• Tidak ada hasil yang ditemukan

١٤٠١ ناتسبات - ۲ هرامش

N/A
N/A
Protected

Academic year: 2024

Membagikan "١٤٠١ ناتسبات - ۲ هرامش"

Copied!
13
0
0

Teks penuh

(1)

12 2

1401

275 - 263

DOI: 10.22059/jwim.2022.335817.952

: ! " #$

1 2

*

! " 3 4 #

1 . & '

&

(!

)

* +# ) (! (# , -. ) ( */

"

0.

# 1 2 ! ( 3/

"&

45

! )

! ) .

2 6 . (# , (!

) -.

( */

"

0.

# 1 2 ! ( 3/

"&

45 . ! ) ! )

3 (! (# , / . . ! ) ! ) 45 "& ( 3/ 2 ! 1 # 0. " ( */ -. )

4 . 6 (# , (!

)

! ) 45 "& ( 3/ 2 ! 1 # 0. " ( */ -.

! ) .

:8+ 9 2 : ; 27

/ 09 / 1400 :8+ 9 @ AB : ;

17 / 03 / 1401

!"#

$ . !&

'$!"

!(" ) ! "

* + , - ' . ' / " 0# 1 2 *!3 2 4 (5 #

" 6 2 7 1

) ' 9

. 4 : ; 6< = 4 (...4 < ? $ 1 @!" )

" 6 " A B C DE , " )

7 1 E & 3 )

: , " 4 FC!G C 4HG .

" 5 I4 @!" 6 J G @!" )

; " ' & K 62 DE

Flow3d E & ; L . ( ! "

25 ' 35 4 45 & : " 4 ! Q " !) 20'30

4 40

3 E &

: 7 :# " 4 6:RNG

!

; L

E &

9 J .

@!" 6 C DE "

7 / 0 2 28 / 1 W '

' !)4 + " 6 + XY 9

2 20 @!" 6 C DE " 9 J D! Z : " C 2 " . : . C [

"

\ : " C 2 ] 52

!G C [

" & ! " C^" .

9 J D!

6 @!"

_ D"

2 '`

" &

* ! , a 4 2

:

< 4

22 2 54 C [ . "

+ XY :

' @!" 6 ' : " C 2 ' & K 62 ' & : " ' Flow3d

.

Numerical modeling of the effect of elliptical elongation on the hydraulic performance of an elliptical Lopac gate

Faranak Mobarak1, S. Mohsen Sajjadi2*, Javad Ahadiyan3, Mehdi Zeynivand4

1. Master of Hydraulic Structures, Department of Water Structures, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahwaz, Iran.

2. Assistant Professor, Department of Water Structures, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahwaz, Iran.

3. Associate Professor, Department of Water Structures, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahwaz, Iran.

4. Assistant Professor, Department of Water Structures, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahwaz, Iran.

Received: December 18, 2021 Accepted: June 07, 2022

Abstract

Gates are Flow control structures used in irrigation canals. In the meantime, Lopac Gates have very efficient capabilities such as controlling and regulation the level of water upstream, automation, lower energy consumption than other types of gates (like sliding gate, radil gate) and the possibility of passing floating objects. Elliptical Lopac gate (ELG) are one of the new types of lopac gates that are intended to increase the discharge coefficient compared to other types of lopac gates. The present study was conducted with the aim of modeling ELG in five different elliptical ratios with sudden transition in the channel using Flow3d software. All models are considered in three discharges of 25, 35 and 45 liters per second and in three openings of 20, 30 and 40 cm and simulation has been done with RNG turbulence model. The final results showed that by increasing the elliptical ratiofrom 0.7 to 1.28, the energy consumption gates will decrease from eight to 20 percent compared to the initial energy. In the study of floor shear stress, the results show that by increasing the elliptical ratio, the average shear stress decreases by 52 percent. In the section on flow vortices, the results show that in elliptic ratios greater than one, vortex currents and current deviation from the path are reduced and the flow rate decreases from 22 to 54 percent.

Keywords: Elliptical ratio, Energy consumption, Flow3d, Opening, Shear stress, Sudden transition.

