• Tidak ada hasil yang ditemukan

Fourier and Laplace Transform Table

N/A
N/A
Protected

Academic year: 2024

Membagikan "Fourier and Laplace Transform Table"

Copied!
3
0
0

Teks penuh

(1)

Basic Fourier-transform pairs

Table of Fourier Transform Pairs

Time-Domain: x(t) Frequency-Domain: X(f)

) 0 ( )

( >

u t a

e at

f j a

1 + )

0 ( )

(−t b>

u ebt

f j a

1

− 2 )

( 1 2 )

(t 1T u t T

u + − −

f fT) sin(

π π

t t fb ) 2 sin(

π

π ( ) ( )

b

b u f f

f f

u + − −

)

δ(t 1

) (ttd

δ

e

j2πftd

) (t

u f j πf

δ

2 1 2

)

( +

t f0 2

cos π ( )

2 ) 1 2 (

1

0

0 f f

f

f − + δ +

δ t

f0 2

sin π ( )

2 ) 1 2 (

1

0

0 f f

f j

jδ f − − δ +

kt f j k

ke a 2π0

−∞

=

) (f kf0 a

k

k

−∞

=

δ

−∞

=

k

nT

t )

δ(

−∞

=

k T

f k

T1 δ( )

(2)

Table of Laplace Transform Pairs

x(t) X(s)

1

1s s>0

tn

n an integer ! 0

1 >

+ s

s n

n

eat s a

a

s >

−1 bt

sin 2 2 >0

+ s

b s

b

bt

cos 2 2 >0

+ s

b s

s

) (t f

eat F(sa)

n att

e n an integer s na n s>a

+ )

(

!

1

bt

eatsin sab +b s>a

)

( 2 2

bt

eatcos ssaa+b s>a

) (

) (

2 2

bt

tsin

(

s22+bsb2

)

2 s>0

bt

tcos

(

2 2

)

2 0

2

2 >

+

s

b s

b s

−∞

=

k

nT

t )

δ(

−∞

=

k T

f k

T1 δ( )

(3)

Laplace transform operations

Operation )f(t F(s)

Addition f1(tf2(t) F1(sF2(s)

Scalar multiplication kf(t) kF(s)

Time Differentiation

dt t df( )

) 0 ( ) (sf sF

2 2 () dt

t f

d s2F(s)−sf(0)− f′(0)

3 3 () dt

t f

d s3F(s)−s2f(0)−sf′(0)− f′′(0)

Integration

f(t)dt 1 ( )

s sF Convolution f1(t)* f2(t) F1(s)F2(s)

Time Shift f1(ta)u(ta),a≥0 easF(s)

Frequency Shift eatf(t) F(s+a)

Scaling f(at),a≥0

) 1 (

a F s a

Initial Value f(0+) limsF(s)

s

Final Value f(∞) lim ( )

0sF s

s , all poles of sF(s)in LHS

Referensi

Dokumen terkait

CM3106 Chapter 2 Digital Signal Processing and Digital Audio Recap from CM2202 2...

% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA). % Hints: get(hObject,'String') returns contents

Superposition integral: wt = Z ∞ −∞ vτht, τdτ A system is time-invariant if: wt−τ =L[vt−τ] In this case Lδt−τ = ht−τ and L acts by convolution: wt = Lvt = Z ∞ −∞ vτht−τdτ =

Stress field on cross section resulting from TE-FEM, TE-FFT left and relative profiles compared to Eshelby case for isotropic case.. Stress field on cross section resulting from TE-FEM,

7.Laplace transform of functions obtained with multiplication by tn Definition 7.1 Leibniz's rule states that integration and differentiation are interchangeable i.e... Laplace

▪ For instance, sound waves, electromagnetic fields, the elevation of a hill versus location, a plot of VSWR versus frequency, the price of your favorite stock versus time, etc.. ▪ The

17.1 The Derivation of the Fourier Transform 17.2 The Convergence of the Fourier Integral 17.3 Using Laplace Transforms to Find Fourier Transforms 17.4 Fourier Transforms in the Limit

The Laplace Transform p P f K Yi Professor Kyongsu Yi ©2009 VDCL Vehicle Dynamics and Control Laboratory Vehicle Dynamics and Control Laboratory Seoul National University... , 