• Tidak ada hasil yang ditemukan

저작자표시

N/A
N/A
Protected

Academic year: 2024

Membagikan "저작자표시"

Copied!
136
0
0

Teks penuh

(1)

저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다. 다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

(2)

'HYHORSPHQW RI 0HWKRGRORJLHV IRU 7DUJHW 3URWHLQ ,GHQWLILFDWLRQ 

DQG 7KHLU $SSOLFDWLRQ

(3)
(4)

$EVWUDFW

'HYHORSPHQW RI 0HWKRGRORJLHV

IRU 7DUJHW 3URWHLQ ,GHQWLILFDWLRQ DQG 7KHLU $SSOLFDWLRQ

+DQNXP 3DUN

'HSDUWPHQW RI %LRSK\VLFV DQG &KHPLFDO %LRORJ\

&ROOHJH RI 1DWXUDO 6FLHQFHV 6HRXO 1DWLRQDO 8QLYHUVLW\

,GHQWLI\LQJ WDUJHW SURWHLQV RI D ELRDFWLYH VPDOO PROHFXOH LV D VWDUWLQJ SRLQW RI  PHFKDQLVP RI DFWLRQ  0R$   VWXG\  LQ  FKHPLFDO  ELRORJ\   +RZHYHU   WDUJHW  LGHQWLILFDWLRQ  LV  RIWHQ  FRQVLGHUHG  DV  D  ERWWOHQHFN  LQ  GUXJ  GLVFRYHU\  EDVHG  RQ  SKHQRW\SLF DSSURDFK EHFDXVH WKHUH LV D JDS EHWZHHQ KLJKO\ FRPSOH[ ELRORJLFDO  QDWXUH  DQG  OLPLWHG  DQDO\WLFDO  PHWKRGRORJ\   7KLV  VWXG\  DLPV  WR  H[SDQG  PHWKRGRORJLHV  IRU WDUJHW LGHQWLILFDWLRQ DQG WR DSSO\ WKHP IRU FRPSRXQGV ZLWK  QRYHO ELRDFWLYLW\ 

3KRWRDIILQLW\ OLQNHUV  3/V  KDYH EHHQ XVHG WR PDNH D FRYDOHQW ERQG EHWZHHQ  VPDOO PROHFXOH DQG WDUJHW SURWHLQ  EXW QRQVSHFLILF ELQGLQJV WR RII WDUJHWV LQFUHDVH  GXH  WR  WKH  LQFRUSRUDWLRQ  RI  3/V   ,Q  &KDSWHU      D  UHODWLRQ  EHWZHHQ  PROHFXODU  VWUXFWXUH RI 3/V DQG QRQVSHFLILF ELQGLQJ ZDV V\VWHPDWLFDOO\ H[SORUHG  6PDOO DQG  EUDQFKHG IRUP VKRZHG PLQLPDO QRQVSHFLILF ELQGLQJ IRU ERWK EHQ]RSKHQRQH  DQG  GLD]LULQH HPEHGGHG  3/V   :LWK  EUDQFKHG  IRUP  3/V   HIILFLHQF\  RI  WKH  WDUJHW 

(5)

LGHQWLILFDWLRQ LQFUHDVHG GXH WR WKH UHGXFHG DUWLIDFWV FRPLQJ IURP QRQVSHFLILF RII  WDUJHW ELQGLQJV 

&KHPLFDO PRGLILFDWLRQ RI ELRDFWLYH FRPSRXQGV ZLWK IXQFWLRQDO JURXSV VXFK DV  3/V RU HOHFWURSKLOH LV VRPHWLPHV LPSRVVLEOH IRU FRPSRXQGV KDYLQJ YHU\ FRPSOH[ 

RU  VLPSOH  VWUXFWXUH   ZKLFK  DUH  RIWHQ  IRXQG  LQ  QDWXUDO  SURGXFWV   7KHUHIRUH   FKHPLFDO  ODEHOLQJ IUHH  PHWKRG  IRU  WDUJHW  LGHQWLILFDWLRQ  KDV  EHHQ  QHHGHG   ,Q 

&KDSWHU    D ODEHO IUHH WDUJHW LGHQWLILFDWLRQ PHWKRG  QDPHG DV 76 ),7*(  ZDV  GHYHORSHG  %DVHG RQ WKH SKHQRPHQRQ WKDW PHOWLQJ WHPSHUDWXUH RI WDUJHW SURWHLQ  LV  VKLIWHG  E\  GUXJ  ELQGLQJ   IOXRUHVFHQFH  GLIIHUHQFH  LQ  WZR GLPHQVLRQDO  HOHFWURSKRUHVLV  UHYHDOHG  WKH  WDUJHW  SURWHLQ  DPRQJ  FHOOXODU  SURWHRPH  $IWHU  WKH  SURRI RI FRQFHSW  VWXG\  ZLWK  PHWKRWUH[DWH   WKH  JHQHUDOLW\  RI  WKLV  PHWKRG  ZDV  VKRZQ  E\  LGHQWLI\LQJ  WDUJHW  SURWHLQV  RI  EU\RVWDWLQ     FRPSOH[  VWUXFWXUH   DQG  KRUGHQLQH  VLPSOH VWUXFWXUH  

,Q &KDSWHU    D FRPSUHKHQVLYH 0R$ VWXG\ ZDV FRQGXFWHG ZLWK D +H/D VSHFLILF  F\WRWR[LF  FRPSRXQG   $     $V  WKLV  FRPSRXQG  ORVW  LWV  DFWLYLW\  E\  PLQRU  PRGLILFDWLRQ  ODEHO IUHH WDUJHW LGHQWLILFDWLRQ  PHWKRGV LQFOXGLQJ 76 ),7*(  DQG  WKHUPDO SURWHRPH SURILOLQJ  733  ZHUH DSSOLHG  6HYHQWHHQ SURWHLQV WKDW VKRZHG  HLWKHU  GLIIHUHQFH  LQ  IOXRUHVFHQFH  VSRW  IURP  76 ),7*(  RU  VKLIW  LQ  PHOWLQJ  WHPSHUDWXUH  IURP  733  ZHUH  VHOHFWHG  DV  WDUJHW  FDQGLGDWHV   %DVHG  RQ  VL51$ 

PHGLDWHG JHQH NQRFNGRZQ DQG LQ YLWUR HQ]\PDWLF DVVD\  0XW7 KRPRORJ    07+   

ZDV  YDOLGDWHG  WR  EH  IXQFWLRQDOO\  UHODWHG  WR  WKH  SKHQRW\SH  RI  +H/D VSHFLILF  F\WRWR[LFLW\   07+   SURWHLQ  VDQLWL]HV  R[LGL]HG  QXFOHRWLGHV  WR  LQKLELW  WKHLU  LQVHUWLRQ LQWR  '1$  DQG  SUHYHQW '1$  GDPDJH   +RZHYHU   WKH  ELQGLQJ  EHWZHHQ  07+  DQG $   ZDV QRW VSHFLILF LQ +H/D FHOO EHFDXVH WKHUPDO VWDELOL]DWLRQ RI  07+  ZDV REVHUYHG QRW RQO\ LQ +H/D FHOO EXW DOVR LQ &D6NL FHOO ZKHUH $   GLG  QRW  VKRZ  F\WRWR[LFLW\   3URWHRPH  H[SUHVVLRQ  SURILOLQJ  FODLPHG  WKDW  07+  

H[SUHVVLRQ OHYHO ZDV QRW GLVWLQFW  EXW H[SUHVVLRQ OHYHOV RI SURWHLQV LQYROYHG LQ  '1$ PLVPDWFK UHSDLU ZHUH VXSSUHVVHG LQ +H/D FHOO FRPSDUHG WR &D6NL FHOO  7KXV   LW ZDV LQIHUUHG WKDW +H/D FHOO WHQGV WR EH VXVFHSWLEOH WR R[LGDWLYH VWUHVV WKDW ZRXOG 

(6)

UHVXOWV LQ '1$ GDPDJH  )OXRUHVFHQFH LPDJLQJ VKRZHG LQFUHDVH RI LQWUDFHOOXODU    R[R G*  DQG VXEVHTXHQW '1$ GDPDJH DQG DSRSWRVLV PDUNHUV ZHUH DFWLYDWHG  E\ $   LQ +H/D VHOHFWLYHO\ 

,Q VXPPDU\  LQ DQ HIIRUW WR FRQWULEXWH WR WKH ILHOG RI WDUJHW LGHQWLILFDWLRQ DQG  FKHPLFDO ELRORJ\  WKLV VWXG\ DQDO\]HG LPSDFW RI WKH PROHFXODU VKDSH RI 3/V RQ  QRQVSHFLILF ELQGLQJ  GHYHORSHG D ODEHO IUHH PHWKRG IRU WDUJHW LGHQWLILFDWLRQ  DQG  LQYHVWLJDWHG  0R$  RI  D  +H/D VSHFLILF  F\WRWR[LF  FRPSRXQG  ZLWK  WKH  ODEHO IUHH  PHWKRGV  $V WKH WDUJHW LGHQWLILFDWLRQ KDV EHHQ D KXUGOH IRU SKHQRW\SH EDVHG GUXJ  GLVFRYHU\  LQFUHDVH RI FXUUHQW NQRZOHGJH DQG WHFKQLTXH IRU WDUJHW LGHQWLILFDWLRQ  ZRXOG  SURPRWH  SKHQRW\SLF  VFUHHQLQJ   $V  D  UHVXOW   WKLV  YLUWXRXV  F\FOH  PD\ 

DFFHOHUDWH  WUDQVODWLRQDO  UHVHDUFK  YLD  GLVFRYHU\  RI  QRYHO  GUXJJDEOH  WDUJHWV  DQG  ILUVW LQ FODVV GUXJV 

.H\ZRUGV  WDUJHW LGHQWLILFDWLRQ  FKHPLFDO ELRORJ\  SKRWRDIILQLW\ OLQNHU  ODEHO IUHH  WDUJHW LGHQWLILFDWLRQ  FHOOXODU WKHUPDO VKLIW DVVD\  SURWHRPH H[SUHVVLRQ SURILOLQJ   PHFKDQLVP RI DFWLRQ

6WXGHQW QXPEHU      

(7)

