저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게
l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다. 다음과 같은 조건을 따라야 합니다:
l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다.
l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.
저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.
Disclaimer
저작자표시. 귀하는 원저작자를 표시하여야 합니다.
비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.
변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.
'HYHORSPHQW RI 0HWKRGRORJLHV IRU 7DUJHW 3URWHLQ ,GHQWLILFDWLRQ
DQG 7KHLU $SSOLFDWLRQ
$EVWUDFW
'HYHORSPHQW RI 0HWKRGRORJLHV
IRU 7DUJHW 3URWHLQ ,GHQWLILFDWLRQ DQG 7KHLU $SSOLFDWLRQ
+DQNXP 3DUN
'HSDUWPHQW RI %LRSK\VLFV DQG &KHPLFDO %LRORJ\
&ROOHJH RI 1DWXUDO 6FLHQFHV 6HRXO 1DWLRQDO 8QLYHUVLW\
,GHQWLI\LQJ WDUJHW SURWHLQV RI D ELRDFWLYH VPDOO PROHFXOH LV D VWDUWLQJ SRLQW RI PHFKDQLVP RI DFWLRQ 0R$ VWXG\ LQ FKHPLFDO ELRORJ\ +RZHYHU WDUJHW LGHQWLILFDWLRQ LV RIWHQ FRQVLGHUHG DV D ERWWOHQHFN LQ GUXJ GLVFRYHU\ EDVHG RQ SKHQRW\SLF DSSURDFK EHFDXVH WKHUH LV D JDS EHWZHHQ KLJKO\ FRPSOH[ ELRORJLFDO QDWXUH DQG OLPLWHG DQDO\WLFDO PHWKRGRORJ\ 7KLV VWXG\ DLPV WR H[SDQG PHWKRGRORJLHV IRU WDUJHW LGHQWLILFDWLRQ DQG WR DSSO\ WKHP IRU FRPSRXQGV ZLWK QRYHO ELRDFWLYLW\
3KRWRDIILQLW\ OLQNHUV 3/V KDYH EHHQ XVHG WR PDNH D FRYDOHQW ERQG EHWZHHQ VPDOO PROHFXOH DQG WDUJHW SURWHLQ EXW QRQVSHFLILF ELQGLQJV WR RII WDUJHWV LQFUHDVH GXH WR WKH LQFRUSRUDWLRQ RI 3/V ,Q &KDSWHU D UHODWLRQ EHWZHHQ PROHFXODU VWUXFWXUH RI 3/V DQG QRQVSHFLILF ELQGLQJ ZDV V\VWHPDWLFDOO\ H[SORUHG 6PDOO DQG EUDQFKHG IRUP VKRZHG PLQLPDO QRQVSHFLILF ELQGLQJ IRU ERWK EHQ]RSKHQRQH DQG GLD]LULQH HPEHGGHG 3/V :LWK EUDQFKHG IRUP 3/V HIILFLHQF\ RI WKH WDUJHW
LGHQWLILFDWLRQ LQFUHDVHG GXH WR WKH UHGXFHG DUWLIDFWV FRPLQJ IURP QRQVSHFLILF RII WDUJHW ELQGLQJV
&KHPLFDO PRGLILFDWLRQ RI ELRDFWLYH FRPSRXQGV ZLWK IXQFWLRQDO JURXSV VXFK DV 3/V RU HOHFWURSKLOH LV VRPHWLPHV LPSRVVLEOH IRU FRPSRXQGV KDYLQJ YHU\ FRPSOH[
RU VLPSOH VWUXFWXUH ZKLFK DUH RIWHQ IRXQG LQ QDWXUDO SURGXFWV 7KHUHIRUH FKHPLFDO ODEHOLQJ IUHH PHWKRG IRU WDUJHW LGHQWLILFDWLRQ KDV EHHQ QHHGHG ,Q
&KDSWHU D ODEHO IUHH WDUJHW LGHQWLILFDWLRQ PHWKRG QDPHG DV 76 ),7*( ZDV GHYHORSHG %DVHG RQ WKH SKHQRPHQRQ WKDW PHOWLQJ WHPSHUDWXUH RI WDUJHW SURWHLQ LV VKLIWHG E\ GUXJ ELQGLQJ IOXRUHVFHQFH GLIIHUHQFH LQ WZR GLPHQVLRQDO HOHFWURSKRUHVLV UHYHDOHG WKH WDUJHW SURWHLQ DPRQJ FHOOXODU SURWHRPH $IWHU WKH SURRI RI FRQFHSW VWXG\ ZLWK PHWKRWUH[DWH WKH JHQHUDOLW\ RI WKLV PHWKRG ZDV VKRZQ E\ LGHQWLI\LQJ WDUJHW SURWHLQV RI EU\RVWDWLQ FRPSOH[ VWUXFWXUH DQG KRUGHQLQH VLPSOH VWUXFWXUH
,Q &KDSWHU D FRPSUHKHQVLYH 0R$ VWXG\ ZDV FRQGXFWHG ZLWK D +H/D VSHFLILF F\WRWR[LF FRPSRXQG $ $V WKLV FRPSRXQG ORVW LWV DFWLYLW\ E\ PLQRU PRGLILFDWLRQ ODEHO IUHH WDUJHW LGHQWLILFDWLRQ PHWKRGV LQFOXGLQJ 76 ),7*( DQG WKHUPDO SURWHRPH SURILOLQJ 733 ZHUH DSSOLHG 6HYHQWHHQ SURWHLQV WKDW VKRZHG HLWKHU GLIIHUHQFH LQ IOXRUHVFHQFH VSRW IURP 76 ),7*( RU VKLIW LQ PHOWLQJ WHPSHUDWXUH IURP 733 ZHUH VHOHFWHG DV WDUJHW FDQGLGDWHV %DVHG RQ VL51$
PHGLDWHG JHQH NQRFNGRZQ DQG LQ YLWUR HQ]\PDWLF DVVD\ 0XW7 KRPRORJ 07+
ZDV YDOLGDWHG WR EH IXQFWLRQDOO\ UHODWHG WR WKH SKHQRW\SH RI +H/D VSHFLILF F\WRWR[LFLW\ 07+ SURWHLQ VDQLWL]HV R[LGL]HG QXFOHRWLGHV WR LQKLELW WKHLU LQVHUWLRQ LQWR '1$ DQG SUHYHQW '1$ GDPDJH +RZHYHU WKH ELQGLQJ EHWZHHQ 07+ DQG $ ZDV QRW VSHFLILF LQ +H/D FHOO EHFDXVH WKHUPDO VWDELOL]DWLRQ RI 07+ ZDV REVHUYHG QRW RQO\ LQ +H/D FHOO EXW DOVR LQ &D6NL FHOO ZKHUH $ GLG QRW VKRZ F\WRWR[LFLW\ 3URWHRPH H[SUHVVLRQ SURILOLQJ FODLPHG WKDW 07+
H[SUHVVLRQ OHYHO ZDV QRW GLVWLQFW EXW H[SUHVVLRQ OHYHOV RI SURWHLQV LQYROYHG LQ '1$ PLVPDWFK UHSDLU ZHUH VXSSUHVVHG LQ +H/D FHOO FRPSDUHG WR &D6NL FHOO 7KXV LW ZDV LQIHUUHG WKDW +H/D FHOO WHQGV WR EH VXVFHSWLEOH WR R[LGDWLYH VWUHVV WKDW ZRXOG
UHVXOWV LQ '1$ GDPDJH )OXRUHVFHQFH LPDJLQJ VKRZHG LQFUHDVH RI LQWUDFHOOXODU R[R G* DQG VXEVHTXHQW '1$ GDPDJH DQG DSRSWRVLV PDUNHUV ZHUH DFWLYDWHG E\ $ LQ +H/D VHOHFWLYHO\
,Q VXPPDU\ LQ DQ HIIRUW WR FRQWULEXWH WR WKH ILHOG RI WDUJHW LGHQWLILFDWLRQ DQG FKHPLFDO ELRORJ\ WKLV VWXG\ DQDO\]HG LPSDFW RI WKH PROHFXODU VKDSH RI 3/V RQ QRQVSHFLILF ELQGLQJ GHYHORSHG D ODEHO IUHH PHWKRG IRU WDUJHW LGHQWLILFDWLRQ DQG LQYHVWLJDWHG 0R$ RI D +H/D VSHFLILF F\WRWR[LF FRPSRXQG ZLWK WKH ODEHO IUHH PHWKRGV $V WKH WDUJHW LGHQWLILFDWLRQ KDV EHHQ D KXUGOH IRU SKHQRW\SH EDVHG GUXJ GLVFRYHU\ LQFUHDVH RI FXUUHQW NQRZOHGJH DQG WHFKQLTXH IRU WDUJHW LGHQWLILFDWLRQ ZRXOG SURPRWH SKHQRW\SLF VFUHHQLQJ $V D UHVXOW WKLV YLUWXRXV F\FOH PD\
DFFHOHUDWH WUDQVODWLRQDO UHVHDUFK YLD GLVFRYHU\ RI QRYHO GUXJJDEOH WDUJHWV DQG ILUVW LQ FODVV GUXJV
.H\ZRUGV WDUJHW LGHQWLILFDWLRQ FKHPLFDO ELRORJ\ SKRWRDIILQLW\ OLQNHU ODEHO IUHH WDUJHW LGHQWLILFDWLRQ FHOOXODU WKHUPDO VKLIW DVVD\ SURWHRPH H[SUHVVLRQ SURILOLQJ PHFKDQLVP RI DFWLRQ
6WXGHQW QXPEHU
7DEOH RI &RQWHQWV
$EVWUDFW«««««««««««««««««««««««« L
7DEOH RI &RQWHQWV«««««««««««««««««««««« LY
/LVW RI 7DEOHV««««««««««««««««««««««« YLL
/LVW RI )LJXUHV««««««««««««««««««««««« YLLL
,QWURGXFWLRQ««««««««««««««««««««««««