(2)

2

"#

- 4 9

"

&

0# c" 4 !

"

c . c 2

1 !

Z d4 2

e E f)

' ; L

)

2

"

g "

0 (? " "

+4 G *!3 2 !"#

/ " h? 4

"

I [

. =! 4 =)

* ! ' !"#

"

4 H

" ! "

* !

G c"

'0#

"

!

.

"#

9 4 '

"

E [ ,

D .

* ! !"#

' A

C DE 4

, ?i fG

=6:

"

"

4

c 2 0#

. : i) ? 79 # "

"

) @!"

] : e j

: . G .

$ C 4HG i2 90 C # ] :

Z( ^

"

4

& : "

4 e j

; L : . 52 # C '

A B

"

4 E + 6 a : 4 J 9

l g C

E + 6 m

.

e j "

D!

20 [ C DE ) "

Pilbala et

al., 2021

.(

Babaei Faqihmahaleh et al.

(2018)

"

Qn2 !

=!)4 ! ] : 4 I -^9

4 *!3 2

" K a2 I4 ] : " $ ' )

(5 J . E & 3 ... 4 i" ' & : "

9 9 C 4HG

& : "

11 4 23 [

o< " ) D! " + E 2 :

7 / 29

. " C DE [

Kheybar et al.

(2021)

" & K 62 Q " "

] : @!" ) =!)4 ! =(5<

J . . G e j 6 4 " 79 #

" 9

& p 6W K!) " A B '

4 g 14 2 73 A B 4 : C [

"

"

4

& : "

?"

*!W 4 "

D!

& p 6W

4 e j

?"

q =i .

Aqua system

) (2013

r

` Kg Z?i

4 4 W "

E [ "

"

`s

] 4

' A! 2 )

"

`

* ! X a

=!)4 ! 9!G

4 "

; L

` #

C "

4 ' )

$5B

r I/ i

"

) ] : #

4

'e j

?"

"

A B

"

) r

5

* .

! s

$ 3 r

# "

e j

* 2 3 / 0 6<

# 4 "

e j 2/ "

3 / 0 6<

e j

3 E &

:

$ I [ "

e j 3 / 0

# ' e j

) E & 3

. : C 4HG

Badiee & Sajadi (2018)

`5 " '

K=: 4 =!)4 ! ] : <

4 / "

G

$!

)

"

I <Y\ t6\ 4

"

# : u^9

9G G

0#

K=: &

" & 4 !&

: 6 4 !& : Ka '* < " C^" $ . I "

*

$! s : " C 2 G

$!

C!" Z . . D! $ 2

Monem & Sadeghi (2014)

"

C 4HG 4

"

=(5<

) 9 4 '

"

`5

! 4

!

` . . GICSS

: "

4 W K[ g

5 u^9 "

) K" W

9 ' : " * Y I

'

" =(5<

3 2 4

!

* h? 2 0#

4 o< "

j2 C

!!

I

"

4 4 7"# "

!

(3)

: .

Sajjadi et al.

(2021)

"

`5 ) i + 4

J

" " ' 79 # I ![ -.

6<

) - " W 4 @!"

(!?

: ] #

. G . # C 9

!iB4 ' #

A B

"

2 i" 2 6

& : "

.

*

$! s u^9 :

!iB4

' =

"

* : ' & : "

A B

"

) -

@!"

6 "

) - (!?

C DE

"

.

] 2 ' " `

Pilbala et al.

(2018)

"

G 79 # "

Qv 4 + XY "

?" r 6 a

) ] 2 ' #

. : . G (!?

1 5L 45 W " C #

4 & : " 4 ' " Z( ^ 6

e j

: ; L

6 'e j [ 9 J

G ' 4 E < 4 & : "

Qv XY "

? ) 6< +

4 (!

*

$! s XY ' " Q e j " C DE "

!G C DE ] 2 +

.

Monem & Naghayi (2013)

"

"

&

!

5

r : ] 2 'AS2I

?"

