(Hajime Kaneko)
1
! "#%$&('
x
)+*,.-(/x = u(x) + ε(x)
0.1325476
'
u(x)
8:9<;&7'
ε(x) ∈ [−1/2, 1/2)
=<>@?:A3)CBED5FCGu(x)
0x
H6 'JILKNM
95;5/
ε(x)
0
x
H7O'JILKNM
B:P3F+GNQRQTS(/
|ε(x)|
=x
)UWVYX:Z 6 '\[^]
x
D+SLH<_L`aSabJF+G1
9dcfeNgZ
&R'
α
M
0
S\hZ
&L'
ξ
i(jEk].l
2 M 4
FYG^Q<H
M
gT/
'
m
(ε(ξα n )) ∞ n=0
ian(o[−1/2, 1/2)
pJSL>@qK(r 4 F
[EsJtT[
H7uJBavxwW=
>xyN)L=5zR{a|3S}baFYGa~
]
)/Q<H
' m H
limit point
LWHx:\i\nxo[−1/2, 1/2)
)<8Z
- R
[Ws(t.[ V
><y)5=+
]l
- Z h Z
GxQCH5O@LS:=+/
baFTR
0C1W274( ' A '
α > 1
)T*,-|ε(ξα n )|
HU
e:H
limit point
0
[^]( 4
F:Q
M 0J M 4
FCG(xH
2
P\)T/
' A '
α
0 Z 2 ': 0
J 4
F+G
QYH@aH5cS3=/9}
]l
- Z
FTxW8a95; :¡W)+¢
4 Q M
i(Sdg@FY£
& 0¤R¥x4
FCG\D¦</
α
i7>5y:H&7'
H5§xW)C¨J©
4
F+(
0.ªL«
FCG
0
SJhZ &('
ξ
0f¬ ?d)+\®7S:¯5B°, 2 Mg7)T/L±
M ® s
4L«
-LH
&('
α > 1
)+*,f-
(ξα n ) ∞ n=0
H@O'LIxK
i7><q K<r 4
FJQ
M i
Koksma [7]
)R9@²T-@³:´a~l 2
Gxµd)
1
9WceEgZ ¬
?aH@¶
'
α
0
¯5B 4 F M
/J±
M ® s 4L«
-LH
&('
ξ
)5· Z -\¸Yq}H7RWi@¨a©4
F:Q M V
¸7¹\)T¢d~
l 2 G M
Q(º(i7/5»3H(¼
½
i5¢
4 9 t )
Koksma
H7B(¾E)78:¿xFCÀJÁRL}=5>@yE)(=5ÂRS3=xh Z GÃRÄ
1.1. 1)
&('
α > 1
i@jk]l 2 M 4
F+G
4 F M /
&('
ξ 6= 0
S(Å H
Æ7ÇaÈ 01\2@4 V
HLi7É3hE
M VYÊRË(ÌLÍRÎ 4
F+G
lim sup
n→∞
ε(ξα n ) ≤ 1
2α − 2 . 2) 0
SahZ &('
ξ
i@jk]l 2 M 4
F+G
4 F M / ¬
?aH@¶
'
δ
)+*,.-7¶'
α > 1
S(Å H Æ7ÇaÈ 01\2@4 V HLi7É3hEM
VYÊRË(ÌLÍRÎ 4
F+G
lim sup
n→∞
ε(ξα n )
≤ 1 + δ 2α − 2 .
1
Å
α
=1
9WceEg A SabJF F+GaQRQTS(/ A SabJFPisot-Vijayaraghavan
'
(
Å PV
'M 4 F
)
839@;Salem
' 0
B
4
F+G
' A 6 '
α
iPV
'
SabJF
M
=/
α
i1
9WceEgZ &('
SN, [ V
α
0
:HR*\i 4L«
-
1
9WcO~Z Q M 0 t
GE)
2
ÅLpJH' =
PV
'
SabJF+GdD
2 /
1
9WceEgZ ' A 6 '
α
iSalem
'
SabJF
M
=/
K 0
α
H:HR*\i4L«
-
1
Å Sab^c /[
·R*
i
1
H 0 É3hEM V
1
·a·WQM
0 t G
PV
'
α
)+*,.-(/α n
H Li6 '
)7hJF:Q M+[^]
lim n→∞ ε(α n ) = 0
M
hLFJQ M i
KJ[
FCG
PV
' H «
g"!d)·
Z
-@/
Hardy [6]
=YÅ H57 0.ª«:2
G
#$
1.2.