&KDSWHU 1RQVSHFLILF 3URWHLQ /DEHOLQJ RI 3KRWRDIILQLW\ /LQNHUV
&RUUHODWHV ZLWK 7KHLU 0ROHFXODU 6KDSHV LQ /LYLQJ &HOOV«««««
$EVWUDFW«««««««««««««««««««««««
,QWURGXFWLRQ«««««««««««««««««««««
5HVXOWV DQG GLVFXVVLRQ«««««««««««««««««
'HVLJQ DQG LQ VLOLFR DQDO\VLV RI SKRWRDIILQLW\ OLQNHUV«««
3URWHLQ ODEHOLQJ SDWWHUQV RI SKRWRDIILQLW\ OLQNHUV«««««
3URWHLQ ODEHOLQJ RI EHQ]RSKHQRQH EDVHG SUREHV GHULYHG IURP
D WXEXOLQ LQKLELWRU««««««««««««««««««««
3URWHLQ ODEHOLQJ RI GLD]LULQH EDVHG SUREHV GHULYHG IURP D
WXEXOLQ LQKLELWRU««««««««««««««««««««
&RQFOXVLRQ««««««««««««««««««««««
0DWHULDOV DQG PHWKRGV««««« ««««««««««««
5HIHUHQFHV«««««««««««««««««««««
$SSHQGLFHV«««««««««««««««««««««
&KDSWHU /DEHO IUHH 7DUJHW ,GHQWLILFDWLRQ XVLQJ ,Q JHO )OXRUHVFHQFH 'LIIHUHQFH YLD 7KHUPDO 6WDELOLW\ 6KLIW«««««««««««««
$EVWUDFW«««««««««««««««««««««««
,QWURGXFWLRQ«««««««««««««««««««««
5HVXOWV DQG GLVFXVVLRQ«««««««««««««««««
6WUDWHJ\ IRU D SURWHRPH ZLGH WDUJHW LGHQWLILFDWLRQ XVLQJ
WKHUPDO VWDELOLW\ VKLIW«««««««««««««««««««
3UHSDUDWLRQ RI WKUHH IOXRUHVFHQW G\HV KDYLQJ WKH VDPH HOHFWURSKRUHWLF PRELOLW\«««««««««««««««««
3URRI RI FRQFHSW WDUJHW LGHQWLILFDWLRQ VWXG\ ZLWK PHWKRWUH[DWH ,GHQWLILFDWLRQ RI PHPEUDQH DQFKRUHG WDUJHW SURWHLQV RI
EU\RVWDWLQ ««««««««««««««««««««««
,GHQWLILFDWLRQ RI D QRYHO WDUJHW SURWHLQ RI KRUGHQLQH XVLQJ 76
),7*(««««««««««««««««««««««««
3URV DQG FRQV RI WDUJHW LGHQWLILFDWLRQ XVLQJ 76 ),7*(«««
&RQFOXVLRQ««««««««««««««««««««««
0DWHULDOV DQG PHWKRGV« ««««««««««««««««
5HIHUHQFHV««««««««««««««««««««««
$SSHQGLFHV«««««««««««««««««««««
&KDSWHU 0HFKDQLVP RI DFWLRQ 6WXG\ RI D +H/D VSHFLILF &\WRWR[LF
$JHQW YLD /DEHO IUHH 7DUJHW ,GHQWLILFDWLRQ««««««««« «««
$EVWUDFW«««««««««««««««««««««««
,QWURGXFWLRQ«««««««««««««««««««««
5HVXOWV DQG GLVFXVVLRQ«««««««««««««««««
'LVFRYHU\ RI D +H/D VSHFLILF F\WRWR[LF FRPSRXQG«««««
/DEHO IUHH WDUJHW LGHQWLILFDWLRQ XVLQJ 76 ),7*( DQG 733««
9HULILFDWLRQ RI UHODWLRQVKLS EHWZHHQ JHQH IXQFWLRQ DQG +H/D
VSHFLILF F\WRWR[LFLW\«««««««««««««««««««
9DOLGDWLRQ RI /7$ +««««««««««««««««
9DOLGDWLRQ RI 07+ ««««««««««««« ««
,QYHVWLJDWLRQ RI +H/D FHOO VSHFLILFLW\ ZLWK UHJDUG WR 07+
VWDWXV«««««««««««««««««««««««««
6HOHFWLYH F\WRWR[LFLW\ RI $ UHVXOWLQJ IURP VXVFHSWLELOLW\ RI +H/D FHOO WR R[LGDWLYH VWUHVV««««««««««««««««
&RQFOXVLRQ««««««««««««««««««««««
0DWHULDOV DQG PHWKRGV««««««««««««««« ««
5HIHUHQFHV««««««««««««««««««««««
&RQFOXVLRQ««««««««««««««««««««««««
««««««««««««««««««««««««
/LVW RI 7DEOHV
7DEOH 3URWHLQ LGHQWLILFDWLRQ RI WKH VSRWV LQ '( E\ PDVV VSHFWURPHWU\«««««««««««««««««««««««
7DEOH 5HODWLRQVKLS EHWZHHQ FKHPLFDO VWUXFWXUH DQG GLIIHUHQWLDO F\WRWR[LFLW\ WR +H/D DQG 7««««««««««««««««
/LVW RI )LJXUHV
)LJXUH &KHPLFDO VWUXFWXUH RI SKRWRDIILQLW\ OLQNHUV ZLWK GLIIHUHQW
PROHFXODU VKDSHV«««««««««««««««««««««
)LJXUH ,Q VLOLFR DQDO\VLV RI 3/V««««««««««««««
)LJXUH 3URWHRPH ODEHOHG XVLQJ 3/V LQ OLYLQJ FHOOV DQG FHOO O\VDWHV«
)LJXUH 6FKHPDWLF LOOXVWUDWLRQ RI WKH PROHFXODU VKDSH GHSHQGHQF\ RI
SURWHLQ ODEHOLQJ««««««««««««««««««««««
)LJXUH 6WUXFWXUH RI WXEXOLQ LQKLELWRU DQG LWV SKRWRDIILQLW\ SUREHV
DQG «««««««««««««««««««««««««
)LJXUH 3URWHLQ ODEHOLQJ SDWWHUQ IRU SUREHV DQG «««««««
)LJXUH 6WUXFWXUH RI SKRWRDIILQLW\ SUREHV DQG «««««
)LJXUH 3URWHLQ ODEHOLQJ SDWWHUQV IRU SUREHV DQG ««««
)LJXUH 6FKHPH RI WKH 76 ),7*( H[SHULPHQW ««««««««
)LJXUH &KHPLFDO VWUXFWXUH IRUPXOD DQG PROHFXODU ZHLJKW RI WKUHH
IOXRUHVFHQW G\HV««««««««««««««««««««««
)LJXUH 5HSUHVHQWDWLYH LPDJHV VKRZLQJ WKH VDPH PRELOLW\ RI SURWHRPHV FRQMXJDWHG ZLWK WKUHH GLIIHUHQW G\HV««««««««««
)LJXUH 8QELDVHG LGHQWLILFDWLRQ RI WKH WDUJHW SURWHLQ RI PHWKRWUH[DWH )LJXUH ,GHQWLILFDWLRQ RI WK\PLG\ODWH V\QWKDVH DV DQRWKHU WDUJHW
SURWHLQ RI PHWKRWUH[DWH«««««««««««««««««««
)LJXUH 7KHUPDO GHVWDELOL]DWLRQ RI WKH PHPEUDQH DQFKRUHG WDUJHW
SURWHLQ RI EU\RVWDWLQ «««««««««««««««««««
)LJXUH $SSHDUDQFH RI UHG DQG JUHHQ VSRWV XSRQ WUHDWPHQW RI
EU\RVWDWLQ ZLWKRXW KHDW GHQDWXUDWLRQ«««««««««««««
)LJXUH (IIHFW RI WKH WUHDWPHQW WLPH RQ SURWHLQ VSRW VKLIW GXH WR SRVW
WUDQVODWLRQDO PRGLILFDWLRQ««««««««««««««««««
)LJXUH ,GHQWLILFDWLRQ RI WKH QRYHO WDUJHW SURWHLQ RI KRUGHQLQH««
)LJXUH 'HVFULSWLRQ RI WKH DQDO\VLV SURFHGXUH LQ WKH 76 ),7*(«
)LJXUH 'LVFRYHU\ RI D +H/D VSHFLILF F\WRWR[LF FRPSRXQG« ««
)LJXUH 7DUJHW FDQGLGDWHV LGHQWLILHG IURP HLWKHU 76 ),7*( RU 733 )LJXUH 7KHUPDO VWDELOL]DWLRQ RI /7$ + FRQILUPHG E\ 76 ),7*(
DQG 733«««««««««««««««««««««««««
)LJXUH 9DOLGDWLRQ RI OHXNRWULHQH $ K\GURODVH /7$ + E\
FRPSDULQJ ZLWK D NQRZQ /7$ + LQKLELWRU 6& $««««««
)LJXUH 7KHUPDO VWDELOL]DWLRQ RI 07+ FRQILUPHG E\ 76 ),7*( DQG
733«««««««««««««««««««««««««««
)LJXUH 9DOLGDWLRQ RI 0XW7 KRPRORJ «««««««««««
)LJXUH ,QYHVWLJDWLRQ RI 07+ VSHFLILFLW\ LQ +H/D FHOO«««««
)LJXUH ([SUHVVLRQ OHYHOV RI SURWHLQV LQYROYHG LQ '1$ PLVPDWFK
UHSDLU«««««««««««««««««««««««« ««
)LJXUH 6XVFHSWLELOLW\ RI +H/D FHOO WR R[LGDWLYH VWUHVV«««««
)LJXUH )OXRUHVFHQFH LPDJLQJ RI R[R G* LQ +H/D DQG &D6NL FHOOV )LJXUH :HVWHUQ EORWWLQJ RI '1$ GDPDJH UHVSRQVH DQG DSRSWRVLV PDUNHUV LQ +H/D DQG &D6NL FHOOV«««««««««««««««
,QWURGXFWLRQ