"

- K:

"

)

"

B <

C: 'J G ' s '

9 4

" 4 I E & : " " A!2 2

7 / 2 2 3 / 7 'I E

& : " 4 D! 4 70

. r

$

" ' p < " & : " p < 6 'C 4HG " " " 4 " Q 'Z( ^ 9

/ 0 . "

"

; L : 7 " W $ 9

"

K!)

. ) 4 #

"

<

A 4 *!3 2

. : "

*

$! s '

Yousefvand et al.

(2015)

" "

'e j ] : ) " A B

?"

] : " A B Z i2 " 3 9 9 C 4HG J . : r e j

& : " i" 2 " A B e j ] : 4

! D

. e j 6

52 2

"

`!)4 ! !

"

\ " Q @!" 6 ) g 5<

)

r2/r1=1

(

; L :

" . 6

'Z( ^ @!"

3 I4 6 J G E &

: ) W $ 4

' + XY !3 G 2 : $ " *!5-2 4 Z : " C 2

" &

) g

) @!" 6

r2/r1

I4 < W ( '

"

4

& : "

I4 i) ?

. !7"

"

25 ' 35 4 45 !) Q "

!

& : " 4 20

' 30 4

40

E & 3 :

.

Flow3d

'C 4HG $

"

3 6:

! 6< #

@!" )

; DE

Flow3d

`

; DE

! "

!

" CFD

:

.

Flow3d

I/ i Kg i"

! g

) E s Kr

" 4 9^"

"

&

!

`! =2

TruVOF

"

" # h?

. G

$

; DE w4 4

6:

! w4 . :

FAVOR

) w4

5 g

-

*Lg c E i ( :

"

A([ ; 4 x ?

4 :

w4 K!(a2 4 ?. 4 i t \ VOF

*

4 I/ i -

1 " *\Y y w4

# h? ! E C 5 'CFD

: .

(4)

!"

* g I/ i * ) i ' 7 !G ) i " 2

. 5 : # h? K!E4 G ) i 4

#$% & '

?" ) 1 (

) i $ )

u, v, w

( 4 )

Az, Ay, Ax

(

"

A!2 2 W

g 6 4 <

x, y, z

. : "

$( '

y 4 I/ i Kg * ) i

"

I [

. : "

?" ) 2 (

?" ) 3 (

?" ) 4 (

/ " ) i 0 : 5

' z

G t

' " z "

] A

6 g

(x,y,z)

'

(u,y,z)

< ]

(x,y,z)

' ) ! ) 7s '(

?W 9E

) ! (pa

: "

.

)* +,% - & '

?" ) 5 (

g 6 ] A

(x,y,z)

4

(u,y,z)

< ]

(x,y,z)

* 4 $! s

F

. ` 4 [ $!" W " ! 6 c" 2

#$./* 0

^

; DE

flow3d

K : 7 :#

1 - [ ) i

'(K G zY . \) 2

-

` ) i ' 3 - 4 ) i ) '(k-

4 -

) C 2 ) i

4 (RNG

5 - 6:

!

" &

_ D"

) (LES

: "

; 2 $

# oa"

=!)4 !

'k-

4LES

. : " RNG

! 123

a[ "

Z i2 L

' : W

= D!E I <Y\ J

Kheybar et al.

(2021)

: \ " 79 # ; (E 9 C 4HG .

10 p < ' 8 / 0 1 2 4 8 / 0 :

.

6!. # C 4HG

"

3 L e j 70 ' 80 4

90 ) [ (

; (E 9

E &

" " 2 ' 9& " ) g L 4 # :

e j . : K[ g 3

*

$! s @!" 6

"

`5

; DE C!" 4 ) g $ "

$ 2 Qn2 !

` " " 4 : 0 ^ (!? ) " 6 : E & 3 4 E < I !!j2

# C

05 / 0 2 25 / 0 . " !j K=:

) 1 ( `!2 5:

4 )

K=:

) 2 ( 79 #

Kheybar et al.

(2021)

: i) ? $

9 .