7DEOH RI &RQWHQWV

$EVWUDFW««««««««««««««««««««««««        L

7DEOH RI &RQWHQWV««««««««««««««««««««««  LY

/LVW RI 7DEOHV«««««««««««««««««««««««    YLL

/LVW RI )LJXUHV«««««««««««««««««««««««  YLLL

,QWURGXFWLRQ««««««««««««««««««««««««   

&KDSWHU      1RQVSHFLILF  3URWHLQ  /DEHOLQJ  RI  3KRWRDIILQLW\  /LQNHUV 

&RUUHODWHV ZLWK 7KHLU 0ROHFXODU 6KDSHV LQ /LYLQJ &HOOV«««««      

     $EVWUDFW«««««««««««««««««««««««   

     ,QWURGXFWLRQ«««««««««««««««««««««    

     5HVXOWV DQG GLVFXVVLRQ«««««««««««««««««  

       'HVLJQ DQG LQ VLOLFR DQDO\VLV RI   SKRWRDIILQLW\ OLQNHUV«««     

       3URWHLQ ODEHOLQJ SDWWHUQV RI   SKRWRDIILQLW\ OLQNHUV«««««  

       3URWHLQ ODEHOLQJ RI EHQ]RSKHQRQH EDVHG SUREHV GHULYHG IURP 

D WXEXOLQ LQKLELWRU««««««««««««««««««««   

        3URWHLQ ODEHOLQJ  RI  GLD]LULQH EDVHG  SUREHV  GHULYHG  IURP  D 

WXEXOLQ LQKLELWRU««««««««««««««««««««      

     &RQFOXVLRQ««««««««««««««««««««««   

     0DWHULDOV DQG PHWKRGV««««« ««««««««««««   

     5HIHUHQFHV«««««««««««««««««««««      

     $SSHQGLFHV«««««««««««««««««««««      

&KDSWHU      /DEHO IUHH  7DUJHW  ,GHQWLILFDWLRQ  XVLQJ  ,Q JHO  )OXRUHVFHQFH  'LIIHUHQFH YLD 7KHUPDO 6WDELOLW\ 6KLIW«««««««««««««    

    $EVWUDFW«««««««««««««««««««««««     

     ,QWURGXFWLRQ«««««««««««««««««««««     

(8)

     5HVXOWV DQG GLVFXVVLRQ«««««««««««««««««     

        6WUDWHJ\  IRU  D  SURWHRPH ZLGH  WDUJHW  LGHQWLILFDWLRQ  XVLQJ 

WKHUPDO VWDELOLW\ VKLIW«««««««««««««««««««   

        3UHSDUDWLRQ  RI  WKUHH  IOXRUHVFHQW  G\HV  KDYLQJ  WKH  VDPH  HOHFWURSKRUHWLF PRELOLW\«««««««««««««««««      

       3URRI RI FRQFHSW WDUJHW LGHQWLILFDWLRQ VWXG\ ZLWK PHWKRWUH[DWH             ,GHQWLILFDWLRQ  RI  PHPEUDQH DQFKRUHG  WDUJHW  SURWHLQV  RI 

EU\RVWDWLQ  ««««««««««««««««««««««      

       ,GHQWLILFDWLRQ RI D QRYHO WDUJHW SURWHLQ RI KRUGHQLQH XVLQJ 76 

),7*(««««««««««««««««««««««««     

       3URV DQG FRQV RI WDUJHW LGHQWLILFDWLRQ XVLQJ 76 ),7*(«««     

     &RQFOXVLRQ««««««««««««««««««««««   

     0DWHULDOV DQG PHWKRGV«  ««««««««««««««««   

     5HIHUHQFHV««««««««««««««««««««««   

     $SSHQGLFHV«««««««««««««««««««««      

&KDSWHU      0HFKDQLVP RI DFWLRQ  6WXG\  RI  D  +H/D VSHFLILF  &\WRWR[LF 

$JHQW YLD /DEHO IUHH 7DUJHW ,GHQWLILFDWLRQ««««««««« «««    

     $EVWUDFW«««««««««««««««««««««««    

     ,QWURGXFWLRQ«««««««««««««««««««««     

     5HVXOWV DQG GLVFXVVLRQ«««««««««««««««««   

       'LVFRYHU\ RI D +H/D VSHFLILF F\WRWR[LF FRPSRXQG«««««   

      /DEHO IUHH WDUJHW LGHQWLILFDWLRQ XVLQJ 76 ),7*( DQG 733««      

       9HULILFDWLRQ RI UHODWLRQVKLS EHWZHHQ JHQH IXQFWLRQ DQG +H/D 

VSHFLILF F\WRWR[LFLW\«««««««««««««««««««     

       9DOLGDWLRQ RI /7$ +««««««««««««««««      

       9DOLGDWLRQ RI 07+   «««««««««««««   ««      

(9)

        ,QYHVWLJDWLRQ  RI  +H/D  FHOO  VSHFLILFLW\  ZLWK  UHJDUG  WR  07+  

VWDWXV«««««««««««««««««««««««««    

       6HOHFWLYH F\WRWR[LFLW\ RI $   UHVXOWLQJ IURP VXVFHSWLELOLW\ RI  +H/D FHOO WR R[LGDWLYH VWUHVV««««««««««««««««     

     &RQFOXVLRQ««««««««««««««««««««««    

     0DWHULDOV DQG PHWKRGV««««««««««««««« ««    

     5HIHUHQFHV««««««««««««««««««««««    

&RQFOXVLRQ««««««««««««««««««««««««      

««««««««««««««««««««««««       

(10)

/LVW RI 7DEOHV

7DEOH        3URWHLQ  LGHQWLILFDWLRQ  RI  WKH  VSRWV  LQ    '(  E\  PDVV  VSHFWURPHWU\«««««««««««««««««««««««  

  

7DEOH       5HODWLRQVKLS  EHWZHHQ  FKHPLFDO  VWUXFWXUH  DQG  GLIIHUHQWLDO  F\WRWR[LFLW\ WR +H/D DQG    7««««««««««««««««  

   

(11)

/LVW RI )LJXUHV

)LJXUH      &KHPLFDO VWUXFWXUH RI   SKRWRDIILQLW\ OLQNHUV ZLWK GLIIHUHQW 

PROHFXODU VKDSHV«««««««««««««««««««««     

)LJXUH      ,Q VLOLFR DQDO\VLV RI   3/V««««««««««««««  

)LJXUH      3URWHRPH ODEHOHG XVLQJ 3/V LQ OLYLQJ FHOOV DQG FHOO O\VDWHV«  

)LJXUH      6FKHPDWLF LOOXVWUDWLRQ RI WKH PROHFXODU VKDSH GHSHQGHQF\ RI 

SURWHLQ ODEHOLQJ««««««««««««««««««««««   

)LJXUH      6WUXFWXUH RI WXEXOLQ LQKLELWRU   DQG LWV SKRWRDIILQLW\ SUREHV 

  DQG  «««««««««««««««««««««««««      

)LJXUH      3URWHLQ ODEHOLQJ SDWWHUQ IRU SUREHV   DQG  «««««««   

)LJXUH      6WUXFWXUH RI SKRWRDIILQLW\ SUREHV        DQG   «««««    

)LJXUH      3URWHLQ ODEHOLQJ SDWWHUQV IRU SUREHV        DQG   ««««     

)LJXUH      6FKHPH RI WKH 76 ),7*( H[SHULPHQW  ««««««««     

)LJXUH      &KHPLFDO VWUXFWXUH  IRUPXOD  DQG PROHFXODU ZHLJKW RI WKUHH 

IOXRUHVFHQW G\HV««««««««««««««««««««««    

)LJXUH        5HSUHVHQWDWLYH  LPDJHV  VKRZLQJ  WKH  VDPH  PRELOLW\  RI  SURWHRPHV FRQMXJDWHG ZLWK WKUHH GLIIHUHQW G\HV««««««««««   

)LJXUH      8QELDVHG LGHQWLILFDWLRQ RI WKH WDUJHW SURWHLQ RI PHWKRWUH[DWH     )LJXUH        ,GHQWLILFDWLRQ  RI  WK\PLG\ODWH  V\QWKDVH  DV  DQRWKHU  WDUJHW 

SURWHLQ RI PHWKRWUH[DWH«««««««««««««««««««    

)LJXUH       7KHUPDO  GHVWDELOL]DWLRQ  RI  WKH  PHPEUDQH DQFKRUHG  WDUJHW 

SURWHLQ RI EU\RVWDWLQ  «««««««««««««««««««     

)LJXUH        $SSHDUDQFH  RI  UHG  DQG  JUHHQ  VSRWV  XSRQ  WUHDWPHQW  RI 

EU\RVWDWLQ   ZLWKRXW KHDW GHQDWXUDWLRQ«««««««««««««    

)LJXUH      (IIHFW RI WKH WUHDWPHQW WLPH RQ SURWHLQ VSRW VKLIW GXH WR SRVW 

WUDQVODWLRQDO PRGLILFDWLRQ««««««««««««««««««    

)LJXUH      ,GHQWLILFDWLRQ RI WKH QRYHO WDUJHW SURWHLQ RI KRUGHQLQH««     

(12)

)LJXUH       'HVFULSWLRQ RI WKH DQDO\VLV SURFHGXUH LQ WKH 76 ),7*(«     

)LJXUH      'LVFRYHU\ RI D +H/D VSHFLILF F\WRWR[LF FRPSRXQG« ««     

)LJXUH      7DUJHW FDQGLGDWHV LGHQWLILHG IURP HLWKHU 76 ),7*( RU 733         )LJXUH       7KHUPDO  VWDELOL]DWLRQ  RI  /7$ +  FRQILUPHG  E\ 76 ),7*( 

DQG 733«««««««««««««««««««««««««     

)LJXUH        9DOLGDWLRQ  RI  OHXNRWULHQH  $   K\GURODVH  /7$ +   E\ 

FRPSDULQJ ZLWK D NQRZQ /7$ + LQKLELWRU  6&      $««««««      

)LJXUH      7KHUPDO VWDELOL]DWLRQ RI 07+  FRQILUPHG E\ 76 ),7*( DQG 

733«««««««««««««««««««««««««««    

)LJXUH      9DOLGDWLRQ RI 0XW7 KRPRORJ  «««««««««««      

)LJXUH      ,QYHVWLJDWLRQ RI 07+  VSHFLILFLW\ LQ +H/D FHOO«««««     

)LJXUH        ([SUHVVLRQ  OHYHOV  RI  SURWHLQV  LQYROYHG  LQ  '1$  PLVPDWFK 

UHSDLU««««««««««««««««««««««««  ««    

)LJXUH      6XVFHSWLELOLW\ RI +H/D FHOO WR R[LGDWLYH VWUHVV«««««       

)LJXUH       )OXRUHVFHQFH LPDJLQJ RI   R[R G* LQ +H/D DQG &D6NL FHOOV     )LJXUH       :HVWHUQ EORWWLQJ RI '1$ GDPDJH UHVSRQVH DQG DSRSWRVLV  PDUNHUV LQ +H/D DQG &D6NL FHOOV«««««««««««««««      

(13)