&KHPLFDO ELRORJ\ LV D ILHOG RI VWXG\LQJ ELRORJLFDO V\VWHP XVLQJ YDULRXV FKHPLFDO WRROV 8VLQJ VPDOO PROHFXOHV DV WKH SHUWXUEDJHQV WR GLVVHFW ELRORJ\ FRPSULVH DQ LPSRUWDQW SRUWLRQ LQ WKH FKHPLFDO ELRORJ\ 7KLV NLQG RI UHVHDUFK LQFOXGHV SUHSDUDWLRQ RI VPDOO PROHFXOH OLEUDULHV GLVFRYHU\ RI KLW FRPSRXQGV ZLWK GHVLUHG ELRDFWLYLW\ DQG LQYHVWLJDWLRQ RI D PHFKDQLVP RI DFWLRQ 0R$ RI WKH FRPSRXQG 7UDQVODWLRQ RI WKH EDVLF VFLHQWLILF UHVHDUFK FDQ OHDG WR GHYHORSPHQW RI WKH ELRDFWLYH VPDOO PROHFXOHV LQWR FOLQLFDO WKHUDSHXWLFV
7KHUH DUH WZR ZD\V WR ILQG ELRDFWLYH VPDOO PROHFXOHV )LUVWO\ LQ WKH WDUJHW EDVHG DSSURDFK FKHPLFDO PRGXODWRUV RI D SUHGHWHUPLQHG SURWHLQ DUH VFUHHQHG 7KLV LV D NQRZOHGJH GULYHQ ZD\ DQG ZKHWKHU WKH FRPSRXQG LQGXFH WKH GHVLUHG SKHQRW\SH VWURQJO\ GHSHQGV RQ ELRORJLFDO FKDUDFWHUV RI WKH SURWHLQ 6HFRQGO\ LQ WKH SKHQRW\SH EDVHG DSSURDFK FKHPLFDO PRGXODWRUV WKDW LQGXFH D FHUWDLQ SKHQRW\SH LQ FXOWXUHG FHOOV RU PRGHO DQLPDOV DUH VFUHHQHG 7KLV LV DQ XQELDVHG DSSURDFK DQG KDYH D SRVVLELOLW\ WR ILQG QHZO\ GUXJJDEOH WDUJHWV RU QHRPRUSKLF IXQFWLRQ RI NQRZQ SURWHLQV :KLOH WUDGLWLRQDOO\ WDUJHW EDVHG VFUHHQLQJ KDV GLVFRYHUHG ORWV RI DSSURYHG GUXJV SKHQRW\SLF VFUHHQLQJ RYHUWRRN DSSURYHG ILUVW LQ FODVV GUXJV LQ YLUWXH RI WKH SURJUHVV RI DVVD\ V\VWHP +RZHYHU GLVFORVLQJ D 0R$ RI WKH KLW FRPSRXQG ODJV EHKLQG GXH WR WKH XQELDVHG RULJLQ RI SKHQRW\SLF VFUHHQLQJ
7DUJHW SURWHLQ LV D GLUHFW ELQGLQJ SDUWQHU RI WKH FRPSRXQG DQG SKDUPDFRORJLFDO HIIHFWV DSSHDU DV D UHVXOW RI WKLV UHFRJQLWLRQ RI WKH FRPSRXQG E\ ELRORJLFDO V\VWHP 7KXV LGHQWLILFDWLRQ RI WKH WDUJHW SURWHLQ LV WKRXJKW WR EH D FUXFLDO DQG GHFLVLYH VWDUWLQJ SRLQW RI IRU DFDGHPLF UHVHDUFK DQG SKDUPDFHXWLFDO LQGXVWU\ +RZHYHU WDUJHW LGHQWLILFDWLRQ LV RIWHQ D ERWWOHQHFN VWHS EHFDXVH WKHUH LV D JDS EHWZHHQ KLJKO\ FRPSOH[ ELRORJLFDO QDWXUH DQG LQVXIILFLHQW DQDO\WLFDO PHWKRGRORJ\
,Q WKH FRQYHQWLRQDO FKHPLFDO SURWHRPLFV WR LGHQWLI\ WDUJHW SURWHLQV WKH ELRDFWLYH
FRPSRXQGV KDG WR EH LPPRELOL]HG RQ WKH VROLG VXSSRUW 9DULRXV FKHPLFDO PRGLILFDWLRQV RI WKH RULJLQDO KLW FRPSRXQG UHYHDOHG VWUXFWXUH DFWLYLW\
UHODWLRQVKLS DQG IXQFWLRQDO KDQGOHV ZHUH DWWDFKHG WKURXJK WKH DOORZHG VLWHV )RU H[DPSOH DFHW\OHQH PRLHW\ ZDV LQFRUSRUDWHG WR HQDEOH FOLFN UHDFWLRQ ZLWK ELRWLQ D]LGH ZKLFK ZHUH XVHG WR LPPRELOL]H WKH FRPSRXQG RQ DYLGLQ EHDGV 7R RYHUFRPH WKH WUDQVLHQW ELQGLQJ EHWZHHQ FRPSRXQGV DQG WDUJHW SURWHLQV SKRWRDIILQLW\ OLQNHUV VXFK DV EHQ]RSKHQRQH GLD]LULQH DU\O D]LGH ZHUH LQWURGXFHG WR WKH RULJLQDO KLW FRPSRXQG $V WKH FRPSRXQG ZDV FRYDOHQWO\ OLQNHG WR WDUJHW SURWHLQV XSRQ LUUDGLDWLRQ ZLWK 89 OLJKW DQG ORZ DIILQLW\ LQWHUDFWLRQ FRXOG EH LGHQWLILHG +RZHYHU WKHUH KDYH EHHQ OLPLWHG LQIRUPDWLRQ KRZ WR GHVLJQ HIIHFWLYH SKRWRDIILQLW\ JURXS 5HVHDUFKHUV UHSRUWHG WKH LQYHQWRU\ RI EDFNJURXQG ELQGLQJ SURWHLQV WR HDFK SKRWRDIILQLW\ PRLHWLHV LQFOXGLQJ EHQ]RSKHQRQH GLD]LULQH DQG DU\O D]LGH 1HYHUWKHOHVV LQIRUPDWLRQ DERXW WKH HIIHFW RI OLQNHU SDUW WKDW FRQQHFWV RULJLQDO KLW FRPSRXQGV DQG SKRWRDIILQLW\ PRLHWLHV LV VWLOO GHPDQGLQJ
,Q &KDSWHU LW ZDV H[SORUHG WKDW KRZ PROHFXODU VKDSH RI SKRWRDIILQLW\ OLQNHUV 3/V DIIHFWHG QRQVSHFLILF SURWHLQ ODEHOLQJ 3/V ZLWK VPDOO VL]H DQG EUDQFKHG IRUP VKRZHG OHVV QRQVSHFLILF RII WDUJHW ELQGLQJV $V WKH QRQVSHFLILF ELQGLQJ UHVXOWHG LQ IDOVH SRVLWLYHV V\VWHPDWLF DQDO\VLV RI LQWULQVLF ELQGLQJ SDWWHUQV RI 3/V FRXOG LQFUHDVH VXFFHVV UDWH RI WDUJHW LGHQWLILFDWLRQ
,Q VRPH FDVHV FKHPLFDO PRGLILFDWLRQV ZLWK IXQFWLRQDO JURXSV VXFK DV DON\QH KDQGOH RU 3/V DUH LPSRVVLEOH EHFDXVH RULJLQDO ELRDFWLYH FRPSRXQGV ORVH WKHLU DFWLYLW\ 7R RYHUFRPH WKLV SUREOHP D ODEHO IUHH PHWKRG RI WDUJHW LGHQWLILFDWLRQ ZDV GHYHORSHG EDVHG RQ WKHUPDO VWDELOLW\ VKLIW LQ &KDSWHU 8SRQ GUXJ WUHDWPHQW DQG VXEVHTXHQW KHDWLQJ PHOWLQJ WHPSHUDWXUH RI WDUJHW SURWHLQ ZDV VKLIWHG DQG WKH WDUJHW SURWHLQV ZHUH LGHQWLILHG E\ IOXRUHVFHQFH GLIIHUHQFH RQ WZR GLPHQVLRQDO JHO HOHFWURSKRUHVLV 7DUJHW LGHQWLILFDWLRQV RI QDWXUDO SURGXFWV KDYLQJ FRPSOH[
VWUXFWXUH EU\RVWDWLQ DQG VLPSOH VWUXFWXUH KRUGHQLQH ZHUH GHPRQVWUDWHG WR VKRZ WKH XVHIXOQHVV RI WKLV QHZ PHWKRG
,Q &KDSWHU D FRPSUHKHQVLYH 0R$ VWXG\ RI D +H/D VSHFLILF DQWLFDQFHU FRPSRXQG ZDV FRQGXFWHG $V WKH KLW FRPSRXQG ZDV VHQVLWLYH WR PLQRU FKHPLFDO PRGLILFDWLRQ WDUJHW LGHQWLILFDWLRQ ZDV GRQH E\ XQELDVHG ODEHO IUHH PHWKRGV
$PRQJ PRUH WKDQ D GR]HQ RI FDQGLGDWHV 0XW7 KRPRORJ 07+ SURWHLQ ZDV FRQILUPHG DV D UHOHYDQW WDUJHW SURWHLQ E\ ELRSK\VLFDO DVVD\ LQ YLWUR HQ]\PDWLF DVVD\ DQG 51$ LQWHUIHUHQFH VWXG\ 3URWHRPH H[SUHVVLRQ SURILOLQJ DQDO\VLV VKRZHG WKDW '1$ PLVPDWFK UHSDLU SURWHLQV ZHUH GRZQ UHJXODWHG LQ +H/D DQG LW ZDV LQIHUUHG WKDW WKH +H/D VSHFLILFLW\ FDPH IURP D VHQVLWLYH UHVSRQVH WR R[LGDWLYH VWUHVV $V D UHVXOW +H/D FHOO VSHFLILFDOO\ VKRZHG LQFUHDVH RI R[LGL]HG QXFOHRWLGHV '1$ GDPDJH UHVSRQVH DQG DSRSWRVLV XSRQ WUHDWPHQW RI WKH DQWLFDQFHU FRPSRXQG
5HIHUHQFHV
1 Schenone, M.; Dancik, V.; Wagner, B. K.; Clemons, P. A., Target identification and mechanism of action in chemical biology and drug discovery. Nat. Chem. Biol. 2013, 9 (4), 232-40.