Figure 1. Elliptical gate plan view with sudden transition

+ + = 0

+1! + " # = −1

+1! + " #

# = −1

+ 1! + " #

# = −1 +

+ 1

% + + & = 0

(5)

Figure 2. Elliptical lopac gate withe sudden transition

] :

;Y<

: ] 2

; DE "

4 4 5 / " " I [ $ ] : ; (E 4 " 0#

valoum flow rate

5<

) 0# 1 2 4 " W 4 : 2 "

"

( 79 # : 4

.

*

$! s

; (E 5

z : 0# 4 . 5

outflow

. : 5<

; (E Z 4

"

I [ E & wall

5 4

* 4 ; (E / "

g $! s '0# "

" z 62

"

I [

symmetry

. : E & 3

i2 1 5L C

5<

: 514000 4

6:

! 40 = ; L " 4 : E & 3 ! Q

6:

! C DE " 9 J ! 6!) C^"

6:

!

C 2D 4

"

?. [

C ! "

"

! rD 4 I 6:

! C DE

K"

2

" ' :

!6: l \ "

7 :#

2D "RNG

C ?. [ "

21 " [ 19

!6: 4 C [

J G

. E C DE < 9 " <

(

X ("

"

D!

Qn2

! # 4 f&

=6:

Kg '

^B 4

...

7 "

.

$ " "

"

$

"

&

u^9 :

* L!

A "

` D!E

)n K[ g : 4

* Kg (!.

/ \ : 6

"

" ! "

C "

! "

( C

z "

"

`s 2 3 2 : E &

* I 6 a , \

t!

2

; L : 4

* "

(<

^B

*

` E & 3

: ' :

# ] 2

; DE :

Kg )n "

g

!7" I [ .

; (E K "

( :

2

: E &

2 w G 4 Kg ] 2

* ! c 2 4 # 2

; L

!&

. G (g C "

"

1Y\

D!

2 =6:

C "

i2 Z : "

i"

4 (

u^9 : 4

"

"

$ "

4 v

$ 2 Q

! 'Kg

; A([

D&

FAVOR

. :

{

4 " 'C # 25

J G K 62 ' 4

) "

25 ' 35 4 45 ( !)

!6: ! Q "

` . :

# C 7 :# "

'k- 4LES

: ; L RNG

1 5L i2 27 6:

!

" 4 ; L

E &

. G yG

6:

! 27

W "

" 4

'

D

` " W $ 2

79 # W "

<

i" Kg " 7 :#

E &

J " t6\ ' i) ? $

) K=:

3 ) 4 4 ( 1

9 (

RNG

* $ 2

?. [ " 6 ' )n Kg

. "

.

Table 1. Values of statistical indicators RMSE R2

Model

0.020 0.025 0.021 0.789

0.736 0.781 RNG

K-' LES

Figure 3. Comparison of Elliptical lopac gate Modeling Results Simulated with Flow3d and Laboratory Model by Turbulence ModelRNG

0 0.1 0.2 0.3

0 0.05 0.1 0.15 0.2 0.25

Software data

Laboratory data

(6)

" 7 :# $!!i2 yG " ! 6!) `5

" 4 . : . G I4 i" "

2 52 "

!

`!)4 ! "

\

5<

) g 6 @!"

) " Q

r1/r2=1

( : ; L

. "

6 @!"

Z( ^ 6 '

@!" I4 3

: E &

4 3

` C 4HG $

& K 62 " @!" )

\ " " Q 10

@!" 6 J G 4 , \

x : " Z( ^ " : "

1 i:

r1

' < W

35 "

I [ 1 i: " 4 " Q

r2

" W J G'

. : *! . x : ) K=:

4 ( C^"

Z( ^

4 i" 4 9

: .

?" ) 6 (

()

(*=+.-.+. .,+. .+. ,+. .+. .,+. .+.0 ,+.0.+. .

; (E \ C " <

I 6:

! ] 2

; DE ' 10 "

5 / 2

C . !G

* $! s 6:

! 40 ' ! Q

p <

8 / 0 1 2 ' 6 / 0 3 E &

: .

# C Z( ^ " "

25 ' 35 4 45 !) "

Q & : " " ! 20

' 30 4 40 6:

!

