Lecture 11-1
▪ Pole Placement – Review
▪ Observer – controller
▪ Reference Input Tracking
Controllable Canonical form
1 2 1
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
1
n n n
1
u
a a
−a
−a
= +
− − − −
x x
Example Controllability and Control Canonical form
Control :
[
n n 1 1]
y = b b
− b x
1 1
1
1 1
( ) ( )
n
n
n n
n n
b s b
Y s
u s s a s a s a
−
− −
+ +
= + + + +
c c c c
c c
A B u y C D u
= +
= +
x x
x
[
1 2]
c c c c cn c
u = − K x = − K K K x
Example Controllability and Control Canonical form Control :
u = − K
cx
c= − [ K
c1K
c2 K
cn] x
c( )
( )
1 1 2 1 1
0 1 0
0 0 0
( ) ( ) ( )
c c c c c
c c c c
c
n c n c c
A B K
A B K
a K a
−K a K
= + −
= − ⋅
=
− + − + − +
x x x
x
x
Characteristic Eqn
Characteristic Eqn for the desired pole locations :
1
1 1 2 1
( ) ( ) ( ) 0
n n
n n n
s + a + K s
−+ + a
−+ K s + a + K =
1 2
1 2 1
0
n n n
n n
s + α s
−+ α s
−+ + α
−s + α =
Then the necessary feedback gains
1
,
2 1 1, ,
1 1c n n c n n cn
K = − + a α K = − a
−+ α
− K = − + a α
General Form
A Bu y C
= +
=
x x
x
Transformation Matrix
x = T x
c1 1
c c
c c c c c
c c c
T AT Bu
T AT T Bu A B u y C T C
− −
= +
= + = +
= =
x x
x x x
x x
ControllableCanonical Form State feedback control law
1
c c c
u = − K x = − K T
−x
Transformation Matrix T
T = CW
2 n 1
C = B AB A B A
−B
1 2 1
2
1
1 0
1
1 0 0 0 0
n n
n
a a a
a W
− −
−
=
Transformation Matrix T
T = CW
2 n 1
C = B AB A B A
−B
1 2 1
2
1
1 0
1
1 0 0 0 0
n n
n
a a a
a W
− −
−
=
Where
1 1 1
T
−= W C
− −T
c=
x x
Ackerman’s Formula
Step 1. Converting (A,B) to (Ac, Bc), T Step 2. Solving for the gain, Kc
Step 3. Converting back gain, K = KcT-1
[ ]
12 1
1 1
0 0 0 1 ( )
[ ]
( )
c n
n n
c n
K C A
C B AB A B A B
A A A I
α
α α α
−
−
−
=
=
= + + +
: " "
i
the coefficient of the desired characteristic polynomial
α
Selection of Pole Location for Good Design 1. Dominant second-order poles
2. Symmetric Root Locus (SRL) - LQR Design
1. Dominant second-order poles
2nd order systems (p.139 Franklin) Step response
Step input response
2 2 2
2 2 2 2 2 2 2
( ) 2 ( ) (1 ) ( )
n n n
n n n n d
H s s s s s
ω ω ω
ζω ω ζω ω ζ σ ω
= = =
+ + + + − + +
( ) 1
tcos(
d) sin(
d)
d
y t e
σω t σ ω t ω
−
= − +
Re Im
η ω
ncos η ζ =
The Desired poles
[ , , , , ]
Tc n d n d
p = − ζω ω + j − ζω ω − j − α − β − γ
Characteristic eqn :
( s
2+ 2 ζω
ns + ω
n2)( s + α )( s + β )( s + γ ) = 0
, ,
nα β γ >> ζω
MATALB STATEMENT
A : (4x4) matrix B : (4x1) matrix
pc : desired pole ex) pc=[-0.7+0.7j; -0.7-0.7j; -4;-4;-4]
K2 = acker(A,B,pc)=place(A,B,pc)
A Bu
= +
x x
·Reference Input Tracking
u = − K x
Introducing the reference input with Full-State Feedback
( )
ss ss
u = u − K x x −
The pole-placement design
Introduce reference input
u = − K x + r
; a non-zero steady-state error to step input New control formula for zero s.s. error to any constant input
A Bu y C Du
= +
= +
x x
x
The system state equation
0
ss ssss ss ss
A Bu
y C Du
= +
= +
x x
In the constant steady state
ss ss
y = r
We want For any value of rss
To do this, we make ss x ss