2 Swinney, D. C.; Anthony, J., How were new medicines discovered? Nat.
Rev. Drug Discov. 2011, 10 (7), 507-519.
3 Park, J.; Koh, M.; Koo, J. Y.; Lee, S.; Park, S. B., Investigation of Specific Binding Proteins to Photoaffinity Linkers for Efficient Deconvolution of Target Protein. ACS Chem. Biol. 2016, 11 (1), 44-52.
4 Kleiner, P.; Heydenreuter, W.; Stahl, M.; Korotkov, V. S.; Sieber, S. A., A Whole Proteome Inventory of Background Photocrosslinker Binding.
Angew. Chem. Int. Ed. 2017, 56 (5), 1396-1401.
&KDSWHU
1RQVSHFLILF 3URWHLQ /DEHOLQJ RI 3KRWRDIILQLW\ /LQNHUV
&RUUHODWHV ZLWK 7KHLU 0ROHFXODU 6KDSHV LQ /LYLQJ &HOOV
$EVWUDFW
+HUHLQ ZH UHSRUW PROHFXODU VKDSH GHSHQGHQW QRQVSHFLILF ODEHOLQJ RI SKRWRDIILQLW\ OLQNHUV 3/V LQ WKH FHOOXODU SURWHRPH /LQHDU 3/V KDG D KLJKHU WHQGHQF\ WR HQJDJH LQ QRQVSHFLILF ELQGLQJ WKDQ EUDQFKHG 3/V ([SORLWLQJ WKLV SURSHUW\ ZH GLVFRYHUHG D VPDOOHU EUDQFKHG GLD]LULQH EDVHG 3/ IRU WKH EHVW SKRWRDIILQLW\ SUREH ZLWK PLQLPDO QRQVSHFLILF ELQGLQJ FKDUDFWHULVWLFV IURP DPRQJ SUREHV ZLWK GLIIHUHQW 3/V
5HSURGXFWLRQ RI WKH IROORZLQJ DUWLFOH IRU WKH WKHVLV LV DOORZHG E\ WKH 5R\DO 6RFLHW\ RI &KHPLVWU\ Park, H.; Koo, J. Y.; Srikanth, Y. V. V.; Oh, S.; Le e, J.; Park, J.; Park, S. B., Nonspecific protein labeling of photoaffinity linkers correlates with their molecular shapes in living cells. Chem. Co mmun. 2016, 52 (34), 5828-5831.
1.2. Introduction
Photoaffinity-based approach has received attention over the last few decades for target identification and activity-based protein profiling.1 In the conventional affinity-based protein pull-down approach, bioactive small molecules with excellent potency (subnanomolar range activity) are generally required for successful enrichment of the interacting proteins.2 Even with highly potent bioactive compounds, experimental conditions such as salt concentration, type of detergents, and temperature often interfere with the protein±small molecule interaction. This may lead to unexpected experimental failure in target identification.3 In contrast, the photoaffinity-based target identification approach secures the interaction between small-molecule probes and their binding proteins under any experimental condition via the formation of UV-mediated covalent bonds.
This approach expands the range of target identification from only high- affinity molecules to low-affinity molecules (micromolar range activity).4 However, nonspecific protein labeling by photoaffinity linkers (PLs) has been a major concern in the photoaffinity-based approach.5±9
1.3. Results and discussion
1.3.1. Design and in silico analysis of 5 photoaffinity linkers
Although a list of reports have emphasized the importance of probe design strategy for photoaffinity-based target identification, the molecular shape of PLs has been overlooked in the design of photoaffinity probes. Initially, we hypothesized that the molecular shape of PLs determines their flexibility, resulting in different protein-labeling patterns caused by nonspecific interaction. Following this initial hypothesis, we attempted to find a PL with minimal nonspecific labeling. To investigate molecular shape-dependent protein-labeling, we designed and synthesized 5 different PLs (1, 2, 3, 4, and 5) containing commonly used photoactivatable moieties (benzophenone and diazirine) and an acetylene moiety for bio-orthogonal fluorescence labeling via Click chemistry (Fig. 1.1). Benzophenone-based PLs 1 and 2 have different shapes (1: linear, 2: branched), as do diazirine- based PLs 3 and 4. In addition, we designed and synthesized a branched PL 5 with the same number of total carbon and nitrogen atoms as the linear PL 3, but smaller than another branched PL 4. In silico analysis of surface charges showed clear differences between linear and branched PLs (Fig.
)LJXUH &KHPLFDO VWUXFWXUH RI SKRWRDIILQLW\ OLQNHUV ZLWK GLIIHUHQW PROHFXODU VKDSHV
1.2a), which might lead to different noncovalent interactions with various proteins. The difference in molecular shapes resulted in a different number of conformers. As shown in Fig. 1.2b, we simulated and counted the number of PL conformers having less than 2 kcal/mol difference from its energy minimum. The numerical value of 2 kcal/mol was derived from our assumption that conformers of each PL within a range of 2 kcal/mol from energy minimum can freely exist in the cellular environment under the physiological condition. The calculation results showed that linear PLs (1 and 3) have more conformers than branched PLs (2, 4, and 5). The conformational flexibility of linear PLs might cause the nonspecific, indiscriminate interactions via induced fit with various proteins. Based on their molecular shapes, we hypothesized that linear PLs would show more nonspecific protein labeling than branched PLs.
1.3.2. Protein-labeling patterns of 5 photoaffinity linkers
To examine the actual protein-labeling patterns of each PL, we mixed the 5 different PLs with either cell lysates or living cells. The mixtures were then subjected to UV irradiation to fix their transient binding with proteins by generating covalent bonds with the bound proteins. Proteins crosslinked with each PL were labeled with Cy5-azide using copper-mediated bioorthogonal Click chemistry and visualized in a fluorescent scanner after
)LJXUH ,Q VLOLFR DQDO\VLV RI 3/V D 6XUIDFH PRGHOLQJ RI WKH 3/V E 7KH FRQIRUPHU QXPEHU RI 3/V QHDU WKH HQHUJ\ PLQLPXP
1D-gel electrophoresis. Each PL showed different protein-labeling patterns in cell lysates and living cells (Fig. 1.3). As expected from calculated data, the protein-labeling patterns, particularly in living cells, were highly dependent on the molecular shapes of PLs. In living cells, branched PLs resulted in less nonspecific protein labeling than linear PLs. We also observed that the smaller branched PL 5 showed significantly reduced nonspecific labeling in comparison with the larger branched PL 4 (Fig. 1.3, right panel, 4 and 5), which was surprising given that these PL structures differ by only 4 methylene units (4: C21H35N5O4, 5: C17H27N5O4). This result is in accordance with the findings of a previous study reporting the importance of small PLs.6a In cell lysates, nonspecific protein labeling by PL 2 was significantly lower than that by PL 1, but the protein-labeling patterns of diazirine-based PLs (3, 4, and 5) were generally similar and showed a little difference in protein bands in accordance with changes of their molecular shapes. The overall differences in protein-labeling patterns by various diazirine-based PLs in cell lysates were not as marked as that in
)LJXUH 7KH SURWHRPH ODEHOHG XVLQJ 3/V DQG ȝ0 HDFK LQ OLYLQJ FHOOV DQG FHOO O\VDWHV ZDV VXEMHFWHG WR ' JHO HOHFWURSKRUHVLV IRU GHWDLOHG DQDO\VLV $ VLQJOH 6'6 3$*( JHO ZLWK 3/V DQG ZDV VFDQQHG ZLWK GLIIHUHQW 307V GXH WR KLJK QRQVSHFLILF ELQGLQJ RI 3/
living cells, which might be due to the fact that the diazirine-based PL conformers are not as diverse as we expected. Considering the much higher protein concentrations and complex protein networks with various protein
protein interactions in living cells,10 protein complex surfaces inside living cells should be more diverse than those in cell lysate. We believe that the diverse protein surfaces in living cells delineate the difference in the protein-labeling patterns of diazirine-based PLs. This observation was confirmed again by 2D-gel electrophoresis. Examination of the nonspecific protein-labeling patterns of the 5 different PLs showed that in living cells, branched PLs tended to bind fewer proteins than linear PLs, which is in accordance with our original hypothesis regarding the molecular shape and conformational flexibility of PLs (Fig. 1.4).