,QWURGXFWLRQ

&KHPLFDO ELRORJ\ LV D ILHOG RI VWXG\LQJ ELRORJLFDO V\VWHP XVLQJ YDULRXV FKHPLFDO  WRROV  8VLQJ VPDOO PROHFXOHV DV WKH SHUWXUEDJHQV WR GLVVHFW ELRORJ\ FRPSULVH DQ  LPSRUWDQW  SRUWLRQ  LQ  WKH  FKHPLFDO  ELRORJ\   7KLV  NLQG  RI  UHVHDUFK  LQFOXGHV  SUHSDUDWLRQ RI VPDOO PROHFXOH OLEUDULHV  GLVFRYHU\ RI KLW FRPSRXQGV ZLWK GHVLUHG  ELRDFWLYLW\  DQG LQYHVWLJDWLRQ RI D PHFKDQLVP RI DFWLRQ  0R$  RI WKH FRPSRXQG   7UDQVODWLRQ  RI  WKH  EDVLF  VFLHQWLILF  UHVHDUFK  FDQ  OHDG  WR  GHYHORSPHQW  RI  WKH  ELRDFWLYH VPDOO PROHFXOHV LQWR FOLQLFDO WKHUDSHXWLFV 

7KHUH DUH  WZR  ZD\V WR ILQG  ELRDFWLYH  VPDOO  PROHFXOHV    )LUVWO\   LQ WKH WDUJHW  EDVHG DSSURDFK  FKHPLFDO PRGXODWRUV RI D SUHGHWHUPLQHG SURWHLQ DUH VFUHHQHG   7KLV LV D NQRZOHGJH GULYHQ ZD\  DQG ZKHWKHU WKH FRPSRXQG LQGXFH WKH GHVLUHG  SKHQRW\SH VWURQJO\ GHSHQGV RQ ELRORJLFDO FKDUDFWHUV RI WKH SURWHLQ  6HFRQGO\  LQ  WKH  SKHQRW\SH EDVHG  DSSURDFK   FKHPLFDO  PRGXODWRUV  WKDW  LQGXFH  D  FHUWDLQ  SKHQRW\SH LQ FXOWXUHG FHOOV RU PRGHO DQLPDOV DUH VFUHHQHG  7KLV LV DQ XQELDVHG  DSSURDFK DQG KDYH D SRVVLELOLW\ WR ILQG QHZO\ GUXJJDEOH WDUJHWV RU QHRPRUSKLF  IXQFWLRQ  RI  NQRZQ  SURWHLQV   :KLOH  WUDGLWLRQDOO\  WDUJHW EDVHG  VFUHHQLQJ  KDV  GLVFRYHUHG ORWV RI DSSURYHG GUXJV  SKHQRW\SLF VFUHHQLQJ RYHUWRRN DSSURYHG ILUVW  LQ FODVV GUXJV LQ YLUWXH RI WKH SURJUHVV RI DVVD\ V\VWHP   +RZHYHU  GLVFORVLQJ D  0R$ RI WKH KLW FRPSRXQG ODJV EHKLQG GXH WR WKH XQELDVHG RULJLQ RI SKHQRW\SLF  VFUHHQLQJ 

7DUJHW SURWHLQ LV D GLUHFW ELQGLQJ SDUWQHU RI WKH FRPSRXQG  DQG SKDUPDFRORJLFDO  HIIHFWV DSSHDU DV D UHVXOW RI WKLV UHFRJQLWLRQ RI WKH FRPSRXQG E\ ELRORJLFDO V\VWHP   7KXV  LGHQWLILFDWLRQ RI WKH WDUJHW SURWHLQ LV WKRXJKW WR EH D FUXFLDO DQG GHFLVLYH  VWDUWLQJ SRLQW RI  IRU DFDGHPLF UHVHDUFK DQG SKDUPDFHXWLFDO LQGXVWU\  +RZHYHU   WDUJHW  LGHQWLILFDWLRQ  LV  RIWHQ  D  ERWWOHQHFN  VWHS  EHFDXVH  WKHUH  LV  D  JDS  EHWZHHQ  KLJKO\ FRPSOH[ ELRORJLFDO QDWXUH DQG LQVXIILFLHQW DQDO\WLFDO PHWKRGRORJ\ 

,Q WKH FRQYHQWLRQDO FKHPLFDO SURWHRPLFV WR LGHQWLI\ WDUJHW SURWHLQV  WKH ELRDFWLYH 

(14)

FRPSRXQGV  KDG  WR  EH  LPPRELOL]HG  RQ  WKH  VROLG  VXSSRUW   9DULRXV  FKHPLFDO  PRGLILFDWLRQV  RI  WKH  RULJLQDO  KLW  FRPSRXQG  UHYHDOHG  VWUXFWXUH DFWLYLW\ 

UHODWLRQVKLS  DQG IXQFWLRQDO KDQGOHV ZHUH DWWDFKHG WKURXJK WKH DOORZHG VLWHV  )RU  H[DPSOH  DFHW\OHQH PRLHW\ ZDV LQFRUSRUDWHG WR HQDEOH FOLFN UHDFWLRQ ZLWK ELRWLQ  D]LGH   ZKLFK  ZHUH  XVHG  WR  LPPRELOL]H  WKH  FRPSRXQG  RQ  DYLGLQ  EHDGV   7R  RYHUFRPH  WKH  WUDQVLHQW  ELQGLQJ  EHWZHHQ  FRPSRXQGV  DQG  WDUJHW  SURWHLQV   SKRWRDIILQLW\ OLQNHUV VXFK DV EHQ]RSKHQRQH  GLD]LULQH  DU\O D]LGH ZHUH LQWURGXFHG  WR WKH RULJLQDO KLW FRPSRXQG  $V WKH FRPSRXQG ZDV FRYDOHQWO\ OLQNHG WR WDUJHW  SURWHLQV  XSRQ  LUUDGLDWLRQ  ZLWK  89  OLJKW   DQG  ORZ DIILQLW\  LQWHUDFWLRQ  FRXOG  EH  LGHQWLILHG  +RZHYHU  WKHUH KDYH EHHQ OLPLWHG LQIRUPDWLRQ KRZ WR GHVLJQ HIIHFWLYH  SKRWRDIILQLW\ JURXS  5HVHDUFKHUV UHSRUWHG WKH LQYHQWRU\ RI EDFNJURXQG ELQGLQJ  SURWHLQV WR HDFK SKRWRDIILQLW\ PRLHWLHV LQFOXGLQJ EHQ]RSKHQRQH  GLD]LULQH  DQG  DU\O  D]LGH      1HYHUWKHOHVV   LQIRUPDWLRQ  DERXW  WKH  HIIHFW  RI  OLQNHU  SDUW  WKDW  FRQQHFWV RULJLQDO KLW FRPSRXQGV DQG SKRWRDIILQLW\ PRLHWLHV LV VWLOO GHPDQGLQJ 

  ,Q &KDSWHU    LW ZDV H[SORUHG WKDW KRZ PROHFXODU VKDSH RI SKRWRDIILQLW\ OLQNHUV  3/V   DIIHFWHG  QRQVSHFLILF SURWHLQ  ODEHOLQJ   3/V  ZLWK VPDOO  VL]H  DQG  EUDQFKHG  IRUP  VKRZHG  OHVV  QRQVSHFLILF  RII WDUJHW  ELQGLQJV  $V  WKH  QRQVSHFLILF  ELQGLQJ  UHVXOWHG LQ IDOVH SRVLWLYHV  V\VWHPDWLF DQDO\VLV RI LQWULQVLF ELQGLQJ SDWWHUQV RI 3/V  FRXOG LQFUHDVH VXFFHVV UDWH RI WDUJHW LGHQWLILFDWLRQ 

  ,Q VRPH FDVHV  FKHPLFDO PRGLILFDWLRQV ZLWK IXQFWLRQDO JURXSV VXFK DV DON\QH  KDQGOH  RU 3/V  DUH LPSRVVLEOH EHFDXVH  RULJLQDO  ELRDFWLYH  FRPSRXQGV ORVH  WKHLU  DFWLYLW\  7R RYHUFRPH WKLV SUREOHP  D ODEHO IUHH PHWKRG RI WDUJHW LGHQWLILFDWLRQ  ZDV GHYHORSHG EDVHG RQ WKHUPDO VWDELOLW\ VKLIW LQ &KDSWHU    8SRQ GUXJ WUHDWPHQW  DQG VXEVHTXHQW KHDWLQJ  PHOWLQJ WHPSHUDWXUH RI WDUJHW SURWHLQ ZDV VKLIWHG  DQG WKH  WDUJHW SURWHLQV ZHUH LGHQWLILHG E\ IOXRUHVFHQFH GLIIHUHQFH RQ WZR GLPHQVLRQDO JHO  HOHFWURSKRUHVLV   7DUJHW  LGHQWLILFDWLRQV  RI  QDWXUDO  SURGXFWV  KDYLQJ  FRPSOH[ 

VWUXFWXUH  EU\RVWDWLQ    DQG VLPSOH VWUXFWXUH  KRUGHQLQH  ZHUH  GHPRQVWUDWHG WR  VKRZ WKH XVHIXOQHVV RI WKLV QHZ PHWKRG 

(15)

  ,Q  &KDSWHU      D  FRPSUHKHQVLYH  0R$  VWXG\  RI  D  +H/D VSHFLILF  DQWLFDQFHU  FRPSRXQG ZDV FRQGXFWHG  $V WKH KLW FRPSRXQG ZDV VHQVLWLYH WR PLQRU FKHPLFDO  PRGLILFDWLRQ   WDUJHW  LGHQWLILFDWLRQ  ZDV  GRQH  E\  XQELDVHG  ODEHO IUHH  PHWKRGV  

$PRQJ PRUH WKDQ D GR]HQ RI FDQGLGDWHV  0XW7 KRPRORJ    07+   SURWHLQ ZDV  FRQILUPHG DV D UHOHYDQW WDUJHW SURWHLQ E\ ELRSK\VLFDO DVVD\  LQ YLWUR HQ]\PDWLF  DVVD\   DQG  51$  LQWHUIHUHQFH  VWXG\   3URWHRPH  H[SUHVVLRQ  SURILOLQJ  DQDO\VLV  VKRZHG WKDW '1$ PLVPDWFK UHSDLU SURWHLQV ZHUH GRZQ UHJXODWHG LQ +H/D  DQG LW  ZDV LQIHUUHG WKDW WKH +H/D VSHFLILFLW\ FDPH IURP D VHQVLWLYH UHVSRQVH WR R[LGDWLYH  VWUHVV  $V D UHVXOW  +H/D FHOO VSHFLILFDOO\ VKRZHG LQFUHDVH RI R[LGL]HG QXFOHRWLGHV   '1$ GDPDJH UHVSRQVH  DQG DSRSWRVLV XSRQ WUHDWPHQW RI WKH DQWLFDQFHU FRPSRXQG 

5HIHUHQFHV

1 Schenone, M.; Dancik, V.; Wagner, B. K.; Clemons, P. A., Target identification and mechanism of action in chemical biology and drug discovery. Nat. Chem. Biol. 2013, 9 (4), 232-40.

2 Swinney, D. C.; Anthony, J., How were new medicines discovered? Nat.

Rev. Drug Discov. 2011, 10 (7), 507-519. 

