice s was possib le .

Phylogen etic analyse s we re don e usin g PAU P 3.1.1 (S woƒord, 1993) an d PAUP*

test versions 4.0.0d26 ± 4.0.0d28 (provide d by D avid S woƒord). Th e allozym ic data were code d using step m atrice s so that a

® xe d change at a locus was weigh ted as one step in the parsim on y an alysis, and an y inte rm e dia te com b in ation of allele s was counte d as a half-ste p. Th us, a change from a ® xed to a polym orp hic condition or vice ve rsa (e.g., aa to ab , or ab to bb ) was counte d as a half ste p, whe reas a ® xe d or m utually e xclusive dif- fere nce (e.g., aa to b b , or ab to cd) was code d as a full ste p. Parsim ony an alyse s of th e D NA data included (1) all ch arac- ter transform ations weigh ted e q ually, with gaps treated as a ® fth characte r ; (2) all characte r tran sform ation s weigh te d eq ually, b ut gaps treated as m issin g data ;

an d (3) a we igh te d parsim ony an alysis in wh ich tran sversions we re give n weigh ts of two an d ® ve tim es re lative to tran- sitions. Th ese value s we re b ase d on th e substitution m atrix e stim ated b y ave rag- ing across all m ost parsim on ious re con- struction s of ch aracters on an initial unwe igh te d tre e using M acClade (M addison and M addison, 1992).

M axim um -like lih ood analyse s in clude d (1) a one -param e ter analysis (all classe s of sub stitu tions eq ually like ly), assum ing e q ual b ase fre q ue ncie s ; (2) a on e- param ete r an alysis, usin g em pirical (ob se rve d) b ase freq ue n cies ; (3) a two- param ete r analysis (allowing diƒere nt rates of tran sition s an d tran sversions), with e q ual base fre q uen cie s ; an d (4) a two-param e ter analysis, with e m pirically de te rm ine d b ase freq ue n cies.

D ata were we igh te d as follows : 12S , C O I, M O RPHO LO G Y, and m ono- m orph ic loci from ALLO ZYM ES we re we igh te d 1,000, polym orp hic loci from ALLO ZYM ES we re we igh te d 500, an d C ALLS we re scale d with a base weigh t of 1,000. In th is way th e total variation in e ach ch aracter was eq ually weigh ted.

Each data partition was an alyzed se para- te ly, and the data were pooled for a com - b in ed analysis.

Non param e tric b ootstrap analyse s we re con du cted with 5000 iterations.

D e cay value s (Brem e r support, b ran ch support) were calculated using th e H yp e rcard utility Autodecay 2.9.5 (Eriks son , 1996 ; h ttp ://www.botan.su.se/ S yste m atik/Folk/Torste n.htm l) ; 10 ran- dom -addition se q ue nce s were use d to de te rm ine th e decay value for e ach node of e ach tre e. The re sulting tre es are de picte d with th e outgroup arbitra rily sh own as m on oph yle tic. Bootstra p/de cay value s for th e branch conn ectin g th e ingroup and outgroup were arbitra rily placed at th e base of th e ingroup.

Be cause no data on calls were available for Ph ysala em us sp . C , th e results of th e C O M BIN ED analysis were used to con- strain th at sp ecie s to b e the siste r spe cie s of Ph ysala em us sp. B for com parison s of tre e topologies.

(6)