1.3.3. Protein-labeling of benzophenone-based probes derived from a tubulin inhibitor
)LJXUH 6FKHPDWLF LOOXVWUDWLRQ RI WKH PROHFXODU VKDSH GHSHQGHQF\ RI SURWHLQ ODEHOLQJ 7KH IOH[LELOLW\ RI OLQHDU PROHFXOHV LQFUHDVHV WKH ELQGLQJ WR YDULRXV SURWHLQV
%UDQFKHG PROHFXOHV ELQG WR IHZHU SURWHLQV WKDQ OLQHDU PROHFXOHV GXH WR WKHLU UHVWULFWHG FRQIRUPDWLRQDO IOH[LELOLW\
Based on this observation, we predicted that photoaffinity probes with branched PLs might show reduced nonspecific labeling and increased specific binding of the target proteins. To test this assumption, we designed a series of photoaffinity probes with various PLs using compound 6, reported as a tubulin-targeting anticancer agent.11 We first synthesized photoaffinity probes 7 and 8 by attaching benzophenone-based PLs 1 and 2 to the derivatives of 6 (Fig. 1.5). Then, we compared the protein-labeling patterns of probes 7 and 8 in either cell lysates or living cells in the absence or presence of agent 6. After photo-crosslinking, the proteomes were labeled with Cy5-azide and analyzed using 1D-gel electrophoresis. Probe 7 (with a linear PL) showed more nonspecific protein labeling than probe 8 (with a branched PL) in both cell lysates and living cells (Fig. 1.6a). The treatment concentration of each probe and agent 6 was chosen according to our previous report11,13 and a dose-dependent study. Interestingly, these protein-labeling patterns were consistent with those of PLs 1 and 2 themselves. However, tubulin was not selectively labeled by either probe 7 or 8 in cell lysates. In contrast, the overall protein-labeling patterns in living
)LJXUH 6WUXFWXUH RI WXEXOLQ LQKLELWRU DQG LWV SKRWRDIILQLW\ SUREHV DQG ZLWK GLIIHUHQWO\ VKDSHG EHQ]RSKHQRQH EDVHG 3/V
cells by probe 7 were not perturbed by an excess amount of soluble ligand
)LJXUH D 7KH SURWHLQ ODEHOLQJ SDWWHUQ IRU SUREHV DQG RQ ' JHO HOHFWURSKRUHVLV ȝ0 ȝ0 WDUJHW SURWHLQ WXEXOLQ E 7KH SURWHLQ ODEHOLQJ SDWWHUQ IRU SUREHV DQG RQ ' JHO HOHFWURSKRUHVLV ȝ0 ȝ0 5HG IOXRUHVFHQFH SURWHLQV ODEHOHG E\ SUREH RU *UHHQ IOXRUHVFHQFH SURWHLQV ODEHOHG E\ SUREH RU LQ WKH SUHVHQFH RI DJHQW F 3DUW RI HDFK ' JHO ZKLWH GDVKHG UHFWDQJOH LQ )LJ E ZDV PDJQLILHG 7DUJHW DQG RII WDUJHW SURWHLQ ODEHOLQJ LV GHSHQGHQW RQ WKH PROHFXODU VKDSH RI 3/V D YLPHQWLQ E WXEXOLQ
6 in the 1D gel. But, fewer proteins were labeled by 8 contained a branched PL than by 7. Moreover, the target protein tubulin (Fig. 1.6a: asterisk) was clearly labeled by 8; the labeling of target proteins by probe 8 was inhibited in the presence of soluble ligand 6, which was not observed for probe 7.
Therefore, we concluded that the protein-labeling patterns can be significantly affected by changing the molecular shapes of the PLs in the photoaffinity probes.
To improve the resolution of the protein analysis, we applied the dual- color system, running 2 different samples on a single and the largest 2D gel,11 which ruled out the gel-to-gel variation. We used Cy5-azide or Cy3- azide for bio-orthogonal reaction with proteins labeled with each photoaffinity probe in the absence or presence of 6, respectively. Proteins labeled in yellow (Cy3+Cy5) or green (Cy3) are likely to be nonspecific binders. In contrast, proteins showing as red (Cy5) are probably potential target proteins of soluble ligand 6. This substantially simplifies the target identification process. As observed in the 1D gel, the photoaffinity probe 7 showed more nonspecific binding than probe 8 in both cell lysates and living cells (Fig. 1.6b) and intensive protein labeling by probe 7, but not by 8, was observed in cell lysates. In terms of specificity/selectivity, both photoaffinity probes (7 and 8) failed to label the target protein tubulin in cell lysates (Fig. 1.6b and 1.6c), which demonstrates the importance of the cellular environment for the interaction between proteins and small molecules.12 In living cells, the protein-labeling intensities by probes 7 and 8 were not very different. However, the number of protein spots labeled by 7 was larger, as observed in 1D gel (Fig. 1.6a and 1.6b). The enlarged sections of 2D-gel images showed that not only the number of protein spots but also the labeling patterns depended on the molecular shapes of PLs (Fig.
1.6c). Protein a (vimentin) and protein b (tubulin) were labeled in yellow by 7, but in red by 8. To identify the protein, we excised the protein spot
from 2D gel and trypsinized for mass spectrometry (MS) analysis. The immunostaining results showed that 6 did not functionally modulate the vimentin filament. Although the probe 8 could label tubulin, its selectivity for target protein was good enough to be used as a tubulin probe.
1.3.4. Protein-labeling of diazirine-based probes derived from a tubulin inhibitor
To find the PL with the best selectivity, we moved our attention to diazirine-based PLs. Recent studies have reported the superior properties of diazirine-based PLs in comparison with benzophenone-based PLs.6a,14 Thus, we decided to reduce the nonspecific labeling of photoaffinity probes by using diazirine-based PLs (3, 4, and 5). We synthesized 3 different photoaffinity probes 9, 10, and 11 (Fig. 1.7). In cell lysates, an excess amount of soluble ligand 6 did not affect protein labeling by probes 9, 10, and 11. Protein labeling intensities of 9 and 11 were similar to each other, which was in accordance with the results observed for protein-labeling
)LJXUH 6WUXFWXUH RI SKRWRDIILQLW\ SUREHV DQG ZLWK GLIIHUHQWO\
VKDSHG GLD]LULQH EDVHG 3/V
patterns of PLs 3 and 5 (Fig. 1.8a, right panel). Protein labeling of probe 10 is a little higher than that of probes 9 and 11. We suspect the ligand part of probe 10 increased the overall protein labeling. In living cells, the overall protein-labeling patterns created by probes 9, 10, and 11 were consistent with the patterns for PLs 3, 4, and 5 (Fig. 1.8a, left panel). Photoaffinity probes with diazirine-based PLs (9, 10, and 11) were more specific than probes with benzophenone-based PLs (7 and 8). The target protein tubulin was clearly labeled by probes 9, 10, and 11, which supports the superiority of diazirine-based probes over benzophenone-based ones.6a,14 The photoaffinity probe with a diazirine-based linear PL (9) labeled tubulin more selectively than the probe with a benzophenone-based linear PL (7).
Nonspecific protein labeling by branched probes (8 and 10) was also markedly reduced than that by linear probes (7 and 9). Most importantly, the smaller branched diazirine-based probe (11) eliminated more nonspecific binding than all other photoaffinity probes.
To analyze the protein-labeling patterns with higher resolution, we performed dual-color 2D-gel electrophoresis using 9, 10, and 11. In cell lysates, none of the protein-labeling patterns for all these probes was affected by the presence of 6. Most proteins were labeled in yellow, which agreed with the results of 1D-gel experiments (Fig 1.8a and 1.8b). In contrast, we observed clear differences among protein-labeling patterns by 9, 10, and 11 upon treatment with a large excess of soluble ligand 6 in living cells; several proteins were labeled in red (Fig. 1.8b). The number of protein spots in red was reduced as PLs were changed from linear (9) to branched (10) and to smaller branched PLs (11). Among proteins labeled by probe 9, one of the proteins located on the right-hand side of the 2D gel was lactate dehydrogenase, a specific binder of a linear diazirine-based PL, which is not specific to agent 6 as we previously reported.13 Other proteins labeled by 9, 10, and 11 were located in the upper left region of the 2D gel (dotted
rectangle). In the magnified images (Fig. 3d), the color-labeling patterns of three protein spots were determined by the molecular shape of PLs in the
)LJXUH D 3URWHLQ ODEHOLQJ SDWWHUQV IRU SUREHV DQG RQ ' JHO HOHFWURSKRUHVLV ȝ0 ȝ0 IRU OLYLQJ FHOOV DQG ȝ0 IRU FHOO O\VDWH WDUJHW SURWHLQ WXEXOLQ 3UREH VHOHFWLYHO\ ODEHOV WXEXOLQ LQ FRPSDULVRQ ZLWK SUREHV DQG E 3URWHLQ ODEHOLQJ SDWWHUQV IRU SUREHV DQG RQ ' JHO HOHFWURSKRUHVLV ȝ0 ȝ0 IRU OLYLQJ FHOOV DQG ȝ0 IRU FHOO O\VDWH 5HG IOXRUHVFHQFH SURWHLQ ODEHOHG E\ SUREH RU *UHHQ IOXRUHVFHQFH SURWHLQ ODEHOHG E\ SUREH RU LQ WKH SUHVHQFH RI DJHQW F 3DUW RI HDFK ' JHO ZKLWH GDVKHG UHFWDQJXODU LQ )LJ F ZDV PDJQLILHG 7DUJHW DQG RII WDUJHW SURWHLQ ODEHOLQJ LV GHSHQGHQW RQ WKH PROHFXODU VKDSH RI 3/V D YLPHQWLQ E WXEXOLQ F +63
photoaffinity probes. Probe 9 labeled proteins a, b, and c in red. Probe 10 labeled protein a and b, and probe 11 labeled protein b in red. Protein a, b, and c were excised from 2D gel and trypsinized for MS analysis. We have previously demonstrated that vimentin (protein a) and HSP60 (protein c)11 are not the target proteins of agent 6. Only tubulin (protein b) is the target protein of agent 6, confirmed by functional biochemical assays.11 The photoaffinity probe 11 with a smaller branched PL selectively labeled the target protein tubulin. Probes 9 and 10 labeled tubulin, but they also bound other non-target proteins; such behavior increases the amount of time and efforts put in target validation. These results confirmed that photoaffinity probes with branched PLs are generally better than those with linear PLs.
Moreover, a smaller branched PL in this study shows lower nonspecific labeling and higher selectivity toward target protein, tubulin.
1.4. Conclusion
In conclusion, we systematically studied the molecular shape-dependent protein labeling of PLs. Direct comparison of 5 different PLs with various molecular shapes and photoactivatable moieties showed significantly reduced nonspecific protein labeling by branched PLs in comparison with linear PLs in living cells. This result is probably due to the high conformational flexibility of linear PLs. The application of these findings in the design of photoaffinity probes clearly confirmed the superiority of branched PLs in specific labeling procedures. Exploiting the molecular shape-dependent properties of PLs, we synthesized a tubulin-selective photoaffinity probe 11 and demonstrated that the photoaffinity-based approach with a well-designed probe can identify the target proteins in living cells effectively. Currently, we plan to apply our result to a series of bioactive compounds having known multiple target proteins to monitor the labeling efficiency of compactly branched PL toward each target protein.