: K . 15

I4 i" "

4 ! 2 ' " " 4 1 i: 6 4 & : "

; DE

` 5< yG 4 : . E

C ' $!!i2 " z " I 5!3 2 ] : ' "

4 4 . " 3

6:

! . : . G

Figure 4. View of the elliptical lopac gate with different radius

) K=:

5

4 * G(

Qn2 f& ! 4

"

I 6 a 4 (5

'; (E \ 62

K ; (E p < '

; (E 4 ' 4 i" " 5 & : " 4

"

9 :

.

G

" *

& : " 6 K :

12) 0# t5< '(3

) / "

G 0# t5< '( 4

$!

) ) @!" 6 4 ( - (-

((4

: "

4 ) 2 ( 4

) 3 : r ( .

Figure 5. Flow plan view modeled in Flow 3d with dimensions and details

bg=0.2 , 0.3 ,0.4 m T=0.1 m

T=0.1 m

L=2.5 m

B=0.8 m

(7)

Table 2. Values related to the elliptical ratio of the gate r2/r1 r1(m)

r2(m)

0.7 0.85

1 1.14 1.28 0.35

0.35 0.35 0.35 0.35 0.25

0.3 0.35

0.4 0.45

Table 3. Values related to the opening ratio bg/B B(m)

bg(m)

0.25 0.375

0.5 0.8

0.8 0.8 0.2

0.3 0.4

52 G yG

6:

! " " '

(g

4 J K!(a2 ] 2 " C^" $ .

; DE

/ " 0# 1 2 < W

52 "

; L : : "

: 4

C!G 4 ` 2

! ' : c5 4#

. :

45 6 $7

89:7 0 7 ;<=$% : 9% 5 0 > 0

? $2

+ W 6< $5B

} 2 6< 4 0# g , [ / "

& :

" " ! 4 6 a : .

,Y2 W

: E : ) g " W 4 +

: ?" ) 7 (

5 = +-276))

) ?" "

7 " 4 ( f&

1 2 W

) 0#

) 3 " '(

4 (8

g c?W )

(A

< W c?W 4

54

5- 4 "

" 4 #

5- W

54 C # + ,Y2 D!

y• 4 : 6 a

"

i"

6 '

∆:

:*

K!=92

' @!" 6 4 + 6 W " 4 :

K=: 5

) 6 ) 4 ( 7 ) 4 ( 8 . : * (

K=:

) 6 ) 2 ( 8 I !!j2 4 " " (

Z(2 + , & * 4 i" I !!j2 " 6 :

6 " z " 5< a C^" . : . G ; /

$! G 4 / " + I !!j2 + " 6

4 / " !)4 6 " z " WE a

I4 @!"

"

5 . : € $ C!G \

" I 6 a @!" 6 ' : 6 I [

" r2

: E & 3 r1

, & " " .

* + XY $!" y=< ?" 4 )4D 4 ' :

K" @!" 6 4

$ " . " 2 " I [

@!" 6 C DE & : "

20 ' 30 4 40

" !)4 + 6 " + XY ' \

2 9 4 g A2 20

!G C [ 4

=2 " " G $ s $ " " . :

C!" & !9 WE c(B c(B " 6 2

* + ' : " : # 5<

6< $5B 2

`( '

D! 7) q " 4 :

4 @!" 6 C DE $5B & 2

" & C

* D! E 2

. :

89:7 $: @(A ! BA : 9% 5 0

! .$ 0 >

4 Z " 4 : " C 2 . 4

4

6< 7 !

* = I ![ -. $ 2

. 4 4

"4 . : "

K=: 52 9

: " C 2 W I4 2 :

" : ) g " " = D Z( ^

"

x B4 . :

) g $!" C 2 ! W " C^" $

) g 7 4 : . G

" " ! ', 4 :

C!" " 5 @!" 6 " 6 C 2 C $ 2

: ] : ) K=: C 2 c 2 a . : "

-a

9 '(

"

25

" !) & : " 4 ! Q 20

6 )

(8)

) K=: 4 (` @!"