TABLE3.SummaryofcallstatisticsforthePhysalaemuspustulosusgroupandcloserelatives.Thevariablesaretotaldurationofcall(TLDUR,msec), frequencyatonsetofcall(INHZ,Hz),maximumfrequency(MXHZ,Hz),timetothemaximumfrequency(TMMX,msec),timetomid-frequency(TMHFHZ, msec),frequencyatoƒsetofcall(FNHZ,Hz),dominantfrequency(DOMHZ,Hz),durationofamplitude-modulatedcomponent(AMDUR,msec),risetime (RSTM,inmsec),timetomid-rise(TMHFRS,msec),falltime(FLTM,msec),andtimetomid-fall(TMHFFL,msec).Themeanisgivenwiththerangebelow. Thelatterinparenthesesfollowingthemeanisthecharacter-statecode;seeMaterialsandMethods.ThevariablesarediscussedinmoredetailinCocroft andRyan(1995). SpeciesnTLDURINHZMXHZTMMXTMHFHZFNHZDOMHZAMDURRSTMTMHFRSFLTMTMHFFL sp.A1339(j)812(d)876(a)65(k)160(j)460(j)983(v)0(?)94.6(h)56.6(h)251.6(n)71.1(h) 0234±447800±840800±9204100150±18740520767±13620611637±83173393116 ephippifer1266(g)900(h)944(e)62(j)140(i)576(q)944(t)0(?)83.5(g)39.4(e)177.4(i)60.6(g) 238±308840±1000840±1040481112±16252600845±102504974±56122362107 enesefae1747(z)944(j)976(g)162(z)386(z)692(z)962(u)384.8(z)301.5(z)166.6(z)445.7(z)203.7(z) 0631±903880±1040920±10408287300±45664720844±13842376023407125±242375469338 pustulosus1370(k)884(h)884(a)0(a)124(h)484(k)712(j)22.3(b)24.0(a)7.9(a)342.8(s)175.0(v) 0252±496840±960840±960087±17544600605±88311.9±32.79.3±60.62.2±17.72345010252 petersi1246(f)1220(x)1220(w)0(a)28(b)384(d)628(g)12.0(a)13.7(a)11.5(a)230.3(m)47.1(e) 0206±3501040±14001040±1400018±5032480596±6938.4±22.36.0±18.89.6±14.2193318.2±161 freibergi1104(a)1253(z)1253(z)0(a)12(a)330(a)482(a)15.0(a)19.3(a)17.6(b)30.0(a)12.6(a) 048.2±140.81000±14241000±142406±2527368361±5854.5±2314.29.913.3±24.134.124.71.2±37.9 coloradorum9221(e)1031(o)1071(m)25(d)83(e)556(p)1007(w)47.0(d)53.4(d)23.3(c)161.7(h)47.0(e) 152±358960±10801000±11606250±10048640889±113337227212±526285128 pustulatus1206(d)964(k)964(f)0(a)88(f)676(x)1062(z)94.3(g)99.5(h)95.0(n)104.3(e)52.9(f) 0186±230880±1080880±1080056±11864800820±125473.107.690.3±109.477.7±108.276.9±129.019.5±120 sp.B1395(l)740(a)888(a)112(r)115(g)444(h)894(r)92.1(f)105.1(h)69.4(j)293.7(p)93.3(k) 0322±608680±880840±960415081±16240480854±9816149515425±120234441169

(7)

Assessments of Combina bility Th ere are seve ral issue s re late d to th e conce pt of com b in ab ility : (1) phylogen - etic sign al or data stru cture ; (2) stre ngth of support for a re sultin g tre e topology ; (3) congrue n ce of tree s from diƒe ren t data partition s ; (4) h om oge ne ity of data partitions ; (5) com patib ility of a data par- tition with a sub optim al tree ; an d (6) stre ngth of support (assum in g 5 is true ) of a data partition for a suboptim al tre e.

Ph ylogene tic signal.Ð If a data set has no structure that is sign i® cantly diƒe ren t from random , the n little con ® den ce can be place d in the re sulting estim ate s of tree topology. H owe ver, lack of discern - ib le stru cture m ay b e an artifact of sm all num b e rs of characte rs. W e assesse d data stru cture using th e PTP te st (Faith, 1991) as im ple m en ted in PAUP* usin g 5000 ran dom m atrice s.

Strength of sup port for a tree topology.Ð C on ® de nce in tre es was q uanti® ed for branch e s usin g ch aracte r re sam plin g (non param etric bootstrap ; H illis an d Bull, 1993) an d Bre m e r support (decay in de x) value, an d for the en tire tre e usin g ``total support’’ te st and the con stra ine d tre e T-PTP. Clades with . 70% b ootstrap values are con sidere d strongly sup- porte d.

Th e ``total support’’ te st de scrib e d b y KaÈlle rsjoÈ e t al. (1992) and re com m en de d by Bre m er (1994) consists of com putin g total support (the sum of all Bre m e r support value s, also calle d decay in dices) for th e ob served data an d com parin g th is to a distrib ution of total support value s from ran dom ly pe rm ute d m atrice s. O n e hundred m atrice s were produce d usin g M acC lade 3.05, an d decay indices for each m atrix we re calculate d using Auto- de cay 2.9.5 (Eriks son , 1996) ; 10 ran dom - addition h euristic se arch es we re used for each de cay value .

