Engineering Economic Analysis
2019 SPRING Prof. D. J. LEE, SNU
Chap. 22 COST CURVES
Average cost & Marginal cost
§ Total cost function can be derived from the cost min. problem: c(w1,…,wn, y)
§ Various costs can be defined based on the total cost function
• variable cost, fixed cost,
• average cost, marginal cost,
• long-run cost, short-run cost
Average cost & Marginal cost
§ Let
( )
: vector of fixed inputs, : vector of variable factors ,
f v
v f
x x
w = w w
§ Short-run cost function
(
, , f)
v v(
, , f)
f fc w y x = w x w y x× + w x×
• Short-run average cost (SAC): c w y x
(
, , f)
y
• Short-run average variable cost (SAVC): w x w y xv v ( , , f )
y
×
• Short-run average fixed cost (SAFC): w xf y× f
• Short-run marginal cost (SMC): c w y w( , , f )
y
¶
¶
Average cost & Marginal cost
§ Long-run cost function
( )
, v v( )
, f f( )
,c w y = w x w y× + w x w y×
• Long-run average cost (LAC): c w y
( )
,y
• Long-run marginal cost (LMC): c w y( ),
y
¶
¶
• Note that ‘long-run average cost’ equals ‘long-run average variable cost’ and ‘long-run fixed costs’ are zero’
There is no fixed input
Average cost & Marginal cost
§ Example: Short-run Cobb-Douglas cost function
• In a short-run, x2 = k
• Cost-min. problem: 1 1 2
1 1
min
. . a a
w x w k s t y x k -
+
=
1 1
1
a
a a
x k y
-
= ×
• SR Cost function: c w y k
(
, ,)
= w k1 aa-1 × y1a + w k21
2 1
1
1
2
1
1
1
a a
a a
a a
w k SAC w y
k y
SAVC w y k SAFC w k
y SMC w y
a k
-
-
-
= æ öç ÷è ø +
= æ öç ÷è ø
=
= æ öç ÷è ø
Cost curves (Geometry of costs)
§ Total cost function can be derived from the cost min. problem: c(w1,…,wn, y)
§ Assume that the factor prices to be fixed, then c(y).
§ Total cost, c(y), is assumed to be monotonic in y.
§ Various cost curves: Average cost curve, Marginal cost curve, LR cost curve, SR cost curve etc.
§ How are these cost curves related to each other?
Cost curves (Geometry of costs)
§ SR Average cost
• SR total cost = VC + FC:
• SAC = SAVC + SAFC
( ) v ( )
c y = c y + F
( ) v ( ) w x w y xv v
(
, , f)
f fc y c y F w x
y y y y y
× ×
= + = +
U-shaped SAC
Cost curves (Geometry of costs)
§ Marginal cost vs. Average cost
( ) ( ) ( )
2
AC( ) c y c y y c y
d y d
dy dy y y
¢ -
æ ö
= ç ÷ =
è ø
( ) ( ) ( )
1 1
c y MC( ) AC( )
c y y y
y y y
æ ö
= ç ¢ - ÷ = -
è ø
( ) ( )
( ) ( )
( ) ( )
AC is increasing (AC ( ) 0) AC is decreasing (AC ( ) 0) AC is minimum (AC ( ) 0)
y MC y AC y
y MC y AC y
y MC y AC y
¢ > Û >
¢ < Û <
¢ = Û =
• Thus,
• MC for the first small unit of amount equals AVC for a single unit of output
( )1 (1) (0) ( )1 ( )0 ( )1 ( )1
1 1 1
v v v
c F c F c
TC TC
MC - + - - AVC
= = = =
Cost curves (Geometry of costs)
§ Marginal cost vs. Average cost
AC decreasing AC increasing
Cost curves (Geometry of costs)
§ Marginal cost vs. Variable cost
• Since
( ) ( )
v MC y dc y
= dy
0
( ) ( )
y
c yv = òMC z dz
• The area beneath the MC curve up to y gives us the variable cost of producing y units of output
MC(y)
y 0
Area is the variable
cost of making y units Cost
y¢
Cost curves (Geometry of costs)
§ Example
• SR total cost function: c y( ) = y2 +1
• Variable cost:
• Fixed cost:
( ) 2
c yv = y
( ) 1
cf y =
( ) ( )
AVC 2 / AFC 1/
y y y y
y y
= =
=
( )
AC y = +y 1/ y
( )
MC y = 2y
Cost curves (Geometry of costs)
§ Example: C-D Technology
• Recall that
( ) ( )
1
1 a
a a
c y Ky F AC y Ky F
y
-
= +
= +
( 1, 2, ) 1 1 2 1
b a
a b
a b a b
a b a a a b a b a b
c w w y A w w y
b b
- + -+
+ + + +
é ù
æ ö æ ö
ê ú
= êç ÷è ø +ç ÷è ø ú
ë û
• For a fixed w1, w2, c y( )= Kya b1+ , a b+ £1
( ) ( )
1
1 a b a b
a b a b
AC y Ky MC y K y
a b
- - +
- - +
=
= +
• In the short-run, recall that c w y k
(
, ,)
= w k1 aa-1 × y1a + w k2Cost curves (Geometry of costs)
§ Example: MC curves for two plant
• How much should you produce in each plant?