' A '
α > 1
i7jdk]fl 2 M 4
FTG
4 F M /
0
S3hZ &x'
ξ
iÍRÎ
,.-(/
n→∞ lim ε(ξα n ) = 0
M
hLF&%'(
K
(=T/
α
iPV
'°M
hRFJQ
M
S:bRFCG3QTH
M g
ξ ∈ Q(α)
SbJF+G
Pisot [8]
=aQYH@x0 Å
H}9
t
))+*°, 2 G
#$
1.3.
' A '
α > 1
8a95;0
SahZ &('
ξ
i@jk]l 2 M 4
F+G 4 F
M / ' m
(ε(ξα n )) ∞ n=0
i-,/. Ì Hlimit point
,[ 2 h Z 2
PRH%'(
K
d=/
α
iPV
'
Sab^c
[ ·
ξ ∈ Q(α)
M
hJF:Q
M
SabJF+G
0
v(/
lim n→∞ ε(ξα n ) = 0
M
hJF21 3
'
α > 1
HÍRÎ 4
= Æ
´(SabJF+G
Salem
' H «
g5!E)-6E,.-3=Å
H@x\i5
]l
- Z F+G
#$
1.4.
' A '
α > 1
i@jk]l 2 M 4
F+GQYH M g ¬
?aH@¶
'
δ
)+*,.-
0
SahZ &('
ξ = ξ(δ)
0
+7EQ
M
)L9x²-
lim sup
n→∞
ε(ξα n )
< δ
M
S^gxF
2
P:H %'(
K
LN=5/
α
iPV
' D 2 =
Salem
'M
haF\Q M S
bJF+G
2
8:9<;
' A '
α > 1
i5jWk]l 2 M 4
FG}QxQ+S
α
=PV
' S V
Salem
' S V
h Z M 4
F+GJB(¾
1.4
)L9Wclim inf
ξ∈R × lim sup
n→∞
ε(ξα n )
> 0
SabJF+G°QYH
È
)78:¿xF=+>aH-
0 [^](
,59
t G
α
i-,x¾'
H@§L}=
Dubickas [4]
)L9x²-(Å H@x\i5³3´3~l 2 G
#$
2.1.
,R¾'
α = p/q > 1
i7jdk]fl
2 M 4 F
(p, q ∈ N)
G 4 FM / ¬
?aH
0
SahZ
ξ
)+*,.-1
q
,/ 6
E 1 (X )
=Å )L9x²-(jk F+GE 1 (X) = 1
2X 1 − (1 − X )
∞
Y
m=0
1 − X 2 m
! .
QHT<
0
>Yy@»
'
d
H ' A '
α
) )*4
FfGQ5QfS
È
ρ i (X 1 , · · · , X d )(i = 0, 1, . . .)
0 Å H ÇaÈ )L9WcB+ 4 F+G
d
Y
j=1
(1 − X i Y )
−1
=
∞
X
i=0
ρ i (X 1 , · · · , X d )Y i .
α
H-0
α 1 , . . . , α d
M
8:gf/
α
HU
O È 0
a d X d + a d−1 X d−1 +· · · + a 0 ∈ Z[X ]
M 4
F+G
#$
2.2.
' A '
α > 1
i@Å H5x01\2@4 M 4
F+G
1. |α i | > 1(i = 1, 2, . . . , d);
2. P d
i=1 |a i | ≤ |a 0 |;
3. 0 < ρ n+1 (α −1 1 , · · · , α −1 d ) ρ n (α −1 1 , · · · , α −1 d ) ≤ 1
2 (n = 0, 1, . . .).
4 F M /
0
SahZ ¬
?aH
&('
ξ
)+*,.-lim sup
n→∞
ε(ξα n )
≥ 1
|a 0 | E d (α −1 1 , · · · , α −1 d ).
2
,/ 6 '
E d (X 1 , · · · , X d )
=Å
H}9
t
)TB+W~
l
F+G
E d (X 1 , · · · , X d ) =
d
X
j=1
Y
1≤i≤d i6 =j
1 X j − X i
X j d−1 E 1 (X j ).
