مود هسلج
The Laplace Transform
wlg
The Laplace Transform
دنکیم لقتنم سناکرف هزوح هب ار نامز هزوح رد عبات هک یطخ هتسویپ عبات کی سلاپلا لیدبت
0
) ( )
( )]
(
[ f t F s f t e dt
L
stسلاپلا لیدبت سوکعم
j
j
ts
ds e s j F
t f s
F L
( )
2 ) 1 ( )]
(
1
[
*notes
Eq A
Eq B
هحفص زا یا هدودحم هب ای و ییارگمه هیحان دشابیم ارگمه نآ رد قوف لارگتنا هکs
دنمانیمROC .
The Laplace Transform
دحاو هلپ عبات سلاپلا لیدبت
*notes
|
00
1 1 )]
(
[
ste
stdt s
e t
u L
t s u
L 1
)]
(
[
The Laplace Transform
Pictorially, the unit impulse appears as follows:
0 t0
f(t) (t – t0)
Mathematically:
(t – t0) = 0 t
0*note
0 1
) (
0
0
0
dt t t
t
t
The Laplace Transform
The Laplace transform of a unit impulse:
An important property of the unit impulse is a sifting or sampling property. The following is an important.
2
1 0 1 0 2
2 0 1 0
0
0 ,
) ) (
( ) (
t
t
t t t t
t t t t
dt f t t t
f
The Laplace Transform
The Laplace transform of a unit impulse:
In particular, if we let f(t) = (t) and take the Laplace
1 )
( )]
(
[
00
t estdt e s
t
L
The Laplace Transform
Building transform pairs:
e
L(
at
u t e
ate
stdt
ee
s a tdt e
L
0
) ( 0
)]
( [
a s a
s t e
u e L
st
at
1 )
)] ( (
[ |
0a t s
u e
at
1
) (
A transform pair
The Laplace Transform
Building transform pairs:
0)]
(
[ tu t te dt
L
st
0 0
|
0vdu
uv
udv
u = tdv = e-stdt2
) 1
( t s
tu
A transformpair
The Laplace Transform
Building transform pairs:
2 2 0
1 1
2 1
2 ) )] (
[cos(
w s
s
jw s jw s
dt e e
wt e
L st
jwt jwt
2
) 2
( )
cos( s w
t s u
wt A transform
pair
The Laplace Transform
Time Shift
0 0
)
( ( )
) (
, . ,
0 ,
,
) ( )]
( ) ( [
dx e x f e dx e
x f
So x
t as and x
a t As
a x t and dt dx then a t x Let
e a t f a
t u a t f L
sx as
a x s
a
st
) ( )]
( ) (
[ f t a u t a e F s
L
asThe Laplace Transform
Frequency Shift
0
) ( 0
) (
) (
)]
( [
)]
( [
a s F dt e
t f
dt e t f e t
f e L
t a s
st at
at
) (
)]
(
[ e f t F s a
L
at
The Laplace Transform
Example: Using Frequency Shift Find the L[e-atcos(wt)]
In this case, f(t) = cos(wt) so,
2 2 2
2
) (
) ) (
( ) (
w a
s
a a s
s F and
w s s s F
2
2 ( )
) (
) )] (
cos(
[ s a w
a wt s
e L at
The Laplace Transform
Time Integration:
The property is:
st st
t
st t
se v dt e dv and
dt t f du dx x f u Let
parts by
Integrate
dt e dx x f dt
t f L
, 1
) ( ,
) (
: ) ( )
(
0
0 0 0
The Laplace Transform
Time Integration:
Making these substitutions and carrying out The integration shows that
) 1 (
) 1 (
) (
0 0
s sF
dt e t s f dt t f
L st
The Laplace Transform
Time Differentiation:
If the L[f(t)] = F(s), we want to show:
) 0 ( )
( ) ]
[ ( sF s f
dt t
L df
Integrate by parts:
) ( ),
) ( ( ,
t f v so t df dt dt
t dv df
and dt se du
e
u
st st
*note
The Laplace Transform
Time Differentiation:
Making the previous substitutions gives,
0 0 0
) ( )
0 ( 0
) ( )
(
|
dt e t f s f
dt se t f e
t dt f
L df
st st st
So we have shown:
) 0 ( ) ) (
( sF s f
dt t
L df
The Laplace Transform
Time Differentiation:
We can extend the previous to show;
) 0 ( .