3 Park, J.; Koh, M.; Koo, J. Y.; Lee, S.; Park, S. B., Investigation of Specific Binding Proteins to Photoaffinity Linkers for Efficient Deconvolution of Target Protein. ACS Chem. Biol. 2016, 11 (1), 44-52.

4  Kleiner, P.; Heydenreuter, W.; Stahl, M.; Korotkov, V. S.; Sieber, S. A., A Whole Proteome Inventory of Background Photocrosslinker Binding.

Angew. Chem. Int. Ed. 2017, 56 (5), 1396-1401.

(16)

&KDSWHU   

1RQVSHFLILF 3URWHLQ /DEHOLQJ RI 3KRWRDIILQLW\ /LQNHUV 

&RUUHODWHV ZLWK 7KHLU 0ROHFXODU 6KDSHV LQ /LYLQJ &HOOV

     $EVWUDFW

+HUHLQ  ZH  UHSRUW  PROHFXODU  VKDSH GHSHQGHQW  QRQVSHFLILF  ODEHOLQJ  RI  SKRWRDIILQLW\  OLQNHUV  3/V   LQ  WKH  FHOOXODU  SURWHRPH   /LQHDU  3/V  KDG  D  KLJKHU  WHQGHQF\  WR HQJDJH  LQ  QRQVSHFLILF  ELQGLQJ  WKDQ  EUDQFKHG  3/V   ([SORLWLQJ WKLV  SURSHUW\   ZH  GLVFRYHUHG  D  VPDOOHU  EUDQFKHG  GLD]LULQH EDVHG  3/  IRU  WKH  EHVW  SKRWRDIILQLW\ SUREH ZLWK PLQLPDO QRQVSHFLILF ELQGLQJ FKDUDFWHULVWLFV IURP DPRQJ    SUREHV ZLWK GLIIHUHQW 3/V  

 5HSURGXFWLRQ  RI  WKH  IROORZLQJ  DUWLFOH  IRU  WKH  WKHVLV  LV  DOORZHG  E\  WKH  5R\DO  6RFLHW\  RI  &KHPLVWU\  Park, H.; Koo, J. Y.; Srikanth, Y. V. V.; Oh, S.; Le e, J.; Park, J.; Park, S. B., Nonspecific protein labeling of photoaffinity linkers correlates with their molecular shapes in living cells. Chem. Co mmun. 2016, 52 (34), 5828-5831. 

(17)

1.2. Introduction

Photoaffinity-based approach has received attention over the last few decades for target identification and activity-based protein profiling.1 In the conventional affinity-based protein pull-down approach, bioactive small molecules with excellent potency (subnanomolar range activity) are generally required for successful enrichment of the interacting proteins.2 Even with highly potent bioactive compounds, experimental conditions such as salt concentration, type of detergents, and temperature often interfere with the protein±small molecule interaction. This may lead to unexpected experimental failure in target identification.3 In contrast, the photoaffinity-based target identification approach secures the interaction between small-molecule probes and their binding proteins under any experimental condition via the formation of UV-mediated covalent bonds.

This approach expands the range of target identification from only high- affinity molecules to low-affinity molecules (micromolar range activity).4 However, nonspecific protein labeling by photoaffinity linkers (PLs) has been a major concern in the photoaffinity-based approach.5±9

(18)

1.3. Results and discussion

1.3.1. Design and in silico analysis of 5 photoaffinity linkers

Although a list of reports have emphasized the importance of probe design strategy for photoaffinity-based target identification, the molecular shape of PLs has been overlooked in the design of photoaffinity probes. Initially, we hypothesized that the molecular shape of PLs determines their flexibility, resulting in different protein-labeling patterns caused by nonspecific interaction. Following this initial hypothesis, we attempted to find a PL with minimal nonspecific labeling. To investigate molecular shape-dependent protein-labeling, we designed and synthesized 5 different PLs (1, 2, 3, 4, and 5) containing commonly used photoactivatable moieties (benzophenone and diazirine) and an acetylene moiety for bio-orthogonal fluorescence labeling via Click chemistry (Fig. 1.1). Benzophenone-based PLs 1 and 2 have different shapes (1: linear, 2: branched), as do diazirine- based PLs 3 and 4. In addition, we designed and synthesized a branched PL 5 with the same number of total carbon and nitrogen atoms as the linear PL 3, but smaller than another branched PL 4. In silico analysis of surface charges showed clear differences between linear and branched PLs (Fig.

)LJXUH       &KHPLFDO  VWUXFWXUH  RI     SKRWRDIILQLW\  OLQNHUV  ZLWK  GLIIHUHQW  PROHFXODU VKDSHV 

(19)

1.2a), which might lead to different noncovalent interactions with various proteins. The difference in molecular shapes resulted in a different number of conformers. As shown in Fig. 1.2b, we simulated and counted the number of PL conformers having less than 2 kcal/mol difference from its energy minimum. The numerical value of 2 kcal/mol was derived from our assumption that conformers of each PL within a range of 2 kcal/mol from energy minimum can freely exist in the cellular environment under the physiological condition. The calculation results showed that linear PLs (1 and 3) have more conformers than branched PLs (2, 4, and 5). The conformational flexibility of linear PLs might cause the nonspecific, indiscriminate interactions via induced fit with various proteins. Based on their molecular shapes, we hypothesized that linear PLs would show more nonspecific protein labeling than branched PLs.

1.3.2. Protein-labeling patterns of 5 photoaffinity linkers

To examine the actual protein-labeling patterns of each PL, we mixed the 5 different PLs with either cell lysates or living cells. The mixtures were then subjected to UV irradiation to fix their transient binding with proteins by generating covalent bonds with the bound proteins. Proteins crosslinked with each PL were labeled with Cy5-azide using copper-mediated bioorthogonal Click chemistry and visualized in a fluorescent scanner after

)LJXUH       ,Q  VLOLFR  DQDO\VLV  RI     3/V   D   6XUIDFH  PRGHOLQJ  RI  WKH     3/V   E   7KH  FRQIRUPHU QXPEHU RI 3/V QHDU WKH HQHUJ\ PLQLPXP 

(20)

1D-gel electrophoresis. Each PL showed different protein-labeling patterns in cell lysates and living cells (Fig. 1.3). As expected from calculated data, the protein-labeling patterns, particularly in living cells, were highly dependent on the molecular shapes of PLs. In living cells, branched PLs resulted in less nonspecific protein labeling than linear PLs. We also observed that the smaller branched PL 5 showed significantly reduced nonspecific labeling in comparison with the larger branched PL 4 (Fig. 1.3, right panel, 4 and 5), which was surprising given that these PL structures differ by only 4 methylene units (4: C21H35N5O4, 5: C17H27N5O4). This result is in accordance with the findings of a previous study reporting the importance of small PLs.6a In cell lysates, nonspecific protein labeling by PL 2 was significantly lower than that by PL 1, but the protein-labeling patterns of diazirine-based PLs (3, 4, and 5) were generally similar and showed a little difference in protein bands in accordance with changes of their molecular shapes. The overall differences in protein-labeling patterns by various diazirine-based PLs in cell lysates were not as marked as that in

)LJXUH      7KH SURWHRPH ODEHOHG XVLQJ 3/V       DQG       ȝ0 HDFK  LQ OLYLQJ  FHOOV DQG FHOO O\VDWHV ZDV VXEMHFWHG WR  ' JHO HOHFWURSKRUHVLV IRU GHWDLOHG DQDO\VLV  $  VLQJOH 6'6 3$*( JHO ZLWK 3/V       DQG   ZDV VFDQQHG ZLWK   GLIIHUHQW 307V GXH WR  KLJK QRQVSHFLILF ELQGLQJ RI 3/   

(21)

living cells, which might be due to the fact that the diazirine-based PL conformers are not as diverse as we expected. Considering the much higher protein concentrations and complex protein networks with various protein௅

protein interactions in living cells,10 protein complex surfaces inside living cells should be more diverse than those in cell lysate. We believe that the diverse protein surfaces in living cells delineate the difference in the protein-labeling patterns of diazirine-based PLs. This observation was confirmed again by 2D-gel electrophoresis. Examination of the nonspecific protein-labeling patterns of the 5 different PLs showed that in living cells, branched PLs tended to bind fewer proteins than linear PLs, which is in accordance with our original hypothesis regarding the molecular shape and conformational flexibility of PLs (Fig. 1.4).

1.3.3. Protein-labeling of benzophenone-based probes derived from a tubulin inhibitor

)LJXUH        6FKHPDWLF  LOOXVWUDWLRQ  RI  WKH  PROHFXODU  VKDSH GHSHQGHQF\  RI  SURWHLQ  ODEHOLQJ  7KH IOH[LELOLW\ RI OLQHDU PROHFXOHV LQFUHDVHV WKH ELQGLQJ WR YDULRXV SURWHLQV  

%UDQFKHG PROHFXOHV ELQG WR IHZHU SURWHLQV WKDQ OLQHDU PROHFXOHV GXH WR WKHLU UHVWULFWHG  FRQIRUPDWLRQDO IOH[LELOLW\ 

(22)

Based on this observation, we predicted that photoaffinity probes with branched PLs might show reduced nonspecific labeling and increased specific binding of the target proteins. To test this assumption, we designed a series of photoaffinity probes with various PLs using compound 6, reported as a tubulin-targeting anticancer agent.11 We first synthesized photoaffinity probes 7 and 8 by attaching benzophenone-based PLs 1 and 2 to the derivatives of 6 (Fig. 1.5). Then, we compared the protein-labeling patterns of probes 7 and 8 in either cell lysates or living cells in the absence or presence of agent 6. After photo-crosslinking, the proteomes were labeled with Cy5-azide and analyzed using 1D-gel electrophoresis. Probe 7 (with a linear PL) showed more nonspecific protein labeling than probe 8 (with a branched PL) in both cell lysates and living cells (Fig. 1.6a). The treatment concentration of each probe and agent 6 was chosen according to our previous report11,13 and a dose-dependent study. Interestingly, these protein-labeling patterns were consistent with those of PLs 1 and 2 themselves. However, tubulin was not selectively labeled by either probe 7 or 8 in cell lysates. In contrast, the overall protein-labeling patterns in living

)LJXUH      6WUXFWXUH RI WXEXOLQ LQKLELWRU   DQG LWV SKRWRDIILQLW\ SUREHV   DQG   ZLWK  GLIIHUHQWO\ VKDSHG EHQ]RSKHQRQH EDVHG 3/V 

(23)

cells by probe 7 were not perturbed by an excess amount of soluble ligand

)LJXUH        D   7KH  SURWHLQ ODEHOLQJ  SDWWHUQ  IRU  SUREHV     DQG     RQ   ' JHO  HOHFWURSKRUHVLV           ȝ0        ȝ0     WDUJHW SURWHLQ WXEXOLQ    E  7KH SURWHLQ  ODEHOLQJ SDWWHUQ IRU SUREHV   DQG   RQ  ' JHO HOHFWURSKRUHVLV           ȝ0         ȝ0    5HG  IOXRUHVFHQFH   SURWHLQV  ODEHOHG  E\  SUREH     RU      *UHHQ  IOXRUHVFHQFH   SURWHLQV ODEHOHG E\ SUREH   RU   LQ WKH SUHVHQFH RI DJHQW     F  3DUW RI HDFK  ' JHO  ZKLWH GDVKHG UHFWDQJOH LQ )LJ     E  ZDV PDJQLILHG  7DUJHW DQG RII WDUJHW SURWHLQ  ODEHOLQJ LV GHSHQGHQW RQ WKH PROHFXODU VKDSH RI 3/V  D  YLPHQWLQ  E  WXEXOLQ 

(24)

6 in the 1D gel. But, fewer proteins were labeled by 8 contained a branched PL than by 7. Moreover, the target protein tubulin (Fig. 1.6a: asterisk) was clearly labeled by 8; the labeling of target proteins by probe 8 was inhibited in the presence of soluble ligand 6, which was not observed for probe 7.