Th e con stra ine d- tre e T-PTP test is an exte nsion of Faith’ s m on oph yly test (se e also Faith and C ranston , 1991) in wh ich an en tire tree , rathe r th an a single node, is used as a con straint. It is im ple m en te d as the TPTP te st in PAU P* , b ut an e ntire

tre e is de ® n ed as a con stra int rathe r than just on e node (se e S woƒord e t al., 1996, for a criticism of T-PTP te sts). Th e len gth diƒere nce b etwe en the ob se rve d sh orte st tre e and the sh orte st tree th at is in con- gru en t in any part of the tre e is use d as th e te st statistic an d com pared to a null distrib ution of le ngth diƒere nce s gen er- ated from pe rm uted data. This te st am oun ts to a test of the m onophyly of th e n ode with the we ake st de cay in de x.

R e je ction of th e null h yp othe sis is in ter- prete d as sign i® cant support for a spe ci-

® e d topology, as oppose d to gen e ral cladistic stru cture in the case of th e PTP te st. The n ull distrib ution is e ssen tially on e of de cay indice s b ase d on perm ute d data. G e ne rally, 1,000 random ize d m atrice s we re use d to gen erate th e null distrib ution . If th e perm utation -tail prob- ab ility was 0.05 or le ss, th e te st was reru n with 5000 m atrices to incre ase re solution in the tail of th e distrib ution . Th e con stra ine d- tre e te st diƒe rs in details of e xecution from th e ``all- groups’ ’ te st pro- pose d by Faith an d Ballard (1994), although th e purp ose (asse ssin g ove rall support of a data set for a tree ) is sim ilar.

Congruence of trees.Ð A th ird issue is th e con grue nce of tre es re sultin g from data partition s. W e asse ssed tree congrue n ce b y strict consen sus tree s (S woƒord, 1991) an d tre e sim ilarity by the sym m etric- diƒere nce dista nce , or partition m etric (Robin son an d Foulds, 1981), which is de ® n ed as the num b e r of subclades th at appe ar on e ithe r of th e two tree s, b ut not b oth. Th is m e tric q uanti® es diƒe re n ces in tre e topology (``taxon om ic con grue nce ’ ’) irre sp e ctive of th e characte r support.

Pe nn y an d He ndy (1985) discusse d se ve ral attractive features of this m e tric, wh ich can b e used with un roote d or roote d an d bin ary or non bin ary tre es.

Value s range from 0 to 2n2 6 wh ere n is th e num b e r of te rm in als (S tee l an d Pe nn y, 1993). It sh ould be n ote d th at a te rm in al with diƒe rin g position on two oth erwis e sim ilar tree s m ay yield a large value , in th e way that a strict con se n sus tre e would appe ar large ly un re solve d

(8)

un de r sim ilar conditions. The prob ab ility that two give n tre es are dra wn at ran dom from all possib le tre e s was de term ine d usin g Tab le 3 in H en dy e t al. (1984) ; thus, reje ction of th e null hypothe sis indicate s that two lab e led topologies are m ore sim ilar than one would e xpe ct by ch an ce.

Hom ogene ity of pa rtitions.Ð Bull et al.

(1993) argue d th at on e should b e cautious in com b in ing data partitions that are sig- ni® cantly he te rogen e ous. W e do n ot argu e for or against com b ining h ete r- ogen eous partition s ; rathe r, we sim ply wish to dete rm in e h ete roge ne ity b efore furthe r analysis . W e asse ssed partition hom ogen eity using PAU P* . Th e partition - hom ogen eity test gen erally assum e s that if diƒe ren t data partition s are hom ogen eous, the n ran dom ly allocatin g characte rs am ong those partition s sh ould yie ld tree s that are not sign i® cantly diƒe ren t. As propose d by Farris e t al.

