ローパスフィルタの数理 - 明治大学
Teks penuh
Dokumen terkait
Le Hyaric, 広島国際学院大学の大塚厚二氏らが開発した、2次元, 3次元問題を有限要素法で解く ための、 一種の PSE problem solving environment であり、ソースコード、マニュアル 約 400ページ,幸い英文、主なプラットホームWindows, Mac, Linux向けの 実行形式パッケー ジが公開されている。
注意 10.7 陰関数定理の条件 ii の言い換え「零点集合がグラフになる」 定理10.5のii は、「方程式が解ける」といういわば解析的な表現であるが、幾何学的な表現である次の ii’ で置き換えることも出来る。 ii’ U ×V において、F の零点集合はφ のグラフに一致する: NF ∩U×V =
2Aが定める写像は全射、B が定める写像は単射ということはすぐ分かり、次元定理を使えば、どちらも全単
3.14.3 同じ強さ反対向きの渦の対 等しい強さを持ち、回転の向きが反対の点渦をz =a,−aに置いて重ね 合わせた流れの複素速度ポテンシャルは fz :=iκlogz−a z+a... 3.14.5 2 重湧き出し doublet 同じ強さの湧き出し・吸い込み対の流れの複素速度ポテンシャルは fz
1.2 級数の和 1.2.1イントロ 無限級数 X∞ n=1 anの和を求めるためにも、留数が利用できる場合がある。簡単 な場合を紹介する。 X∞ n=−∞ an で、an がある正則関数f に対して、an=fnとなっている場合に、 n∈Zを1位の極に持ち、Ress;n = 1 という条件を満たす s を適当に選んで、f ·s
[r]
連絡事項&本日の内容 今回から、しばらく3回程度流体力学への応用の話をする。 今日は、流体力学で出て来る諸概念と、有名な方程式連続の方程式、非圧 縮条件、Navier-Stokes方程式、Euler方程式、Stokes方程式の紹介をする 駆け足。 次回以降、以下のものを使う可能性がある。 Mathematica