Therefore, we concluded that the protein-labeling patterns can be significantly affected by changing the molecular shapes of the PLs in the photoaffinity probes.

To improve the resolution of the protein analysis, we applied the dual- color system, running 2 different samples on a single and the largest 2D gel,11 which ruled out the gel-to-gel variation. We used Cy5-azide or Cy3- azide for bio-orthogonal reaction with proteins labeled with each photoaffinity probe in the absence or presence of 6, respectively. Proteins labeled in yellow (Cy3+Cy5) or green (Cy3) are likely to be nonspecific binders. In contrast, proteins showing as red (Cy5) are probably potential target proteins of soluble ligand 6. This substantially simplifies the target identification process. As observed in the 1D gel, the photoaffinity probe 7 showed more nonspecific binding than probe 8 in both cell lysates and living cells (Fig. 1.6b) and intensive protein labeling by probe 7, but not by 8, was observed in cell lysates. In terms of specificity/selectivity, both photoaffinity probes (7 and 8) failed to label the target protein tubulin in cell lysates (Fig. 1.6b and 1.6c), which demonstrates the importance of the cellular environment for the interaction between proteins and small molecules.12 In living cells, the protein-labeling intensities by probes 7 and 8 were not very different. However, the number of protein spots labeled by 7 was larger, as observed in 1D gel (Fig. 1.6a and 1.6b). The enlarged sections of 2D-gel images showed that not only the number of protein spots but also the labeling patterns depended on the molecular shapes of PLs (Fig.

1.6c). Protein a (vimentin) and protein b (tubulin) were labeled in yellow by 7, but in red by 8. To identify the protein, we excised the protein spot

(25)

from 2D gel and trypsinized for mass spectrometry (MS) analysis. The immunostaining results showed that 6 did not functionally modulate the vimentin filament. Although the probe 8 could label tubulin, its selectivity for target protein was good enough to be used as a tubulin probe.

1.3.4. Protein-labeling of diazirine-based probes derived from a tubulin inhibitor

To find the PL with the best selectivity, we moved our attention to diazirine-based PLs. Recent studies have reported the superior properties of diazirine-based PLs in comparison with benzophenone-based PLs.6a,14 Thus, we decided to reduce the nonspecific labeling of photoaffinity probes by using diazirine-based PLs (3, 4, and 5). We synthesized 3 different photoaffinity probes 9, 10, and 11 (Fig. 1.7). In cell lysates, an excess amount of soluble ligand 6 did not affect protein labeling by probes 9, 10, and 11. Protein labeling intensities of 9 and 11 were similar to each other, which was in accordance with the results observed for protein-labeling

)LJXUH       6WUXFWXUH  RI  SKRWRDIILQLW\  SUREHV           DQG      ZLWK  GLIIHUHQWO\ 

VKDSHG GLD]LULQH EDVHG 3/V 

(26)

patterns of PLs 3 and 5 (Fig. 1.8a, right panel). Protein labeling of probe 10 is a little higher than that of probes 9 and 11. We suspect the ligand part of probe 10 increased the overall protein labeling. In living cells, the overall protein-labeling patterns created by probes 9, 10, and 11 were consistent with the patterns for PLs 3, 4, and 5 (Fig. 1.8a, left panel). Photoaffinity probes with diazirine-based PLs (9, 10, and 11) were more specific than probes with benzophenone-based PLs (7 and 8). The target protein tubulin was clearly labeled by probes 9, 10, and 11, which supports the superiority of diazirine-based probes over benzophenone-based ones.6a,14 The photoaffinity probe with a diazirine-based linear PL (9) labeled tubulin more selectively than the probe with a benzophenone-based linear PL (7).

Nonspecific protein labeling by branched probes (8 and 10) was also markedly reduced than that by linear probes (7 and 9). Most importantly, the smaller branched diazirine-based probe (11) eliminated more nonspecific binding than all other photoaffinity probes.

To analyze the protein-labeling patterns with higher resolution, we performed dual-color 2D-gel electrophoresis using 9, 10, and 11. In cell lysates, none of the protein-labeling patterns for all these probes was affected by the presence of 6. Most proteins were labeled in yellow, which agreed with the results of 1D-gel experiments (Fig 1.8a and 1.8b). In contrast, we observed clear differences among protein-labeling patterns by 9, 10, and 11 upon treatment with a large excess of soluble ligand 6 in living cells; several proteins were labeled in red (Fig. 1.8b). The number of protein spots in red was reduced as PLs were changed from linear (9) to branched (10) and to smaller branched PLs (11). Among proteins labeled by probe 9, one of the proteins located on the right-hand side of the 2D gel was lactate dehydrogenase, a specific binder of a linear diazirine-based PL, which is not specific to agent 6 as we previously reported.13 Other proteins labeled by 9, 10, and 11 were located in the upper left region of the 2D gel (dotted

(27)

rectangle). In the magnified images (Fig. 3d), the color-labeling patterns of three protein spots were determined by the molecular shape of PLs in the

)LJXUH        D   3URWHLQ ODEHOLQJ  SDWWHUQV  IRU  SUREHV         DQG     RQ   ' JHO  HOHFWURSKRUHVLV        ȝ0        ȝ0 IRU OLYLQJ FHOOV DQG    ȝ0 IRU FHOO O\VDWH      WDUJHW SURWHLQ WXEXOLQ   3UREH    VHOHFWLYHO\ ODEHOV WXEXOLQ LQ FRPSDULVRQ ZLWK SUREHV   DQG       E   3URWHLQ ODEHOLQJ  SDWWHUQV  IRU  SUREHV           DQG      RQ   ' JHO  HOHFWURSKRUHVLV        ȝ0        ȝ0 IRU OLYLQJ FHOOV DQG    ȝ0 IRU FHOO O\VDWH    5HG IOXRUHVFHQFH  SURWHLQ ODEHOHG E\ SUREH        RU     *UHHQ IOXRUHVFHQFH  SURWHLQ  ODEHOHG E\ SUREH        RU    LQ WKH SUHVHQFH RI DJHQW     F  3DUW RI HDFK  ' JHO  ZKLWH  GDVKHG UHFWDQJXODU LQ )LJ   F  ZDV PDJQLILHG  7DUJHW DQG RII WDUJHW SURWHLQ ODEHOLQJ LV  GHSHQGHQW RQ WKH PROHFXODU VKDSH RI 3/V  D  YLPHQWLQ  E  WXEXOLQ  F  +63    

(28)

photoaffinity probes. Probe 9 labeled proteins a, b, and c in red. Probe 10 labeled protein a and b, and probe 11 labeled protein b in red. Protein a, b, and c were excised from 2D gel and trypsinized for MS analysis. We have previously demonstrated that vimentin (protein a) and HSP60 (protein c)11 are not the target proteins of agent 6. Only tubulin (protein b) is the target protein of agent 6, confirmed by functional biochemical assays.11 The photoaffinity probe 11 with a smaller branched PL selectively labeled the target protein tubulin. Probes 9 and 10 labeled tubulin, but they also bound other non-target proteins; such behavior increases the amount of time and efforts put in target validation. These results confirmed that photoaffinity probes with branched PLs are generally better than those with linear PLs.

Moreover, a smaller branched PL in this study shows lower nonspecific labeling and higher selectivity toward target protein, tubulin.

(29)

1.4. Conclusion

In conclusion, we systematically studied the molecular shape-dependent protein labeling of PLs. Direct comparison of 5 different PLs with various molecular shapes and photoactivatable moieties showed significantly reduced nonspecific protein labeling by branched PLs in comparison with linear PLs in living cells. This result is probably due to the high conformational flexibility of linear PLs. The application of these findings in the design of photoaffinity probes clearly confirmed the superiority of branched PLs in specific labeling procedures. Exploiting the molecular shape-dependent properties of PLs, we synthesized a tubulin-selective photoaffinity probe 11 and demonstrated that the photoaffinity-based approach with a well-designed probe can identify the target proteins in living cells effectively. Currently, we plan to apply our result to a series of bioactive compounds having known multiple target proteins to monitor the labeling efficiency of compactly branched PL toward each target protein.

(30)

1.5. Materials and methods

Cell culture procedure. HeLa (human cervical adenocarcinoma cell line) was obtained from American Type Culture Collection [ATCC, USA]. HeLa cells were cultured in RPMI 1640 [GIBCO, USA] supplemented with 10%

(v/v) fetal bovine serum [GIBCO, USA] and 1% (v/v) antibiotic- antimycotic solution [GIBCO, USA]. The cells were maintained in a humidified atmosphere of 5% CO2 and 95% air at 37 C, and cultured in 7   )ODVN >1DOJHQH 1XQF ,QWHUQDWLRQDO  86$@ DFFRUGLQJ WR PDQXIDFWXUHUV¶ 

instruction. The growth medium was changed every two to three days. Cells were grown to confluence prior to the experiment.

Antiproliferative activity assay. Cell viability was measured to determine the cytotoxicity of our probe using the Cell Counting Kit (CCK)-8 assay [Dojindo, Japan] and the experimental procedure is based on the PDQXIDFWXUHU¶V PDQXDO  +H/D FHOOV ZHUH FXOWXUHG LQWR   -well plates at a density of 2 × 103 cells/well for 24 h, followed by the treatment of 6, 7, 8, 9, 10, and 11. After 72 h incubation ZLWK HDFK FRPSRXQG     ȝ/ RI :67-8 solution [2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4- disulfophenyl)-2H-tetrazolium, monosodium salt] was added to each well, and plates were incubated for additional 1 h at 37 °C. The absorbance of each well at 450 nm was measured using Synergy HT [Bio-Tek, USA]. The percentage of cell viability was calculated by following formula: % cell viability = (mean absorbance in test wells) / (mean absorbance in control well) × 100. Each experiment was performed in triplicate.