(1994, 1995), th e test relies on th e obse rve d incon grue nce len gth diƒe re n ce, com pared to a null distrib ution gen - Dxy,

erated b y pooling the m1 n ch aracters from partition s (m atrices) x an d y and the n ran dom ly allocating the se in to two m atrices of origin al size s m an d n. Th e incon grue nce le ngth diƒe ren ce , Dxy, is de ® n e d

Dxy5 L(x+y)2 (Lx1 Ly)

whe re Lx an d Ly are th e le ngths of th e sh ortest tre es for m atrice s x an d y, and is th e le ngth of th e shorte st tree for L(x+y)

the com b in ed m atrix. Farris e t al. (1994) argu ed that L(x+y)did n ot n ee d to be cal- culate d be cause it was a com m on te rm . Thus th e te st b ecom es a com parison of the sum of ob se rve d tre e len gths com - pared to th e sum of tre e le ngths from ran dom characte r partitions. If the data partitions are congrue n t, the n th e le ngth - sum s of the random partitions will b e le ss th an or e q ual to that of the ob serve d partition. If th e partition s are h igh ly incon grue nt, the n the le ngth -sum s of th e ran dom partitions will be gre ate r than that of th e ob se rve d partition, b ecause ran dom partitions will te n d to produ ce

(lon ger) tree s with m ore hom oplasy.

PAU P* dete rm in e s the sign i® cance of th e te st b y P5 12 (S/W), whe re S is th e n um b er of replicate s in which th e len gth- sum is gre ater th an th e le ngth-sum for th e ob se rve d partition, and W is th e total n um b er of ob se rve d and random parti- tion s. Farris e t al. (1994) n oted that th e e xact len gth s we re not cru cial an d approxim ate parsim ony calculation s (e.g., a ``one -pass’ ’ h euristic search) were suffi- cien t, but b e cause of th e sm all num be r of taxa we use d he uristic se arch es with TBR b ranch -swapping. Partition-h om oge ne ity te sts were don e for all pairwis e com pari- sons of data partitions and a sim ulta- n e ous ® ve-partition test, with 1,000 ite ration s for e ach te st.

Com p a tibility of da ta pa rtitions with sub- op tima l trees.Ð Eve n th ough two data par- tition s strongly support diƒere nt tre es, it m ay be that on e partition is com patible (does not con¯ ict) with th e oth er (sub optim al) tre e . S uch com patibility was te ste d usin g Te m ple ton’ s te st an d th e com pare -2 T-PTP.

Tem pleton ’s te st (Te m ple ton, 1983 ; Larson, 1994) is a W ilcoxon sign ed ran ks te st (Zar, 1974) of th e diƒe ren ce in len gth s of characte rs wh e n a data parti- tion is optim ize d on one tree ve rsu s an oth er. Its results can be in te rpre ted as a state m e nt ab out th e com patib ility of a data partition with a sub optim al tree , rathe r than a statem e nt about two tre e topologies. The m ore con se rvative two- taile d te st was used (Fe lse nstein, 1985), although it can b e argue d th at th e on e- taile d te st is appropria te.

The com pare-2 T-PTP was sugge ste d b y Faith (1991) an d is im plem e nted in PAU P* . A data se t is optim ize d using parsim ony on e ach of two con stra int tre es, an d the diƒere nce in len gth is use d as a statistic an d com pare d to a n ull dis- trib ution of len gth diƒe ren ces from ran- dom ly perm ute d data. If on e of th e con stra int tree s is th e shorte st tre e , the n th e test re ¯ e cts th e com patib ility of th e data partition with th e se cond, sub- optim al tre e.

(9)

Strength of supp ort for suboptima l trees.Ð It is of inte rest wh eth er a data partition give s sign i® can t support to a sub optim al topology, in addition to b ein g com patib le with it. Th is was assessed usin g a constrain ed-tree T-PTP as describ e d earlie r.

Oth er considera tions.Ð The T-PTP pe r- m utation tests are im ple m en ted in PAU P* as a priori te sts (Faith, 1991) in which no particular h yp oth e sis of m on o- ph yly is b e ing tested. In cases wh e re a particular h yp oth esis of m on oph yly is tested, the a posteriori test is m ore appropriate . U sing th e a priori te st can incre ase Type 1 e rror (wrongly re jectin g the n ull hypoth esis). Th e con strain ed- tree te st can be pe rform ed as an a priori test b ecause the re was n o e xpe ctation of particular m on oph yle tic groups.