1.5. Materials and methods
Cell culture procedure. HeLa (human cervical adenocarcinoma cell line) was obtained from American Type Culture Collection [ATCC, USA]. HeLa cells were cultured in RPMI 1640 [GIBCO, USA] supplemented with 10%
(v/v) fetal bovine serum [GIBCO, USA] and 1% (v/v) antibiotic- antimycotic solution [GIBCO, USA]. The cells were maintained in a humidified atmosphere of 5% CO2 and 95% air at 37 C, and cultured in 7 )ODVN >1DOJHQH 1XQF ,QWHUQDWLRQDO 86$@ DFFRUGLQJ WR PDQXIDFWXUHUV¶
instruction. The growth medium was changed every two to three days. Cells were grown to confluence prior to the experiment.
Antiproliferative activity assay. Cell viability was measured to determine the cytotoxicity of our probe using the Cell Counting Kit (CCK)-8 assay [Dojindo, Japan] and the experimental procedure is based on the PDQXIDFWXUHU¶V PDQXDO +H/D FHOOV ZHUH FXOWXUHG LQWR -well plates at a density of 2 × 103 cells/well for 24 h, followed by the treatment of 6, 7, 8, 9, 10, and 11. After 72 h incubation ZLWK HDFK FRPSRXQG ȝ/ RI :67-8 solution [2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4- disulfophenyl)-2H-tetrazolium, monosodium salt] was added to each well, and plates were incubated for additional 1 h at 37 °C. The absorbance of each well at 450 nm was measured using Synergy HT [Bio-Tek, USA]. The percentage of cell viability was calculated by following formula: % cell viability = (mean absorbance in test wells) / (mean absorbance in control well) × 100. Each experiment was performed in triplicate.
1D Gel Fluorescence Imaging
Cell lysate labeling. HeLa cell (150 dish * 3) was scrapped with cold
Ca2+- and Mg2+-free phosphate buffered saline (PBS) [WelGENE, S. Korea]
and centrifuged. The supernatant was discarded, and cell pellet was kept at
±80 C until use. RIPA buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 1% NP- 40, 0.5% deoxycholate, protease inhibitor [Roche, Switzerland]) was added to the cells for lysis. The cells were incubated for 15 min on ice. The cell lysate was centrifuged at 4 °C, 13000 rpm for 15 min. Supernatant was taken, and the protein concentration was measured with BCA assay kit [Thermo, USA], and protein concentration was adjusted to 1 mg/mL. The protein and compounds was mixed. The mixture was incubated at RT for 30 min. 365-nm UV light from BLAK-Ray (B-100AP) UV lamp [UVP, USA] was irradiated to the mixture for 30 min on ice. The mixture was under click chemistry with Cy5-azide [Lumiprobe, USA] (40 M), tris[(1- benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA) [Sigma, USA] (100
M), CuSO4 [Sigma, USA] (1 mM), tris(2-carboxyethyl)phosphine (TCEP) [TCI, Japan] (1 mM) and t-BuOH [Sigma, USA] (5%) for 1 h. 5X Laemmli buffer was added and incubated at 95 °C for 5 min. The protein samples were separated by 1DGE and scanned with Typhoon Trio.
Live cell labeling. HeLa cells were seeded on 6 well plates. Compounds were treated for 3 h. 356-nm UV light was irradiated to the mixture for 30 min on ice. The cells were wash with PBS and kept at ±80 C until use.
RIPA buffer was added to the cells for lysis. The cells were incubated for 15 min on ice. The cell lysate was scrapped and centrifuged at 4 °C, 13000 rpm for 15 min. Supernatant was taken and the protein concentration was measured with BCA assay, and protein concentration was adjusted to 1 mg/mL. The mixture was under click chemistry with Cy5-azide (40 M), TBTA (100 M), CuSO4 (1 mM), TCEP (1 mM) and t-BuOH (5%) for 1 h. 5X Laemmli sample buffer was added and incubated at 95 °C for 5 min.
The protein samples were separated by 1DGE and scanned with Typhoon
Trio.
Fluorescence detection and quantification. The in-gel fluorescence signal was visualized at the Cy3 (532 nm excitation) or Cy5 (633 nm excitation) channel by Typhoon Trio [Amersham Bioscience, USA] and analyzed by ImageQuant TL program [Amersham Bioscience, USA].
2D Gel Fluorescence Imaging
Cell lysate labeling. HeLa cell (150 dish * 3) was scrapped in cold PBS and centrifuged. The supernatant was discarded, and cell pellet was kept at
±80 °C until use. RIPA buffer was added to the cells for lysis. The cells were incubated for 15min on ice. The cell lysate was centrifuged at 4 °C, 13000 rpm for 15 min. Supernatant was taken, the protein concentration was measured with BCA assay, and protein concentration was adjusted to 1 mg/mL. The protein and compounds were mixed. The mixture was incubated at RT for 30 min. 356-nm UV light was irradiated to the mixture for 30 min on ice. The mixture was under click chemistry with Cy5-azide or Cy3-azide [Lumiprobe, USA] (40 M), TBTA (100 M), CuSO4 (1 mM), TCEP (1 mM) and t-BuOH (5%) for 1 h. Acetone was added to the mixture for precipitation, and the mixture was kept at ±20 C for 20 min.
The mixture was centrifuged at 4 C, 14,000 rpm for 10 min. Supernatant was discarded, and the pellet was washed with cold acetone two times. The pellet was resolved with rehydration buffer (7 M Urea, 2 M Thiourea, 2%
CHAPS (w/v), 40 mM DTT, IPG buffer (5 l/ml) in ddwater). The proteome labeled with photoaffinity probe in the absence (labeled with Cy5-azide) and presence of 6 (labeled with Cy3-azide) were mixed (1:1 ratio). The proteins were separated on 2DGE and scanned with Typhoon Trio.
Live cell labeling. HeLa cells were seeded on 6 well plate. The cells were treated with compounds for 3 h. 356-nm UV light was irradiated to the mixture for 30 min on ice. The cells were wash with PBS and kept at ±80 C until use. RIPA buffer was added to the cells for lysis. The cells were incubated for 15 min on ice. The cell lysate was scrapped and centrifuged at 4 °C, 13000 rpm for 15 min. Supernatant was taken and the protein concentration was measured with BCA assay and protein concentration was adjusted to 1 mg/mL. The mixture was under click chemistry with Cy5- azide or Cy3-azide (40 M), TBTA (100 M), CuSO4 (1 mM), TCEP (1 mM) and t-BuOH (5%) for 1 h. Acetone was added to the mixture for precipitation, and the mixture was kept at ±20 C for 20 min. The mixture was centrifuged at 4 C, 14000 rpm for 10 min. Supernatant was discarded, and the pellet was washed with cold acetone two times. The pellet was resolved with rehydration buffer. The proteome labeled with photoaffinity probe in the absence (labeled with Cy5-azide) and presence of 6 (labeled with Cy3-azide) were mixed (1:1 ratio). The proteins were separated on 2DGE and scanned with Typhoon Trio.
2-dimensional gel electrophoresis (2DGE). Isoelectric focusing (IEF) was performed with 24 cm pH 3 10 ImmobilineTM Drystrip gel [GE healthcare, USA] using Ettan IPGphor3 IEF system [GE healthcare, USA]. The Drystrip was loaded to 12% SDS-PAGE gel, and proteins were separated by Ettan Daltsix [GE healthcare, USA].
MS Analysis for Protein Identification
Protein spots were excised from 2D gel and dehydrated in acetonitrile for 10 min. Acetonitrile was removed and dried under reduced pressure. For mass analysis, the resulting gel pieces were re-swelled at 4 °C for 45 min
in buffer containing trypsin and 50 mM (NH4)2CO3 and incubated overnight at 37 °C for tryptic digestion. The samples with gel pieces were centrifuged, and the supernatant was collected for mass analysis. The residual peptides in gel pieces were further extracted with 50% acetonitrile containing 20 mM (NH4)2CO3 and 5% formic acid three times at room temperature. The combined peptide samples were condensed down in SpeedVac until the desired sample concentration was reached. MS analysis was performed with the instruments in NICEM at Seoul National University. LC-MS/MS experiments were performed using an integrated system consisting of HPLC [Dionex, Ultimate 3000 RSLCnano system, USA] interfaced to Q Exactive [Thermo Scientific, USA] equipped with a nano-electrospray ionization source. Peptides were reconstituted in solvent A [water/acetonitrile (98:2, v/v), 0.1% formic acid] and then injected into LC- nano ESI-MS/MS system. Samples were first trapped on a trap column [Acclaim pepmap100, 100 m i.d. 20 mm, 5 m, 10 nm, Thermo Scientific, USA] and washed for 10 min with 98% solvent A and 2%
solvent B [water/acetonitrile (2:98, v/v), 0.1% Formic acid] at a flow rate of 4 L/min, and then separated on a Zorbax 300SB-C18 capillary column (75 m i.d. 150 mm, 3.5 m, 10 nm) at a flow rate of 300 nL/min. The LC gradient was run at 2% to 45% solvent B over 30 min, then from 45%
to 70% over 10 min, followed by 70% solvent B for 5 min, and finally 5%
solvent B for 15 min. Resulting peptides were electrosprayed through a coated silica tip [FS360-20-10-N20-C12, PicoTip emitter, New Objective]
at an ion spray voltage of 2,000 eV. The raw data from Q Exactive was processed with Proteome Discoverer 1.3 software [Thermo Scientific, USA]. To process an MS/MS spectrum, a thorough search was performed against a NCBI database. All the protein MS data can be found in excel file of supporting information.
5HIHUHQFHV
1 (a) B. J. Leslie and P. J. Hergenrother, Chem. Soc. Rev., 2008, 37, 1347±
1360; (b) Y. Su, J. Ge, B. Zhu, Y.-G. Zheng, Q. Zhu and S. Q. Yao, Curr.
Opin. Chem. Biol., 2013, 17, 768±775; (c) M. Schenone, V. Dancik, B. K.
Wagner and P. A. Clemons, Nat. Chem. Biol., 2013, 9, 232±240.