ss u ss
N r u N r
=
= x
Then,
0
x ss u ssss x ss u ss
AN r BN r r CN r DN r
= +
= +
0 1
x u
N A B C D N
⇒ =
This eqn can be solved for Nx and Nu
1
0
1
x u
N A B
N C D
− =
With this values
( ) ( ) ( )
( )
u x u x
u N r K N r K N KN r a
K Nr b
= − − = − + +
= − +
x x
x
(a) is better in practical implementation
(a) Zero s.s. error even if the gain K is slightly in error (b) nonzero s.s. error if gains do not match exactly
R
N
uPlant
K
N
xu y y
R
K
Plant N u
+
−
− +
+
−
( ) a ( ) b
+ N −
r u
K
C y
A Bu
= +
x x
x
( A BK ) GNr y C
= − +
=
x x
x
The closed-loop zeros,
( )
det 0 det 0
0 0
sI A B sI A BK BN
C C
− −
− − − = ⇒ =
(By elementary row and column operations)
When full state feedback is used as
The zeros remain unchanged by the feedback
(only closed loop poles have been changed by the state feedback) Conclusions
u − − K x + Nr
( r ≠ 0)
Tracking Integral Control
A Bu y C
= +
=
x x
x
(for simplicity, assume D=0)( ) ( )
ss ss u x
u = u − K x x − = N r − K x − N r
1
0
0 1
x u
N A B
N C
− =
(
u x) ( ) (
u x)
N
A B N r K KN r A BK B N KN r
= + − + = − + +
x x x x
1
1
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
sI A BK X s BNr s X s sI A BK BNr s
y s CX s C sI A BK BNr s
−
−
− + =
= − +
= = − +
( )
1( ) : (closed loop DC gain)
( )
Y s C sI A BK BN R s
= − +
−: Parameter dependent
u x
N = N + KN
Parameter error → Steady state error
The closed loop DC gain
: the ratio of the output of a system to its input
(presumed constant) after all transients have decayed State Feedback
A Bu
y C
= +
=
x x
x
u = u
ss− K ( x x −
ss)
1 0
lim lim ( ) 1 ( )
t s
y sG s C A BK BN
r s
−
→∞
=
→= − +
( A BK ) BNr y C
= − +
=
x x
x
1( ) ( ) ( )
Y s = C sI − + A BK
−BNR s
DC gain ;
1
0
10 1
x u
N A B A
N C
α β γ
−
−
= =
u x
N = N + KN
DC gain is not 1if there exist
parametr errors or parameter variations
State space design :
Plant parameter variations → s.s. error
⇒ Integral Control and Robust Tracking Integral control
The system
Augment the plant state with the extra state xI which obeys the differential equations
A Bu B u
1y C
= + +
=
x x
x
x
I= C x − = r e
thus
0 t
x
I= ∫ e dt
The augmented state equations become
The feedback law
1
0
0 0 1
0 0
I I
x C x
u r w
A B B
= + − +
x x
[
0]
I I
u K K x
= −
x
Plugging into the eq
[ ]
[ ]
0 1
0
I I I
I
A B K x K B w x C r
y C C x
= + − − +
= −
= =
x x x
x
x x
0 1
( ) ( ) ( ) ( )
( ) ( ) ( )
I I
I
sI A BK X s BK X s B w s sX s CX s R s
− + = − +
= −
I
( ) X s
( )
0 1
( sI A BK X s ) ( ) BK
I1 CX s ( ) R s ( ) B W S ( )
− + = − s − +
( )
( ) [ ]
( )
0 1
1
0 1
1 0
( ) ( ) ( )
( ) ( ) ( )
( ) ( )
I I
I I
I I
s sI A BK BK C X s BK R s sB W s X s s sI A BK BK C BK R s sB W s Y s C s sI A BK BK C BK
R s
−
−
− + + = +
= − + + +
= − + +
[ ] { (
0) }
11 1
( ) ( ) ( ) 1 ( )
I I I
X s CX s R s C s sI A BK BK C BK R s
s s
−
= − = − + + −
D.C. gain =1 for any KI, K0
r − K
Iu Plant
K
o− e
+ y
−
+
1 s
+
1 s
− e
r + − K
IK
o−
Plant
Estimator +
+ y
Integral Control
Integral Control with Estimator
End of Lecture Note 11