-b

9 5 4 " 5 '(

@!" 6 & : "

28 / 1 9

:

"

x B4 i" ! 5 C 2 C 2

. 9

"

K=:

) 10 ( 4 ) 11 ( *

: € ] : 52

' e [ : "

. 5 t6\

} K=: 5 "

"

6 ' #

_ D" @!"

* 4 ` 2 ' & : " D! $ 2

} !!j2 C^" D6 } " D 4 "

9 i" 4 ! 9 $!5 :

; (E Z : " C 2 W C . : "

' L!

4 & !9 C DE ' " Q & : " 4 "

" Z C 2 C ' @!" 6

. 6

Figure 6. The trend of changes in the ratio of energy loss to primary energy versus changes in the elliptical ratio at a

flow rate of 25 lit/s

Figure 7. The trend of changes in the ratio of energy loss to primary energy versus changes in the elliptical ratio at a flow rate of 35 lit/s

Figure 8. The trend of changes in the ratio of energy loss to primary energy versus changes in the elliptical ratio at a

flow rate of 45 lit/s 0.2

0.3 0.4 0.5 0.6 0.7

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

E/E1

r2/r1 Q=25 lit/s

bg/B=0.25 bg/B=0.375 bg/B=0.5

-0.3 0.2 0.7

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

E/E1

r2/r1 Q=35 lit/s

bg/B=0.25 bg/B=0.375 bg/B=0.5

0 0.2 0.4 0.6 0.8

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

E/E1

r2/r1 Q=45 lit/s

bg/B=0.25 bg/B=0.375 bg/B=0.5

(9)

Figure 9. (a) Shear stress distribution in elliptical ratio 1 in flow of 25 lit/s and opening 20 cm

Figure 9. (b) Shear stress distribution in elliptical ratio 1.28 in flow of 25 lit/s and opening 20 cm

Figure 10. (a) Shear stress distribution in elliptical ratio 1 in flow of 35 lit/s and opening 20 cm

Figure 10. (b) Shear stress distribution in elliptical ratio 1.28 in flow of 35 lit/s and opening 20 cm

Figure 11. (a) Shear stress distribution in elliptical ratio 1 in flow of 45 lit/s and opening 20 cm

Figure 11. (b) Shear stress distribution in elliptical ratio 1.28 in flow of 45 lit/s and opening 20 cm

(10)

Table 4. Results of shear stress analysis in the floor

<= (cm)

>?A>@ Maximum stress reduction (%) Q (lit/s)

20 20 20 1.28 1.28 1.28 62

82 52.5 25

35 45

c5 W 4#

) 4 : 4

9 (

"

25

" !) & : " ! Q 20

6 4

@!"

28 / 1 ' 'BCC2

1= 0.450.35H

"

@!" 6 C DE K!)

_ D" W "

* $ E & 3 4 ` 2 & : " $ 2

"

62 ' : ) g " 6 C 2 C [

"

35

" !) ] : 5 " ! Q 82

C [

" 4 C 2 45

" !) " Q ] : " D! ! Q 5

/ 52

" i $ " : C 2 C [

* C!" 4 & : " D! $ 2 " & !9 W $ 2

WE c(B

* ) C!" ( @!" 6 $ 2 W $ 2

9 : ) g " 6 C 2 C . :

C %

89:7 0

0 > 0

? $2

7

! I € g

"

&

# : "

z ?.

"

I [ a

' : " "

K=: " &

• !&

" &

!g

‚ . 0 a

: 4 a2

? : H 4 K!=92 :

.

$ G

2 o< "

4 "

2Y=9

!3 C DE E ' +

C m ' !7"#

C

$!:

=!)4 ! 4

=(5<

A # :

$ 4 "

$

!g D!

6 "

7 g 4 I4

!5 Dr g .

K=: t6\

) -a

12 ) 4 ( -b

12 z ?. * " '(

" ; (E Z = D 35

" !) W 4 ! Q

# " Q & : " I4 @!" 6 J G

6 : 9

`s @!"