2 S. Sato, A. Murata, T. Orihara, T. Shirakawa, K. Suenaga, H. Kigoshi and M. Uesugi, Chem. Biol., 2011, 18, 131±139.
3 (a) J. Park, M. Koh and S. B. Park, Mol. BioSyst., 2013, 9, 544±550; (b) S.
Sato, A. Murata, T. Shirakawa and M. Uesugi, Chem. Biol., 2010, 17, 616±
623; (c) U. Rix and G. Superti-Furga, Nat. Chem. Biol., 2009, 5, 616±624.
4 (a) P. Y. Yang, K. Liu, M. H. Ngai, M. J. Lear, M. R. Wenk and S. Q. Yao, J. Am. Chem. Soc., 2010, 132 í b) E. Smith and I. Collins, Future Med. Chem., 2015, 7, 159±183.
5 F. Kotzyba-Hibert, I. Kapfer and M. Goeldner, Angew. Chem. Int. Ed., 1995, 34 í .
6 (a) Z. Li, P. Hao, L. Li, C. Y. J. Tan, X. Cheng, G. Y. J. Chen, S. K. Sze, H.-M. Shen and S. Q. Yao, Angew. Chem. Int. Ed., 2013, 52 í (b) Z. Li, D. Wang, L. Li, S. Pan, Z. Na, C. Y. J. Tan and S. Q. Yao, J. Am.
Chem. Soc., 2014, 136 í
7 (a) J. S. Cisar and B. F. Cravatt, J. Am. Chem. Soc., 2012, 134, í (b) T. Kambe, B. E. Correia, M. J. Niphakis and B. F.
Cravatt, J. Am. Chem. Soc., 2014, 136 í
8 (a) G. Li, Y. Liu, Y. Liu, L. Chen, S. Wu, Y. Liu and X. Li, Angew. Chem.
Int. Ed., 2013, 52 í b) G. Li, Y. Liu, X. Yu and X. Li, Bioconjugate Chem., 2014, 25, 1172±1180.
9 M. J. Niphakis, K. M. Lum, A. B. Cognetta III, B. E. Correia, T.-A. Ichu, J. Olucha, S. J. Brown, S. Kundu, F. Piscitelli, H. Rosen and B. F. Cravatt, Cell, 2015, 161, 1668í1680.
10 H. Zhou, G. Rivas and A. P. Minton, Annu. Rev. Biophys., 2008, 37, 375±
397.
11 J. Park, S. Oh and S. B. Park, Angew. Chem. Int. Ed., 2012, 51, 5447±5451.
12 Y. K. Kim, J.-S. Lee, X. Bi, H.-H. Ha, S. H. Ng, Y.-H. Ahn, J.-J. Lee, B.
K. Wagner, P. A. Clemons and Y.-T. Chang, Angew. Chem. Int. Ed., 2011, 50, 2761±2763.
13 J. Park, M. Koh, J. Y. Koo, S. Lee and S. B. Park, ACS Chem. Biol., 2016, 1, 44±52.
14 H. Shi, C. J. Zhang, G. Y. J. Chen and S. Q. Yao, J. Am. Chem. Soc., 2012, 134 í .
$SSHQGLFHV
*HQHUDO ,QIRUPDWLRQ IRU 6\QWKHVLV
7KH + DQG & 105 VSHFWUD ZHUH UHFRUGHG RQ D 9DULDQ '' 05 DQG D 9DULDQ ,QRYD >9DULDQ $VVRF 86$@ DQG FKHPLFDO VKLIWV ZHUH PHDVXUHG LQ SSP GRZQILHOG IURP LQWHUQDO WHWUDPHWK\OVLODQH 706 VWDQGDUG RU VSHFLILF VROYHQW VLJQDO 0XOWLSOLFLW\ ZDV LQGLFDWHG DV IROORZV V VLQJOHW G GRXEOHW W WULSOHW T TXDUWHW P PXOWLSOHW GG GRXEOHW RI GRXEOHW GW GRXEOHW RI WULSOHW WG WULSOHW RI GRXEOHW TG TXDUWHW RI GRXEOHW TXLQG TXLQWHW RI GRXEOHW EUV EURDG VLQJOHW HWF &RXSOLQJ FRQVWDQWV ZHUH UHSRUWHG LQ +] /RZ UHVROXWLRQ PDVV VSHFWURPHWU\ /506 DQDO\VHV ZHUH SHUIRUPHG ZLWK )LQQLJDQ 064 3OXV 6XUYH\HU +3/& 06 V\VWHP >7KHUPR (OHFWURQ &RUS 86$@ XVLQJ HOHFWURQ VSUD\ LRQL]DWLRQ (6, $QDO\WLFDO WKLQ OD\HU FKURPDWRJUDSK\ 7/& ZDV SHUIRUPHG XVLQJ PP VLOLFD JHO FRDWHG .LVHOJHO ) SODWHV DQG WKH FRPSRQHQWV ZHUH YLVXDOL]HG E\ REVHUYDWLRQ XQGHU 89 OLJKW DQG QP RU E\ WUHDWLQJ 7/& SODWHV ZLWK DQLVDOGHK\GH SRWDVVLXP SHUPDQJDQDWH RU SKRVSKRPRO\EGLF DFLG IROORZHG E\ WKHUPDO YLVXDOL]DWLRQ 6LOLFD JHO ± PP XVHG LQ IODVK FROXPQ FKURPDWRJUDSK\ ZDV SXUFKDVHG IURP 0HUFN $OO UHDFWLRQV ZHUH FRQGXFWHG LQ RYHQ GULHG JODVVZDUH XQGHU GU\
DUJRQ DWPRVSKHUH XQOHVV RWKHUZLVH VSHFLILHG $OO VROYHQWV DQG RUJDQLF UHDJHQWV ZHUH SXUFKDVHG IURP FRPPHUFLDO YHQGHUV >6LJPD $OGULFK 7&, DQG $OID $HVDU@ DQG XVHG ZLWKRXW IXUWKHU SXULILFDWLRQ XQOHVV RWKHUZLVH PHQWLRQHG
3UHSDUDWLRQ RI %HQ]RSKHQRQH /LQNHUV ± FRPSRXQG
Ŷ WHUW %XW\O KH[ \QDPLGR EHQ]R\O SKHQ\O DPLQR R[RSURS\O FDUEDPDWH
7KH V\QWKHVLV RI ZDV SHUIRUPHG XVLQJ SUHYLRXVO\
UHSRUWHG SURFHGXUH
6FKHPH 6 6\QWKHVLV RI %HQ]RSKHQRQH /LQNHU
5HDJHQWV DQG FRQGLWLRQV D 1 %RF SURSDQHGLDPLQH +$78 ',3($ '0) &
K E 3LSHULGLQH '0) U W PLQ F +H[\QRLF DFLG +$78 ',3($ '0) U W K RYHUDOO \LHOG
6WHS D 7R D P/ DQK\GURXV '0) VROXWLRQ RI )PRF EHQ]R\O / SKHQ\ODODQLQH PPRO HTXLY DQG +$78 HTXLY 1 %RF SURSDQHGLDPLQH HTXLY DQG ',3($ HTXLY ZHUH DGGHG DW & 7KH UHDFWLRQ PL[WXUH ZDV VWLUUHG DW & IRU K 7KHQ WKH UHDFWLRQ VROXWLRQ ZDV GLOXWHG ZLWK HWK\O DFHWDWH DQG ZDWHU 7KH DTXHRXV OD\HU ZDV H[WUDFWHG WKUHH WLPHV ZLWK HWK\O DFHWDWH 7KH RUJDQLF OD\HU ZDV HYDSRUDWHG XQGHU UHGXFHG SUHVVXUH WR SURYLGH WKH FUXGH DPLQH SURGXFW 7KH FRPELQHG RUJDQLF OD\HU ZDV GULHG RYHU DQK\GURXV 0J62 V DQG ILOWHUHG WKURXJK D FHOLWH SDFNHG JODVV ILOWHU 7KH ILOWUDWH ZDV FRQFHQWUDWHG LQ YDFXR DQG ZDV GLUHFWO\ IRU QH[W UHDFWLRQ ZLWKRXW IXUWKHU SXULILFDWLRQ
6WHS E 7R D VROXWLRQ RI WKH UHVXOWLQJ FUXGH SURGXFW LQ '&0 P/ H[FHVV DPRXQW RI SLSHULGLQH P/ ZDV DGGHG 7KH VROXWLRQ ZDV VWLUUHG DW URRP WHPSHUDWXUH IRU K $IWHU FRPSOHWLRQ RI WKH UHDFWLRQ WKH UHDFWLRQ PL[WXUH ZDV FRQFHQWUDWHG LQ YDFXR DQG SXULILHG ZLWK VLOLFD JHO IODVK FROXPQ FKURPDWRJUDSK\ '&0 PHWKDQRO WR SURYLGH WKH GHVLUHG )PRF GHSURWHFWHG SURGXFW 5I DW '&0 PHWKDQRO
6WHS F 7R D UHVXOWLQJ DPLQH SURGXFW RI VWHS E DQG KH[\QRLF DFLG HTXLY LQ '0) P/ +$78 HTXLY DQG GLLVRSURS\OHWK\ODPLQH HTXLY ZHUH DGGHG 7KH UHDFWLRQ PL[WXUH ZDV VWLUUHG IRU K DW URRP WHPSHUDWXUH 7KHQ WKH UHDFWLRQ VROXWLRQ ZDV GLOXWHG ZLWK HWK\O DFHWDWH DQG ZDWHU 7KH DTXHRXV OD\HU ZDV H[WUDFWHG WKUHH WLPHV ZLWK HWK\O DFHWDWH 7KH FRPELQHG RUJDQLF OD\HU ZDV GULHG RYHU DQK\GURXV 0J62 V DQG ILOWHUHG WKURXJK D FHOLWH SDFNHG JODVV ILOWHU 7KH ILOWUDWH ZDV FRQFHQWUDWHG LQ YDFXR DQG SXULILHG ZLWK VLOLFD JHO IODVK FROXPQ FKURPDWRJUDSK\ WR SURYLGH WKH GHVLUHG SURGXFW VWHS