c1(y) Plant 1
y1 c2(y) Plant 2
y2
( )* ( )*
1 1 2 2
MC y = MC y
{ } ( ) ( )
1, 2 1 1 2 2
1 2
min . .
y y c y c y
s t y y y + + =
2 1
y = y y-
( )
( )
1 1 1 2 1
miny c y + c y y-
( ) ( )
1 1 2 2 2 2
1 1 2 1 1
0 and 1
dc y dc y dy dy
c
y dy dy dy dy
¶ = + = = -
¶
• Therefore, the optimality condition is
Long-run vs. Short-run Cost Curves
§ In the long run, all inputs are variable
• LR problem: Planning the type and scale investment
• SR problem: Optimal operation
§ Given a fixed factor: Plant size k
• SR cost function: c y ks
( )
,• In LR, let the optimal plant size to produce y be k(y)
Øfirm’s conditional factor demand for plant size!
§ Then LR cost function is ( ) s
(
, ( ))
c y = c y k y How this looks graphically?
Long-run vs. Short-run Cost Curves
• For some given level of output y*
• Since SR cost min problem is just a constrained version of the LR cost min problem, SR cost curve must be at least as large as the LR cost curve for all y
( ) ( )
(
( ))
* * *
* *
: optimal plant size for
, : SR cost function for a given , : LR cost function
s s
k k y y
c y k k
c y k y Þ =
Þ Þ
( )
( )
( ) ( ) ( )
*
* * * * *
, for all level of , when
s s
c y c y k y
c y c y k k k y
£
= =
Long-run vs. Short-run Cost Curves
• Also
• Hence SR and LR cost curves must be tangent at y*
( )
( )
( ) ( ) ( )
*
* * * * *
LAC SAC , for all level of
LAC SAC , when
y y k y
y y k k k y
£
= =
ymin
( ) ( )
( ) ( )
*
min min
*
min min
Note that LAC SAC , ,
that is, LAC SAC ,
y y k
y y k
¹
£
LAC(ymin)
(
*)
minargmin SAC ,y k = y
SAC(ymin)
Long-run vs. Short-run Cost Curves
Long-run vs. Short-run Cost Curves
• Discrete levels of plant size: k k k k1, , ,2 3 4
• LR average cost curve is the lower-envelop of SR average
Long-run vs. Short-run Cost Curves
§ LR marginal cost
• When there are discrete levels of the fixed factor, the firm will choose the amount of the fixed factor to minimize costs.
• Thus the LRMC curve will consist of the various segments of the SRMC curves associated with each different level of the fixed factor.
Long-run vs. Short-run Cost Curves
§ LR marginal cost
• This has to hold no matter how many different plant sizes there are !
LAC(y) Cost
SACs
Short-Run & Long-Run Marginal Cost Curves
LAC(y) LMC(y)
Cost
y
SRMCs
Long-run vs. Short-run Cost Curves
§ LR marginal cost
• LR cost function
• Differentiating LR cost function w.r.t. y
• Since k* is the optimal at y=y*,
• Thus LRMC at y* equals to SR marginal cost at (k*, y*)