" ` 2

" & L

" 5 ` _ D"

K" W 5 , a

ƒ . . ([ ! 4 : " $ " " . :

6 52 " K[ g J 4 @!"

" W

9 : ) g z ?. ) g $ "

* 7 :# "

2 " " & 4 ! , a E

g 6 ) g : "

@!"

28 / 1 4

C!"

) WE c(B " & !9 $ 2 45

(

& : " K=: t" ? 20

. : "

& : "

30 " "

35

" !) J G ! Q

) g " # ) g s : @!" 6 ) g @!" 6 ) : 1

: 9 4 : W ( '

" & L ' : ) g , a 4 / " I " _ D"

4

$! G 2 " & $ : D!

} . : ) K=: L 4 "

-a

13 '(

9 i" ! C^" / " <

`s "

!!j2 D6 } " @!" 6 : 2

!G 9

5 < C

!g ; [ s 4 ` @!" 6 . : "

" &

`s

* I L! 4 : 2 2

* 4 ) g " 6 ! , a $! s

* ! " : 2

. : "

K=: " "

) -a

14 4 ( ) -b

14 '(

& : "

40

* ? : 4

" s

" $!9!G ' : ) g " 6 ! !!j2 x B4

" & z ?. & G

* L! 4 4 I : 2

# <

L! < C . : 9

* " @!" 6 W C !!j2 " '` 2

} 4 " 9 „Y "# " ! C^"

" " 4 $

25

" !) 4 ! Q 45

" !) D! ! Q

6 4 : =2 C!" @!"

C '` 2

" & I : 4 I

* 4 < C $! s

. :

(11)

Figure 12. (a) Streamlines at a flow rate 35 lit/s and an elliptical ratio of 1 at an opening of 20 cm

Figure 12. (b) Streamlines at a flow rate 35 lit/s and an elliptical ratio of 1.28 at an opening of 20 cm

Figure 13. (a) Streamlines at a flow rate 35 lit/s and an elliptical ratio of 1 at an opening of 30 cm

Figure 13. (b) Streamlines at a flow rate 35 lit/s and an elliptical ratio of 1.14 at an opening of 30 cm

Figure 14. (a) Streamlines at a flow rate 35 lit/s and an elliptical ratio of 1 at an opening of 40 cm

Figure14. (b) Streamlines at a flow rate 35 lit/s and an elliptical ratio of 1.14 at an opening of 40 cm

(12)

D $7 0 C

$ C 4HG =!)4 ! " "

)

!3 G !!j2 4 # ] : @!"

" & 4 : " C 2 ' + XY

6 . : . G ' !j @!"

- ?" @!" 6 4 + ,Y2 W $!"

9 4 q =i

W s

_ D" ' @!" 6 ` 2

' : E & 3

Z(2 +

* :

+ ,Y . 4 : 2

$! G 4 : C / " + " 6

6< , [ $!" $ + ,Y2 } 2 ; (E ! C^" & : :

.

-

*

$ 2 D!

& : "

4 6 @!"

C!"

2 '`

:

*

$ 2 D!

C 2 Z : "

' "

A!2 2 $ "

& : "

20

"

"

25 4 g 62 [ ' "

"

35

4 g 82 [ " 4

"

45

!) "

! Q 5 / 52

C [ C 2

: .

$ " "

C C 2

! '

2

!9 2 g \ .

- C^"

K!(a2

" &

4 9. s

! ' 3 K!=92

" &

i"

4

$! G

. : 9

6 @!"

* 2

` '

" &

I "

4

* 2 / "

4 , a "

` . E e 2 E

E C DE W

6

@!"

"

C!"

2 '`

4Y<

"

C

<

'0#

C A

* 2

" &

4 G :

!g

* . : " &

$! s , a

: D!

"

! ' ([

9& "

.

$ " "

" &

4

6 @!"

?"

y=<

4 "

C

" &

4 y=2 4 2

6 @!"

"

) @!"

C DE .

E ( F A

…!

. 4 & ] 2 cE p i2 &

E (

1. Aqua Systems 2000 Incorporation (AS21).

(2013). Leaders in Water Management and

Control. Retrieved from:

http://www.as2i.net/products/control- gates/hydra-lopac- gate.