1D Gel Fluorescence Imaging

Cell lysate labeling. HeLa cell (150 dish * 3) was scrapped with cold

(31)

Ca2+- and Mg2+-free phosphate buffered saline (PBS) [WelGENE, S. Korea]

and centrifuged. The supernatant was discarded, and cell pellet was kept at

±80 C until use. RIPA buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 1% NP- 40, 0.5% deoxycholate, protease inhibitor [Roche, Switzerland]) was added to the cells for lysis. The cells were incubated for 15 min on ice. The cell lysate was centrifuged at 4 °C, 13000 rpm for 15 min. Supernatant was taken, and the protein concentration was measured with BCA assay kit [Thermo, USA], and protein concentration was adjusted to 1 mg/mL. The protein and compounds was mixed. The mixture was incubated at RT for 30 min. 365-nm UV light from BLAK-Ray (B-100AP) UV lamp [UVP, USA] was irradiated to the mixture for 30 min on ice. The mixture was under click chemistry with Cy5-azide [Lumiprobe, USA] (40 M), tris[(1- benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA) [Sigma, USA] (100

M), CuSO4 [Sigma, USA] (1 mM), tris(2-carboxyethyl)phosphine (TCEP) [TCI, Japan] (1 mM) and t-BuOH [Sigma, USA] (5%) for 1 h. 5X Laemmli buffer was added and incubated at 95 °C for 5 min. The protein samples were separated by 1DGE and scanned with Typhoon Trio.

Live cell labeling. HeLa cells were seeded on 6 well plates. Compounds were treated for 3 h. 356-nm UV light was irradiated to the mixture for 30 min on ice. The cells were wash with PBS and kept at ±80 C until use.

RIPA buffer was added to the cells for lysis. The cells were incubated for 15 min on ice. The cell lysate was scrapped and centrifuged at 4 °C, 13000 rpm for 15 min. Supernatant was taken and the protein concentration was measured with BCA assay, and protein concentration was adjusted to 1 mg/mL. The mixture was under click chemistry with Cy5-azide (40 M), TBTA (100 M), CuSO4 (1 mM), TCEP (1 mM) and t-BuOH (5%) for 1 h. 5X Laemmli sample buffer was added and incubated at 95 °C for 5 min.

The protein samples were separated by 1DGE and scanned with Typhoon

(32)

Trio.

Fluorescence detection and quantification. The in-gel fluorescence signal was visualized at the Cy3 (532 nm excitation) or Cy5 (633 nm excitation) channel by Typhoon Trio [Amersham Bioscience, USA] and analyzed by ImageQuant TL program [Amersham Bioscience, USA].

2D Gel Fluorescence Imaging

Cell lysate labeling. HeLa cell (150 dish * 3) was scrapped in cold PBS and centrifuged. The supernatant was discarded, and cell pellet was kept at

±80 °C until use. RIPA buffer was added to the cells for lysis. The cells were incubated for 15min on ice. The cell lysate was centrifuged at 4 °C, 13000 rpm for 15 min. Supernatant was taken, the protein concentration was measured with BCA assay, and protein concentration was adjusted to 1 mg/mL. The protein and compounds were mixed. The mixture was incubated at RT for 30 min. 356-nm UV light was irradiated to the mixture for 30 min on ice. The mixture was under click chemistry with Cy5-azide or Cy3-azide [Lumiprobe, USA] (40 M), TBTA (100 M), CuSO4 (1 mM), TCEP (1 mM) and t-BuOH (5%) for 1 h. Acetone was added to the mixture for precipitation, and the mixture was kept at ±20 C for 20 min.

The mixture was centrifuged at 4 C, 14,000 rpm for 10 min. Supernatant was discarded, and the pellet was washed with cold acetone two times. The pellet was resolved with rehydration buffer (7 M Urea, 2 M Thiourea, 2%

CHAPS (w/v), 40 mM DTT, IPG buffer (5 l/ml) in ddwater). The proteome labeled with photoaffinity probe in the absence (labeled with Cy5-azide) and presence of 6 (labeled with Cy3-azide) were mixed (1:1 ratio). The proteins were separated on 2DGE and scanned with Typhoon Trio.

(33)

Live cell labeling. HeLa cells were seeded on 6 well plate. The cells were treated with compounds for 3 h. 356-nm UV light was irradiated to the mixture for 30 min on ice. The cells were wash with PBS and kept at ±80 C until use. RIPA buffer was added to the cells for lysis. The cells were incubated for 15 min on ice. The cell lysate was scrapped and centrifuged at 4 °C, 13000 rpm for 15 min. Supernatant was taken and the protein concentration was measured with BCA assay and protein concentration was adjusted to 1 mg/mL. The mixture was under click chemistry with Cy5- azide or Cy3-azide (40 M), TBTA (100 M), CuSO4 (1 mM), TCEP (1 mM) and t-BuOH (5%) for 1 h. Acetone was added to the mixture for precipitation, and the mixture was kept at ±20 C for 20 min. The mixture was centrifuged at 4 C, 14000 rpm for 10 min. Supernatant was discarded, and the pellet was washed with cold acetone two times. The pellet was resolved with rehydration buffer. The proteome labeled with photoaffinity probe in the absence (labeled with Cy5-azide) and presence of 6 (labeled with Cy3-azide) were mixed (1:1 ratio). The proteins were separated on 2DGE and scanned with Typhoon Trio.

2-dimensional gel electrophoresis (2DGE). Isoelectric focusing (IEF) was performed with 24 cm pH 3 10 ImmobilineTM Drystrip gel [GE healthcare, USA] using Ettan IPGphor3 IEF system [GE healthcare, USA]. The Drystrip was loaded to 12% SDS-PAGE gel, and proteins were separated by Ettan Daltsix [GE healthcare, USA].

MS Analysis for Protein Identification

Protein spots were excised from 2D gel and dehydrated in acetonitrile for 10 min. Acetonitrile was removed and dried under reduced pressure. For mass analysis, the resulting gel pieces were re-swelled at 4 °C for 45 min

(34)

in buffer containing trypsin and 50 mM (NH4)2CO3 and incubated overnight at 37 °C for tryptic digestion. The samples with gel pieces were centrifuged, and the supernatant was collected for mass analysis. The residual peptides in gel pieces were further extracted with 50% acetonitrile containing 20 mM (NH4)2CO3 and 5% formic acid three times at room temperature. The combined peptide samples were condensed down in SpeedVac until the desired sample concentration was reached. MS analysis was performed with the instruments in NICEM at Seoul National University. LC-MS/MS experiments were performed using an integrated system consisting of HPLC [Dionex, Ultimate 3000 RSLCnano system, USA] interfaced to Q Exactive [Thermo Scientific, USA] equipped with a nano-electrospray ionization source. Peptides were reconstituted in solvent A [water/acetonitrile (98:2, v/v), 0.1% formic acid] and then injected into LC- nano ESI-MS/MS system. Samples were first trapped on a trap column [Acclaim pepmap100, 100 m i.d. 20 mm, 5 m, 10 nm, Thermo Scientific, USA] and washed for 10 min with 98% solvent A and 2%

solvent B [water/acetonitrile (2:98, v/v), 0.1% Formic acid] at a flow rate of 4 L/min, and then separated on a Zorbax 300SB-C18 capillary column (75 m i.d. 150 mm, 3.5 m, 10 nm) at a flow rate of 300 nL/min. The LC gradient was run at 2% to 45% solvent B over 30 min, then from 45%

to 70% over 10 min, followed by 70% solvent B for 5 min, and finally 5%

solvent B for 15 min. Resulting peptides were electrosprayed through a coated silica tip [FS360-20-10-N20-C12, PicoTip emitter, New Objective]

at an ion spray voltage of 2,000 eV. The raw data from Q Exactive was processed with Proteome Discoverer 1.3 software [Thermo Scientific, USA]. To process an MS/MS spectrum, a thorough search was performed against a NCBI database. All the protein MS data can be found in excel file of supporting information.

(35)

     5HIHUHQFHV

1 (a) B. J. Leslie and P. J. Hergenrother, Chem. Soc. Rev., 2008, 37, 1347±

1360; (b) Y. Su, J. Ge, B. Zhu, Y.-G. Zheng, Q. Zhu and S. Q. Yao, Curr.

Opin. Chem. Biol., 2013, 17, 768±775; (c) M. Schenone, V. Dancik, B. K.

Wagner and P. A. Clemons, Nat. Chem. Biol., 2013, 9, 232±240.

2 S. Sato, A. Murata, T. Orihara, T. Shirakawa, K. Suenaga, H. Kigoshi and M. Uesugi, Chem. Biol., 2011, 18, 131±139.

3 (a) J. Park, M. Koh and S. B. Park, Mol. BioSyst., 2013, 9, 544±550; (b) S.

Sato, A. Murata, T. Shirakawa and M. Uesugi, Chem. Biol., 2010, 17, 616±

623; (c) U. Rix and G. Superti-Furga, Nat. Chem. Biol., 2009, 5, 616±624.

4 (a) P. Y. Yang, K. Liu, M. H. Ngai, M. J. Lear, M. R. Wenk and S. Q. Yao, J. Am. Chem. Soc., 2010, 132     í      b) E. Smith and I. Collins, Future Med. Chem., 2015, 7, 159±183.

5 F. Kotzyba-Hibert, I. Kapfer and M. Goeldner, Angew. Chem. Int. Ed., 1995, 34      í    .

6 (a) Z. Li, P. Hao, L. Li, C. Y. J. Tan, X. Cheng, G. Y. J. Chen, S. K. Sze, H.-M. Shen and S. Q. Yao, Angew. Chem. Int. Ed., 2013, 52      í       (b) Z. Li, D. Wang, L. Li, S. Pan, Z. Na, C. Y. J. Tan and S. Q. Yao, J. Am.

Chem. Soc., 2014, 136      í     

7 (a) J. S. Cisar and B. F. Cravatt, J. Am. Chem. Soc., 2012, 134,      í       (b) T. Kambe, B. E. Correia, M. J. Niphakis and B. F.

Cravatt, J. Am. Chem. Soc., 2014, 136       í      

8 (a) G. Li, Y. Liu, Y. Liu, L. Chen, S. Wu, Y. Liu and X. Li, Angew. Chem.

Int. Ed., 2013, 52       í       b) G. Li, Y. Liu, X. Yu and X. Li, Bioconjugate Chem., 2014, 25, 1172±1180.

(36)

9 M. J. Niphakis, K. M. Lum, A. B. Cognetta III, B. E. Correia, T.-A. Ichu, J. Olucha, S. J. Brown, S. Kundu, F. Piscitelli, H. Rosen and B. F. Cravatt, Cell, 2015, 161, 1668í1680.

10 H. Zhou, G. Rivas and A. P. Minton, Annu. Rev. Biophys., 2008, 37, 375±

397.