\LHOG
Ŷ WHUW %XW\O 6 EHQ]R\OSKHQ\O KH[
\QDPLGR SURSDQDPLGR SURS\O FDUEDPDWH
5I '&0 PHWKDQRO Y Y + 105 0+] &'&O į ± P + W - +] + W - +] + G - +] + EUV + G - +] + EUV + G - +] + ± P + ± P + W - +] + ± P + W - +] + ± P + EUV + V + & 105 0+] &'&O į /506 (6, P ] FDOFG IRU
& + 1 2 >0 +@ )RXQG
3UHSDUDWLRQ RI 'LD]LULQH /LQNHU 3UHFXUVRUV ± FRPSRXQGV 6FKHPH 6 6\QWKHVLV RI 'LD]LULQH /LQNHU 3UHFXUVRU
5HDJHQWV DQG FRQGLWLRQV D 1 2 'LPHWK\OK\GUR[\ODPLQH K\GURFKORULGH 100 ('&ā+&O '&0 ± & ĺ U W K E 0HWK\OPDJQHVLXP EURPLGH VROXWLRQ 7+) ± & ĺ & K F /LTXLG DPPRQLD ± & ĺ U W K G +\GUR[\ODPLQH 2 VXOIRQLF DFLG PHWKDQRO U W K H , 7($ & K
6WHS D 7R D VROXWLRQ RI %RF *OX 2W%X J HTXLY LQ DQK\GURXV '&0 P/ DW ± & 1 2 GLPHWK\OK\GUR[\ODPLQH K\GURFKORULGH HTXLY DQG 1 PHWK\OPRUSKROLQH HTXLY ZHUH DGGHG $IWHU VWLUULQJ IRU PLQ ('& K\GURFKORULGH HTXLY LQ '&0 P/ ZDV DGGHG RYHU PLQ 7KHQ WKH UHDFWLRQ PL[WXUH ZDV VWLUUHG IRU K DW URRP WHPSHUDWXUH 7KHQ WKH UHDFWLRQ PL[WXUH ZDV GLOXWHG ZLWK '&0 DQG GG+ 2 7KH DTXHRXV OD\HU ZDV H[WUDFWHG WKUHH WLPHV ZLWK '&0 7KH FRPELQHG RUJDQLF OD\HU ZDV GULHG RYHU DQK\GURXV 0J62 V DQG ILOWHUHG WKURXJK D FHOLWH SDFNHG JODVV ILOWHU 7KH ILOWUDWH ZDV FRQFHQWUDWHG LQ YDFXR DQG WKH UHVXOWLQJ FOHDU RLO ZDV GLUHFWO\ IRU WKH VXEVHTXHQW VXEVWLWXWLRQ UHDFWLRQ ZLWKRXW IXUWKHU SXULILFDWLRQ
6WHS E 7R D VROXWLRQ RI D UHVXOWLQJ FUXGH PL[WXUH IURP VWHS D LQ DQK\GURXV 7+) P/ 0 VROXWLRQ RI PHWK\OPDJQHVLXP EURPLGH LQ GLHWK\O HWKHU HTXLY ZDV DGGHG DW ± & 7KH UHVXOWLQJ PL[WXUH ZDV WKHQ VWLUUHG IRU K ZLWK WKH WHPSHUDWXUH ZDUPLQJ XS WR & 6XEVHTXHQWO\ WKH UHDFWLRQ ZDV TXHQFKHG E\ DGGLWLRQ RI ZDWHU P/
IROORZHG E\ H[WUDFWLRQ ZLWK WKUHH WLPHV ZLWK '&0 7KH RUJDQLF OD\HU ZDV ZDVKHG ZLWK EULQH 7KH FRPELQHG RUJDQLF OD\HU ZDV GULHG RYHU DQK\GURXV 0J62 V DQG ILOWHUHG WKURXJK D FHOLWH SDFNHG JODVV ILOWHU 7KH ILOWUDWH ZDV FRQFHQWUDWHG LQ YDFXR DQG SXULILHG ZLWK VLOLFD JHO IODVK FROXPQ FKURPDWRJUDSK\ WR SURYLGH WKH GHVLUHG SURGXFW \LHOG 105 VSHFWUD RI FRPSRXQG ZDV LQ DJUHHPHQW ZLWK WKDW UHSRUWHG LQ SUHYLRXV OLWHUDWXUH
6WHS F G H 7KH V\QWKHVLV RI IURP ZDV SHUIRUPHG XVLQJ SUHYLRXVO\ UHSRUWHG SURFHGXUH
3UHSDUDWLRQ RI 'LD]LULQH /LQNHUV ± FRPSRXQGV DQG
Ŷ WHUW %XW\O KH[ \Q \O + GLD]LULQ \O SURSDQDPLGR SURS\O FDUEDPDWH
7KH V\QWKHVLV RI ZDV SHUIRUPHG XVLQJ WKH SUHYLRXVO\ UHSRUWHG SURFHGXUH
6FKHPH 6 6\QWKHVLV RI GLD]LULQH OLQNHU
5HDJHQWV DQG FRQGLWLRQV D +&O GLR[DQH U W PLQ E +HSW\QRLF DFLG ('&āK\GURFKORULGH +2%W 7($ U W K F 7)$ '&0 U W K G 1 %RF SURSDQHGLDPLQH ('&āK\GURFKORULGH +2%W 7($ U W K
6WHS D 7R D VROXWLRQ RI PPRO HTXLY LQ DQK\GURXV GLR[DQH P/ 1 +&O VROXWLRQ LQ GLR[DQH P/ ZDV DGGHG DQG WKH UHDFWLRQ PL[WXUH ZDV VWLUUHG DW URRP WHPSHUDWXUH IRU PLQ 6DWXUDWHG DTXHRXV ELFDUERQDWH VROXWLRQ ZDV DGGHG WR WKH VROXWLRQ DQG WKH PL[WXUH ZDV H[WUDFWHG ZLWK '&0 7KH RUJDQLF OD\HU ZDV HYDSRUDWHG XQGHU UHGXFHG SUHVVXUH WR SURYLGH FUXGH DPLQH SURGXFW
6WHS E 7R D UHVXOWLQJ FUXGH SURGXFW RI VWHS D DQG KHSW\QRLF DFLG HTXLY LQ GLR[DQH P/ ('&āK\GURFKORULGH HTXLY K\GUR[\EHQ]RWULD]ROH HTXLY DQG WULHWK\ODPLQH HTXLY ZHUH DGGHG 7KH UHDFWLRQ PL[WXUH ZDV VWLUUHG IRU K DW URRP WHPSHUDWXUH 7KHQ WKH UHDFWLRQ VROXWLRQ ZDV GLOXWHG ZLWK '&0 DQG ZDWHU 7KH DTXHRXV OD\HU ZDV H[WUDFWHG WKUHH WLPHV ZLWK '&0 7KH FRPELQHG RUJDQLF OD\HU ZDV GULHG RYHU DQK\GURXV 0J62 V DQG ILOWHUHG WKURXJK D FHOLWH SDFNHG JODVV ILOWHU 7KH ILOWUDWH ZDV FRQFHQWUDWHG LQ YDFXR DQG SXULILHG ZLWK VLOLFD JHO IODVK FROXPQ FKURPDWRJUDSK\ WR SURYLGH WKH GHVLUHG SURGXFW VWHS \LHOG
6WHS F &RPSRXQG (1 equiv.) was dissolved in 15% (v/v) trifluoroacetic acid in DCM (2 mL). The mixture was stirred at room temperature for 14 h and FRQGHQVHG XQGHU UHGXFHG SUHVVXUH WR SURYLGH VXEVWLWXWHG DPLQH 7)$ VDOW 7KH UHVXOWLQJ PL[WXUH ZDV XVHG GLUHFWO\ IRU WKH VXEVHTXHQW DPLGH FRXSOLQJ UHDFWLRQ ZLWKRXW IXUWKHU SXULILFDWLRQ
6WHS G 7R D UHVXOWLQJ FUXGH VDOW RI VWHS F DQG 1 %RF SURSDQHGLDPLQH HTXLY LQ GLR[DQH P/ ('&āK\GURFKORULGH HTXLY K\GUR[\EHQ]RWULD]ROH HTXLY DQG WULHWK\ODPLQH HTXLY ZHUH DGGHG 7KH UHDFWLRQ PL[WXUH ZDV VWLUUHG IRU K DW URRP
WHPSHUDWXUH 7KHQ WKH UHDFWLRQ VROXWLRQ ZDV GLOXWHG ZLWK '&0 DQG ZDWHU 7KH DTXHRXV OD\HU ZDV H[WUDFWHG WKUHH WLPHV ZLWK '&0 7KH FRPELQHG RUJDQLF OD\HU ZDV GULHG RYHU DQK\GURXV 0J62 V DQG ILOWHUHG WKURXJK D FHOLWH SDFNHG JODVV ILOWHU 7KH ILOWUDWH ZDV FRQFHQWUDWHG LQ YDFXR DQG SXULILHG ZLWK VLOLFD JHO IODVK FROXPQ FKURPDWRJUDSK\ WR SURYLGH WKH GHVLUHG SURGXFW VWHS \LHOG
Ŷ WHUW %XW\O 6 KHSW \QDPLGR PHWK\O + GLD]LULQ \O EXWDQRDWH
5I HWK\O DFHWDWH Q KH[DQH Y Y + 105 0+] &'&O į G - +] + T - +] + ± P + W - +] + ± P + ± P + V + ± P + V + & 105 0+] &'&O į
Ŷ WHUW %XW\O 6 KHSW \QDPLGR PHWK\O + GLD]LULQ
\O EXWDQDPLGR SURS\O FDUEDPDWH
5I '&0 PHWKDQRO Y Y + 105 0+] &'&O į EUV + ± P + EUV + T - +] + T - +] + ± P + ± P + W - +] + ± P + ± P + V + ± P + V + & 105 0+] &'&O į /506 (6, P ] FDOFG IRU & + 1 2 >0 +@ )RXQG