3
' A '
α
)<·Z
-(/RaH7B(¾
2.2
S Z 2 0
xHDRD
Z
F+GdQ
H@:S3=
α
H:HR*=4L«
-
1
9WceEgZ M
B 4
F+G@B(¾
2.2
0
³3´
4 F 2
P\)T/
α
0Z 2 ':
S
ξα n
H7O'JILK
0J4
G
D¦</
α
i'
N (≥ 2)
Sxb(Ff§@0!
k<FG
N
"#$M
=/ 7
{N i |i ∈ Z}
0&%('
)
V)
/
{0, 1, . . . , N − 1}
0
digit
M 4
F*#+$7S:bLFCG
ξ
0
N
,4 F M
Z t.- Ë =
ξ
HN
"(#/$3)78:¿xFdigit
Hshift
M
*(0,.-
Z
F+G
4
h1 ) /
¶ '
ξ
HN
"(#/$xH32 M · 0ξ =
m
X
i=−∞
s i N i
8d GEQxQCS7/
s i
=ξ
HN
"#+$a)@8J¿(Fi
3Hdigit
FCGξN
H#/$:=
ξN =
m+1
X
i=−∞
s i−1 N i
)79²-jak ] l
FG.9²-</
ξN n
HO'7I@K 0 @4
F(Q M =
,
' m
(s i−n ) −1 i=−∞
0a«
F:Q
M ) 0 h ] h Z
G5>@yL»
'
d
H ' A '
α
)-6E,.-(/\QYH#/$xH 0¨ 4
F+GNDC¦</
%'
{ν i |i ∈ Z}
0 Å H}9t
)TB:P3F+G
ν i = − 1 a 0
d
X
j=1
α i+1 j Y
1≤l≤d l6=j
1 α −1 j − α −1 l .
QYH
%'
=Å
H
½ 01\2@4
>LH
%' M
,.-\¿Sdg@F+G
Ä
3.1. 1)
¬
?aH 6 '
i
)+*,.-a d ν i+d + a d−1 ν i+d−1 + · · · + a 0 ν i = 0.
2) ν 0 = 1 a d
, ν −1 = ν −2 = · · · = ν −d+1 = 0.
·7)T/
ξ > 0
)+*,.-QYH':
H#/$3)78:¿xF
i
\Hdigit
0 Å
H}9
t
)TB:P3F+G
s i = a d u(ξα −i ) + a d−1 u(ξα −i−1 ) + · · · + a 0 u(ξα −i−d ).
i
\Hdigit
)<·Z
-(/RÅ
H
½
i5¨:©
4
F+G
Ä
3.2. 1)
(K
eEg<h 4L«
-LH '
i
)+*,.-s i = 0.
2) d ≥ 2
h]
|s i | < 1 2
d
X
l=0
|a l |.
3) α
i'
S:h Z h
]
/ ¬
?:H 6 '
M
)*°,f-' m
(s i ) M i=−∞
=:AS3=xh Z G
9x²-R/RÅJp:H
½
839@;5»3H(¼
½
)J9cJ
{ν i |i ∈ Z}
0*%3'
) ) /
L
{j ∈ Z ||j| < 1 2
d
X
l=0
|a l |}
0
digit
M 4 F #/$Ri@B+LSdg@F+G
ÃRÄ
3.1.
¬
?aH 6 '
n
)+*,.-ξα n =
∞
X
i=−∞
s i−n ν i .
~ ] )
u(ξα n ) =
∞
X
i=0
s i−n ν i ,
ε(ξα n ) =
−1
X
i=−∞
s i−n ν i .
½ 0f Z M
i digit s i
0 7 4 M
2.2
0
[1] Bertin M.-J. et al,Pisot and Salem numbers, Birkh¨ auser Verlag, Basel, 1992.
[2] Boyd David W., Transcendental numbers with badly distributed pow- ers, Proc. Amer. Soc. 23 (1969) 424-427.
[3] Dubickas Art¯ uras, Arithmetical properties of powers of algebraic num- bers, Bull. London Math. Soc. 38 (2006) no.1 70-80.
[4] Dubickas Art¯ uras, On the distance from a rational power to the nearest integer, J. Number Theory 117 (2006) no.1 222-239.
[5] Dubickas Art¯ uras, There are infinitely many limit points of the frac- tional parts of powers, Proc. Indian Acad. Sci. Math. Sci. 115 (2005), no.4, 391-397.
[6] D. H. Hardy, A problem of diophantine approximation, Collected pa- pers of G. H. Hardy I, Clarendon Press, Oxford 124-129.
[7] J. F. Koksma, Ein mengen-theoretischer Satz ¨ uber Gleichverteilung modulo eins, Compositio Math. 2 (1935) 250-258.
[8] Pisot C, R´epartition (mod 1) des puissances des nombres r`eels, Com- ment. Math. Helv. 19(1946) 153-160.
[9] T. Vijayaraghavan, On the fractional parts of the powers of a number, J. London Math. Soc. 15 (1940) 159-160.
e 7¾
606-8224
=
n K
4
!#"
$%
307
&