11 J. Park, S. Oh and S. B. Park, Angew. Chem. Int. Ed., 2012, 51, 5447±5451.

12 Y. K. Kim, J.-S. Lee, X. Bi, H.-H. Ha, S. H. Ng, Y.-H. Ahn, J.-J. Lee, B.

K. Wagner, P. A. Clemons and Y.-T. Chang, Angew. Chem. Int. Ed., 2011, 50, 2761±2763.

13 J. Park, M. Koh, J. Y. Koo, S. Lee and S. B. Park, ACS Chem. Biol., 2016, 1, 44±52.

14 H. Shi, C. J. Zhang, G. Y. J. Chen and S. Q. Yao, J. Am. Chem. Soc., 2012, 134      í    .

(37)

     $SSHQGLFHV

*HQHUDO ,QIRUPDWLRQ IRU 6\QWKHVLV

7KH  + DQG   & 105 VSHFWUD ZHUH UHFRUGHG RQ D 9DULDQ '' 05    DQG D 9DULDQ ,QRYD      >9DULDQ $VVRF   86$@  DQG FKHPLFDO VKLIWV ZHUH PHDVXUHG LQ SSP GRZQILHOG IURP  LQWHUQDO  WHWUDPHWK\OVLODQH  706   VWDQGDUG  RU  VSHFLILF  VROYHQW  VLJQDO   0XOWLSOLFLW\  ZDV  LQGLFDWHG  DV  IROORZV   V  VLQJOHW    G  GRXEOHW    W  WULSOHW    T  TXDUWHW    P  PXOWLSOHW    GG  GRXEOHW RI GRXEOHW   GW  GRXEOHW RI WULSOHW   WG  WULSOHW RI GRXEOHW   TG  TXDUWHW RI GRXEOHW    TXLQG  TXLQWHW RI GRXEOHW   EUV  EURDG VLQJOHW   HWF  &RXSOLQJ FRQVWDQWV ZHUH UHSRUWHG LQ  +]  /RZ UHVROXWLRQ PDVV VSHFWURPHWU\  /506  DQDO\VHV ZHUH SHUIRUPHG ZLWK )LQQLJDQ  064  3OXV  6XUYH\HU  +3/& 06  V\VWHP  >7KHUPR  (OHFWURQ  &RUS    86$@  XVLQJ  HOHFWURQ  VSUD\ LRQL]DWLRQ  (6,   $QDO\WLFDO WKLQ OD\HU FKURPDWRJUDSK\  7/&  ZDV SHUIRUPHG XVLQJ       PP VLOLFD JHO FRDWHG .LVHOJHO    )    SODWHV  DQG WKH FRPSRQHQWV ZHUH YLVXDOL]HG  E\  REVHUYDWLRQ  XQGHU  89  OLJKW       DQG       QP   RU  E\  WUHDWLQJ  7/&  SODWHV  ZLWK  DQLVDOGHK\GH   SRWDVVLXP  SHUPDQJDQDWH  RU  SKRVSKRPRO\EGLF  DFLG  IROORZHG  E\  WKHUPDO  YLVXDOL]DWLRQ  6LOLFD JHO          ±      PP  XVHG LQ IODVK FROXPQ FKURPDWRJUDSK\ ZDV  SXUFKDVHG IURP 0HUFN  $OO UHDFWLRQV ZHUH FRQGXFWHG LQ RYHQ GULHG JODVVZDUH XQGHU GU\ 

DUJRQ  DWPRVSKHUH   XQOHVV  RWKHUZLVH  VSHFLILHG  $OO  VROYHQWV  DQG  RUJDQLF  UHDJHQWV  ZHUH  SXUFKDVHG  IURP  FRPPHUFLDO  YHQGHUV  >6LJPD $OGULFK   7&,   DQG $OID $HVDU@  DQG  XVHG  ZLWKRXW IXUWKHU SXULILFDWLRQ XQOHVV RWKHUZLVH PHQWLRQHG 

3UHSDUDWLRQ RI %HQ]RSKHQRQH /LQNHUV ± FRPSRXQG     

Ŷ WHUW %XW\O           KH[   \QDPLGR EHQ]R\O SKHQ\O DPLQR    R[RSURS\O FDUEDPDWH    

7KH V\QWKHVLV RI   ZDV SHUIRUPHG XVLQJ SUHYLRXVO\ 

UHSRUWHG SURFHGXUH  

6FKHPH 6   6\QWKHVLV RI %HQ]RSKHQRQH /LQNHU  

(38)

5HDJHQWV DQG FRQGLWLRQV   D  1 %RF     SURSDQHGLDPLQH  +$78  ',3($  '0)    ƒ&    

K   E  3LSHULGLQH  '0)  U W      PLQ   F    +H[\QRLF DFLG  +$78  ',3($  '0)  U W     K   RYHUDOO \LHOG      

6WHS D  7R D   P/ DQK\GURXV '0) VROXWLRQ RI )PRF   EHQ]R\O / SKHQ\ODODQLQH        PPRO      HTXLY    DQG  +$78       HTXLY    1 %RF     SURSDQHGLDPLQH       HTXLY    DQG  ',3($      HTXLY   ZHUH DGGHG DW   ƒ&  7KH UHDFWLRQ PL[WXUH ZDV VWLUUHG DW   ƒ& IRU   K   7KHQ  WKH UHDFWLRQ VROXWLRQ ZDV GLOXWHG ZLWK HWK\O DFHWDWH DQG ZDWHU  7KH DTXHRXV OD\HU  ZDV  H[WUDFWHG  WKUHH  WLPHV  ZLWK  HWK\O  DFHWDWH  7KH  RUJDQLF  OD\HU  ZDV  HYDSRUDWHG  XQGHU  UHGXFHG SUHVVXUH WR SURYLGH WKH FUXGH DPLQH SURGXFW  7KH FRPELQHG RUJDQLF OD\HU ZDV  GULHG  RYHU  DQK\GURXV  0J62  V   DQG  ILOWHUHG  WKURXJK  D  FHOLWH SDFNHG  JODVV  ILOWHU   7KH  ILOWUDWH  ZDV  FRQFHQWUDWHG LQ  YDFXR  DQG  ZDV  GLUHFWO\  IRU  QH[W  UHDFWLRQ  ZLWKRXW  IXUWKHU  SXULILFDWLRQ 

6WHS E  7R D VROXWLRQ RI WKH UHVXOWLQJ FUXGH SURGXFW LQ '&0    P/   H[FHVV DPRXQW RI  SLSHULGLQH    P/  ZDV DGGHG  7KH VROXWLRQ ZDV VWLUUHG DW URRP WHPSHUDWXUH IRU   K  $IWHU  FRPSOHWLRQ RI WKH UHDFWLRQ  WKH UHDFWLRQ PL[WXUH ZDV FRQFHQWUDWHG LQ YDFXR DQG SXULILHG  ZLWK  VLOLFD JHO  IODVK  FROXPQ  FKURPDWRJUDSK\  '&0 PHWKDQRO          WR  SURYLGH  WKH  GHVLUHG )PRF GHSURWHFWHG SURGXFW   5      DW '&0 PHWKDQRO       

6WHS F  7R D UHVXOWLQJ DPLQH SURGXFW RI VWHS E DQG   KH[\QRLF DFLG    HTXLY   LQ '0)     P/   +$78      HTXLY   DQG GLLVRSURS\OHWK\ODPLQH    HTXLY   ZHUH DGGHG  7KH UHDFWLRQ  PL[WXUH ZDV VWLUUHG IRU   K DW URRP WHPSHUDWXUH  7KHQ  WKH UHDFWLRQ VROXWLRQ ZDV GLOXWHG  ZLWK  HWK\O  DFHWDWH  DQG  ZDWHU  7KH  DTXHRXV  OD\HU  ZDV  H[WUDFWHG  WKUHH  WLPHV  ZLWK  HWK\O  DFHWDWH  7KH FRPELQHG  RUJDQLF  OD\HU  ZDV  GULHG  RYHU DQK\GURXV  0J62  V   DQG  ILOWHUHG  WKURXJK D FHOLWH SDFNHG JODVV ILOWHU  7KH ILOWUDWH ZDV FRQFHQWUDWHG LQ YDFXR DQG SXULILHG  ZLWK  VLOLFD JHO  IODVK  FROXPQ  FKURPDWRJUDSK\  WR  SURYLGH  WKH  GHVLUHG  SURGXFW       VWHS 

\LHOG      

(39)

Ŷ WHUW %XW\O  6           EHQ]R\OSKHQ\O     KH[   

\QDPLGR SURSDQDPLGR SURS\O FDUEDPDWH    

5       '&0 PHWKDQRO        Y Y    + 105      0+]  &'&O   į     ±      P   +          W  -       +]   +         W  -       +]   +         G  -       +]   +         EUV   +          G  -       +]   +         EUV   +         G  -       +]   +       ±      P   +        ±      P   +         W  -       +]   +       ±      P   +         W  -       +]   +        ±      P   +         EUV   +         V   +     & 105      0+]  &'&O   į                                                                                       /506 (6,    P ]  FDOFG  IRU 

&  +  1 2  >0 +@          )RXQG       

3UHSDUDWLRQ RI 'LD]LULQH /LQNHU 3UHFXUVRUV ± FRPSRXQGV          6FKHPH 6   6\QWKHVLV RI 'LD]LULQH /LQNHU 3UHFXUVRU   

5HDJHQWV  DQG  FRQGLWLRQV   D   1 2 'LPHWK\OK\GUR[\ODPLQH  K\GURFKORULGH   100   ('&ā+&O  '&0  ±   ƒ& ĺ U W      K   E  0HWK\OPDJQHVLXP EURPLGH VROXWLRQ  7+)  ±    ƒ& ĺ   ƒ&     K        F  /LTXLG DPPRQLD  ±   ƒ& ĺ U W      K   G  +\GUR[\ODPLQH  2 VXOIRQLF DFLG  PHWKDQRO  U W      K   H  ,   7($    ƒ&    K      

(40)

6WHS D  7R D VROXWLRQ RI %RF *OX 2W%X      J    HTXLY   LQ DQK\GURXV '&0     P/  DW ±    ƒ&  1 2 GLPHWK\OK\GUR[\ODPLQH K\GURFKORULGH       HTXLY   DQG 1 PHWK\OPRUSKROLQH       HTXLY   ZHUH DGGHG  $IWHU VWLUULQJ IRU   PLQ  ('& K\GURFKORULGH       HTXLY   LQ  '&0     P/  ZDV DGGHG RYHU    PLQ  7KHQ WKH UHDFWLRQ PL[WXUH ZDV VWLUUHG IRU    K DW  URRP  WHPSHUDWXUH  7KHQ  WKH  UHDFWLRQ  PL[WXUH  ZDV GLOXWHG  ZLWK  '&0  DQG GG+ 2  7KH  DTXHRXV OD\HU ZDV H[WUDFWHG WKUHH WLPHV ZLWK '&0  7KH FRPELQHG RUJDQLF OD\HU ZDV GULHG  RYHU DQK\GURXV 0J62  V  DQG ILOWHUHG WKURXJK D FHOLWH SDFNHG JODVV ILOWHU  7KH ILOWUDWH ZDV  FRQFHQWUDWHG LQ  YDFXR  DQG  WKH  UHVXOWLQJ  FOHDU  RLO  ZDV  GLUHFWO\  IRU  WKH  VXEVHTXHQW  VXEVWLWXWLRQ UHDFWLRQ ZLWKRXW IXUWKHU SXULILFDWLRQ 