Howe ve r, it is not clear that th e com pare - 2 tests are properly e xe cute d as a priori tests. In th e case of the test for m on o- ph yly of a clade, th e a posteriori m on o- ph yly te st is perform e d by sub tractin g the m in im um le ngth un de r a m on oph yly constrain t from th e le ngth un der non - m on oph yly ; the le ngth diƒere nce s are calculated for the ob se rve d an d m any pe rm uted data m atrices. Howe ve r, for a particular pe rm ute d m atrix th e le ngth diƒe ren ce is calculated using th e large st value foun d for all groupings of taxa th e sam e size as th e clade of inte rest (Faith, 1991). Th us, th e le n gth diƒe ren ce would be e valuated, for exam ple, for e ach of th e 35 com b inations of thre e taxa from th e se ven in group taxa, for e ach pe rm ute d m atrix.

Th e T-PTP tests use d h ere in (b oth th e constrain ed-tree and com pare -2) diƒe r from the m onophyly te st in that th e en tire tree is constrain ed, and Faith’ s (1991) procedure of e valuatin g clades of eq ual size am ounts to e xam in ing alte rna- tive tree s, as is done in th e a priori te st.

Thus, it would se e m that if th e en tire tre e is con stra ine d, th ere is no ope ration al dif- fere nce be twee n a priori and a poste riori tests. H oweve r, we fee l that th e issue de serve s furthe r e xam ination (e.g., S wof-

ford et al., 1996), and b ecause a solution is not ob vious , we have pe rform ed all pe rm utation te sts as a priori te sts. O n e of th e purposes of th is pape r is to e xam in e th e be havior of the se te sts, and th e re sults of the se te sts are ve ry consiste nt with othe r tests (se e R e sults).

W e have used th e C O M BINED data set as if it we re an y oth er data partition . H owever, th is in troduce s a de gre e of n onin de pen de nce in pairwis e com pari- sons. Curiosity ab out th e b e havior of th e C O M BIN ED partition in th e se te sts out- we igh s our conce rns about non in- de pe nden ce, an d th e re sults can b e re adily in te rpre ted.

A seq ue ntial Bonferron i corre ction (Rice , 1989) was applied to the tables of probab ility value s re sultin g from th e pairwis e proce du res.

RES ULTS

The statistics for the call varia ble s an d th e codin g for each are shown in Tab le 3.

Th e alle le fre q uen cies for th e pre sum p- tive loci are prese nte d in Table 4.

Ph ylogene tic Ana lysis

Ph ylogenetic signal a nd p hylogeny estima tion.Ð Th e PTP te st indicate d th at e ach data partition had sign i® cant phylogen e tic structure (Tab le 5). S tatistics from th e re sults of th e se parate an d com b ine d phylogen etic analyse s are sh own in Tab le 5 an d Figure 1. Eith er on e or two m ost parsim onious tre e s we re found for e ach partition. Th e C O M BIN ED data set and the 12S partition produce d th e sam e tre e.

W e igh tin g tran sversions twice as m uch as tran sition s yie lded th e sam e sh orte st tre es for th e CO M BIN ED , 12S , and C O I partition s. W e igh tin g tran sve rsion s ® ve tim e s as m uch as tran sition s yie lde d th e sam e sh orte st tree s for th e C O M BINED an d 12S partition s, an d for the C O I parti- tion yie lde d one of the two tre es found in th e un weigh ted an alysis , the one with th e ((P.colora dorum,p ustula tus), (sp. B, sp. C )) topology.

For the 12S data partition, all m axim um -like lih ood an alyse s yielde d

Referensi

Dokumen terkait

Jika Momentum (p) adalah hasil kali massa dan kecepatan, maka tentukan Dimensi dari

[r]

Aplikasi Infra- struktur Pengorga- nisasian Konsepsi Pengaturan Aturan Manajemen Proyek Akses Internet Komunikasi sederhana (E-mail) Pengelola Jaringan Lokal Pengelola Sistem

Meruapakan proses pembentukan dan pematangan sel spermarmatozoa yang terjadi di organ kelamin (gonad) jantan yaitu testis tepatnya di tubulus seminiferus yang akhirnya akan

Suhu pada trafo yang sedang beroperasi akan dipengaruhi oleh kualitas tegangan jaringan, rugi-rugi pada trafo itu sendiri dan suhu lingkungan. Suhu operasi yang

Baik jika menunjukkan sudah kritis bertanya dan memberikan pendapat dalam kegiatan kelompok tetapi masih belum ajeg/konsistena. Sangat baik jika menunjukkan sudah kritis bertanya

Microsoft is still the leader in PC operating systems and desktop productivity software, but has failed miserably with smartphone hardware and software, mobile computing, cloud-based

[r]