2. Babaei Faqihmahaleh, R., Ismaili Varki, M., &

Shafiee Sabet, B. (2018). Investigation of the effect of geometric characteristics and hydraulic conditions on the performance of the salon-partial flow flow adjustment structure. Iranian Soil and Water Research, 49 (4), 727-717. (In Persian) 3. Badiee, S., & Sajadi, M. (2018). Numerical

analysis of the hydraulic conditions of the Lopac gate using Fluent Software. In:

Proceeding of International Conference on Civil Engineering, Architecture and Urban Development Management in Iran.TEHRAN,9 December, University of Tehran. (In Persian) 4. Kheybar, H., Sajadi, M., & Ahadyan, J. (2021).

Effect of sudden canal contraction on the discharge coefficient and the energy dissipation coefficient of the elliptical LOPAC gate.

Irrigation and Drainage, 1-10. (In Persian) 5. Monem, M.J., & Naghayi, R. (2013).

Introduction of lopac gate to regulate water level in irrigation canals and present its hydraulic relations. in: Proceeding of 4th National Conference on Management of Irrigation and Drainage Networks, Shahid Chamran university of Ahvaz. (In Persian) 6. Monem, M.J., & Sadeghi, S. (2014). Testing the use

of Lopac Gate in irrigation networks and comparing them with conventional structures using the ICSS mathematical model, Ministry of Science, Research and Technology, Tarbiat Modares University, College of Agriculture. (In Persian)

7. Pilbala, A., Sajjadi, M., & Bejestan, M.S. (2021).

Hydraulic performance of elliptical-LOPAC gate under submerged flow conditions. Ain Shams Engineering Journal, 12(1), 317-326.

8. Pilbala, A., Sajjadi, M., & Shafai Bajestan, M.

(2018). Laboratory study of current energy dissipation passing through a rectangular LOPAC gate under submerged flow conditions.

in: Proceeding of International Conference on Civil Engineering, Architecture and Urban Development Management in Iran.TEHRAN.

University of Tehran. (In Persian)

(13)

9. Sajjadi, M., Neysi, M., & Shafai Bajestan, M.

(2021). Experimental Investigation of Hydraulic Conditions of Elliptical and Rectangular Lopac Gate in Free Flow Conditions, Iranian Water Research Journal, 14(39), 1-8. (In Persian).

10. Yousofvand, F., Monem, M.J., & Kavianpour, M.R. (2015). Experimental and Theoretical Analysis of Discharge Coefficient for Submerged Lopac Gate. Irrigation and Drainage, 9(5), 811-819. (In Persian)

Referensi

Dokumen terkait

Assistant Professor, Department of Fisheries, Faculty of Marine Sciences, Chabahar Maritime University Received: 03-Jan-2022 Accepted: 15-Feb-2022 Abstract In the present study, the

Evaluation of Quality and Quantity in Forage and Grain Yield of Iranian Rye Ecotypes Shakiba Shahmoradi* Assistant professor, Department Seed and Plant Improvement Institute,

Saeed, A New Chickpea Variety, Suitable for Autumn-Entezari Planting in Template and Cold Regions at Dryland Conditions.. Research Achievements for Field and Agriculture Crops, 62,

Estimation of wheat area cultivation using Sentinel 2 satellite images Case study: Sojasroud region, Khodabandeh city, Zanjan province .Journal of Environmental Research and

Professor, Department of Agriculture and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.. Associate Professor, Department of Water Engineering,

Maize Zea mays growth and nutrient uptake following integrated improvement of vermicompost and humic acid fertilizer on coastal saline soil.. Effect of sowing dates and late season

Study of Concentrations of Nitrates and Heavy Metals in the Soil and Lettuce and Risk Assessment of its Consumption MohsenSeilsepour* Assistant Professor, Greenhouse Cultivation

Student of Genetics and Plant Breeding, Faculty of Agriculture, Shahed University, Tehran, Iran 2- Associate Professor, Faculty of Agriculture, Shahed University, Tehran, Iran