6WHS E  7R D VROXWLRQ RI D UHVXOWLQJ FUXGH PL[WXUH  IURP VWHS D  LQ DQK\GURXV 7+)      P/       0 VROXWLRQ RI PHWK\OPDJQHVLXP EURPLGH LQ GLHWK\O HWKHU    HTXLY   ZDV DGGHG  DW ±   ƒ&  7KH UHVXOWLQJ PL[WXUH ZDV WKHQ VWLUUHG IRU   K ZLWK WKH WHPSHUDWXUH ZDUPLQJ  XS  WR     ƒ&   6XEVHTXHQWO\   WKH  UHDFWLRQ  ZDV  TXHQFKHG  E\  DGGLWLRQ  RI  ZDWHU      P/  

IROORZHG E\ H[WUDFWLRQ ZLWK WKUHH WLPHV ZLWK '&0  7KH RUJDQLF OD\HU ZDV ZDVKHG ZLWK  EULQH   7KH  FRPELQHG  RUJDQLF  OD\HU  ZDV  GULHG  RYHU  DQK\GURXV  0J62  V   DQG  ILOWHUHG  WKURXJK D FHOLWH SDFNHG JODVV ILOWHU  7KH ILOWUDWH ZDV FRQFHQWUDWHG LQ YDFXR DQG SXULILHG  ZLWK  VLOLFD JHO IODVK FROXPQ FKURPDWRJUDSK\  WR SURYLGH WKH GHVLUHG SURGXFW     \LHOG         105 VSHFWUD RI FRPSRXQG    ZDV LQ DJUHHPHQW  ZLWK WKDW UHSRUWHG  LQ SUHYLRXV  OLWHUDWXUH  

6WHS F   G   H   7KH  V\QWKHVLV  RI     IURP     ZDV  SHUIRUPHG  XVLQJ  SUHYLRXVO\  UHSRUWHG  SURFHGXUH  

3UHSDUDWLRQ RI 'LD]LULQH /LQNHUV ± FRPSRXQGV      DQG   

Ŷ  WHUW %XW\O           KH[   \Q   \O   + GLD]LULQ   \O SURSDQDPLGR SURS\O FDUEDPDWH     

7KH  V\QWKHVLV  RI    ZDV  SHUIRUPHG  XVLQJ  WKH  SUHYLRXVO\ UHSRUWHG SURFHGXUH  

(41)

6FKHPH 6   6\QWKHVLV RI GLD]LULQH OLQNHU  

5HDJHQWV  DQG  FRQGLWLRQV   D   +&O   GLR[DQH   U W        PLQ   E     +HSW\QRLF  DFLG   ('&āK\GURFKORULGH  +2%W  7($  U W      K        F  7)$  '&0  U W      K   G  1 %RF      SURSDQHGLDPLQH  ('&āK\GURFKORULGH  +2%W  7($  U W      K      

6WHS D  7R D VROXWLRQ RI          PPRO    HTXLY   LQ DQK\GURXV     GLR[DQH    P/     1  +&O VROXWLRQ LQ     GLR[DQH    P/  ZDV DGGHG DQG WKH UHDFWLRQ PL[WXUH ZDV VWLUUHG DW  URRP WHPSHUDWXUH IRU    PLQ  6DWXUDWHG DTXHRXV ELFDUERQDWH VROXWLRQ ZDV DGGHG WR WKH  VROXWLRQ DQG WKH PL[WXUH ZDV H[WUDFWHG ZLWK '&0  7KH RUJDQLF OD\HU ZDV HYDSRUDWHG  XQGHU UHGXFHG SUHVVXUH WR SURYLGH FUXGH DPLQH SURGXFW 

6WHS E  7R D UHVXOWLQJ FUXGH SURGXFW RI VWHS D DQG   KHSW\QRLF DFLG      HTXLY   LQ      GLR[DQH    P/   ('&āK\GURFKORULGH      HTXLY    K\GUR[\EHQ]RWULD]ROH      HTXLY    DQG  WULHWK\ODPLQH    HTXLY   ZHUH DGGHG  7KH UHDFWLRQ PL[WXUH ZDV VWLUUHG IRU    K DW URRP  WHPSHUDWXUH  7KHQ  WKH UHDFWLRQ VROXWLRQ ZDV GLOXWHG ZLWK '&0 DQG ZDWHU  7KH DTXHRXV  OD\HU ZDV H[WUDFWHG WKUHH WLPHV ZLWK '&0  7KH FRPELQHG RUJDQLF OD\HU ZDV GULHG RYHU  DQK\GURXV  0J62  V   DQG  ILOWHUHG  WKURXJK  D  FHOLWH SDFNHG  JODVV  ILOWHU  7KH  ILOWUDWH  ZDV  FRQFHQWUDWHG LQ  YDFXR  DQG  SXULILHG  ZLWK  VLOLFD JHO  IODVK  FROXPQ  FKURPDWRJUDSK\  WR  SURYLGH WKH GHVLUHG SURGXFW        VWHS \LHOG      

6WHS F  &RPSRXQG    (1 equiv.) was dissolved in 15% (v/v) trifluoroacetic acid in DCM (2 mL). The mixture was stirred at room temperature for 14 h and FRQGHQVHG  XQGHU  UHGXFHG SUHVVXUH WR SURYLGH VXEVWLWXWHG DPLQH 7)$ VDOW  7KH UHVXOWLQJ PL[WXUH ZDV XVHG  GLUHFWO\ IRU WKH VXEVHTXHQW DPLGH FRXSOLQJ UHDFWLRQ ZLWKRXW IXUWKHU SXULILFDWLRQ 

6WHS G  7R D UHVXOWLQJ FUXGH VDOW RI VWHS F DQG 1 %RF     SURSDQHGLDPLQH      HTXLY   LQ      GLR[DQH    P/   ('&āK\GURFKORULGH      HTXLY    K\GUR[\EHQ]RWULD]ROH      HTXLY     DQG WULHWK\ODPLQH    HTXLY   ZHUH DGGHG  7KH UHDFWLRQ PL[WXUH ZDV VWLUUHG IRU    K DW URRP 

(42)

WHPSHUDWXUH  7KHQ  WKH UHDFWLRQ VROXWLRQ ZDV GLOXWHG ZLWK '&0 DQG ZDWHU  7KH DTXHRXV  OD\HU ZDV H[WUDFWHG WKUHH WLPHV ZLWK '&0  7KH FRPELQHG RUJDQLF OD\HU ZDV GULHG RYHU  DQK\GURXV  0J62  V   DQG  ILOWHUHG  WKURXJK  D  FHOLWH SDFNHG  JODVV  ILOWHU  7KH  ILOWUDWH  ZDV  FRQFHQWUDWHG LQ  YDFXR  DQG  SXULILHG  ZLWK  VLOLFD JHO  IODVK  FROXPQ  FKURPDWRJUDSK\  WR  SURYLGH WKH GHVLUHG SURGXFW       VWHS \LHOG      

Ŷ WHUW %XW\O  6     KHSW   \QDPLGR       PHWK\O  + GLD]LULQ   \O EXWDQRDWH     

5        HWK\O DFHWDWH Q KH[DQH        Y Y    + 105      0+]  &'&O   į       G  -        +]   +         T  -       +]   +       ±      P   +         W  -       +]   +       ±       P   +       ±      P   +         V   +       ±      P   +         V   +     & 105      0+]  &'&O   į               

Ŷ  WHUW %XW\O  6         KHSW   \QDPLGR       PHWK\O  + GLD]LULQ   

\O EXWDQDPLGR SURS\O FDUEDPDWH    

5        '&0 PHWKDQRO         Y Y    + 105      0+]  &'&O   į       EUV   +        ±      P   +         EUV   +         T  -       +]   +         T  -       +]   +        ±      P   +       ±      P   +         W  -       +]   +       ±      P   +       ±       P   +         V   +       ±      P   +         V   +     & 105      0+]  &'&O    į             /506 (6,    P ] FDOFG IRU &  +  1 2  >0 +@          )RXQG 

Referensi

Dokumen terkait

127( 7KH DWWHQWLRQ RI UHOHYDQW WHFKQLFDO FRPPLWWHHV LV GUDZQ WR WKH IDFW WKDW LQ VRPH W\SHV RI HOHFWULFDO HTXLSPHQW WKH PD[LPXP YROWDJH SURGXFHG LQWHUQDOO\

technique, had almost been solved because most of the students seemed enjoy WKH WHDFKHU¶V ZD\ RI WHDFKLQJ 7KLV ZDV FRQFOXGHG IURP WKH REVHUYDWLRQ checklist done

DVK DQG VRIW VRLO FDQ IXUWKHU PLQLPL]H WKH VZHOOLQJ YDOXH RI WKH VRIW VRLO E\ WZR WLPHV FRPSDUHG WR RQO\ IO\ DVK DV WKH VWDELOL]LQJ DJHQW 7KH UHDVRQ LV WKDW FHPHQW FRQWDLQV

VRXUFHVIRUWKH&225PDUNHWLQGXVWULDOVRXUFHV RI &2 QHHGHG LQ RUGHU WR HQVXUH DGHTXDWH &2 VXSSOLHVWRIDFLOLWDWHVXEVWDQWLDOJURZWKLQRLOSURGXFWLRQ XWLOL]LQJ&225$5,RU&&86&225 FDVH WKH DPRXQW RI

FRQGLWLRQV QDPHO\ D QHZ YLVLWRU PRYHG WR WKH VSDFH DURXQG WKH GLVSOD\ WR VKDUH WKH VSDFH ZLWK DQ H[LVWLQJ YLVLWRU WKH H[LVWLQJ YLVLWRU OHIW WKH VSDFH DQG DQRWKHU QHZ

UHFRPELQDWLRQ FUHDWHV LV D UDQGRP FURVVRYHU PDVN DQG WKHQ H[FKDQJHV DVVRFLDWHG JHQHV DPRQJ SDWHQWV DFFRUGLQJ WR WKH PDVN $ FURVVRYHU PDVN LV VLPSO\ D ELQDU\ VWULQJ ZLWK WKH VDPH VL]H RI

Wkh yduldeoh lqsxw lv surgxfhg xvlqj wkh vhuylfhv ri fdslwdo/ &/ dqg oderu/ = 6 ' &#3# Vlqfh k / uhwxuqv wr wkh yduldeoh lqsxwv glplqlvk dqg Fuxvrh suhihuv wr kdyh pdq| wuhhv1 D

%DVHG RQ WKH LQWHUYLHZ UHVXOWV ZLWK WKH SXSLOV LW FRQFOXGHG WKDW WKH SXSLOV GLG QRW XQGHUVWDQG KRZ WR HTXDWH