. .
) 0 ( ' )
0 ( )
) ( (
) 0 ( '' ) 0 ( ' ) 0 ( )
) ( (
) 0 ( ' ) 0 ( ) ) (
(
) 1 (
2 1
2 3
3 3
2 2
2
n
n n
n n
n
f
f s f
s s F dt s
t L df
case general
f sf
f s s F dt s
t L df
f sf
s F dt s
t L df
The Laplace Transform
Transform Pairs:
______
__________
__________
__________
) ( )
(t Fs
f
f(t) F(s)
1 2
! 1
1 ) 1
(
1 )
(
n n
st
s t n
t s
a e s
t s u
t
The Laplace Transform
Transform Pairs:
f(t) F(s)
2 2
2 2
1 2
) cos(
) sin(
) (
! 1
w s wt s
w s wt w
a s e n
t
a s te
n at
n at
The Laplace Transform
Transform Pairs:
f(t) F(s)
2 2
2 2
2 2
2 2
sin ) cos
cos(
cos ) sin
sin(
) ) (
cos(
) ) (
sin(
w s
w wt s
w s
w wt s
w a
s
a wt s
e
w a
s wt w
e
at at
Yes !
The Laplace Transform
Common Transform Properties:
f(t) F(s)
) 1 ( )
(
) ) (
(
) 0 ( .
. . ) 0 ( ' )
0 ( )
) ( (
) ( )
(
) ( [ 0
), ( ) (
) ( 0
), ( ) (
0
1 0 2
1 0 0
0 0 0
s sF d
f
ds s t dF
tf
f f s f
s f s s F s dt
t f d
a s F t
f e
t t f L e t
t t u t f
s F e t
t t u t t f
t
n n
n n
n n
at
os t
os t
The Laplace Transform
نآ سوکعم و سلاپلا لیدبت یارب بلتم روتسد
Example Use Matlab to find the transform of t
te4
The following is written in italic to indicate Matlab code
syms t,s
laplace(t*exp(-4*t),t,s) ans =
1/(s+4)^2
The Laplace Transform
سوکعم سلاپلا لیدبت یارب بلتم روتسد
Example Use Matlab to find the inverse transform of
19 . 12 . )
18 6 )(
3 (
) 6 ) (
( 2 prob
s s s
s s s
F
syms s t
ilaplace(s*(s+6)/((s+3)*(s^2+6*s+18))) ans =
-exp(-3*t)+2*exp(-3*t)*cos(3*t)
The Laplace Transform
Theorem: نامز هزوح رد هیلوا رادقم هیضق
If the function f(t) and its first derivative are Laplace transformable and f(t) Has the Laplace transform F(s), and the exists, thenlimsF(s)
0
) 0 ( ) ( lim ) ( lim
t s
f t f s
sF
The utility of this theorem lies in not having to take the inverse of F(s) in order to find out the initial condition in the time domain. This is particularly useful in circuits and systems.
s
Initial Value Theorem
The Laplace Transform
Initial Value Theorem:
Example: Given;
2 2 5 ) 1 (
) 2 ) (
(
s s s F
Find f(0)
1 ) 26 ( 2
lim 2
25 1 2 lim 2
5 ) 1 (
) 2 lim (
) ( lim ) 0 (
2 2
2 2
2 2
2
2 2 2
2
s s
s s s
s s s s
s s
s s s
s s s
sF
f s s s
s
The Laplace Transform
Theorem: نامز هزوح رد ییاهن رادقم هیضق
If the function f(t) and its first derivative are Laplace transformable and f(t) has the Laplace transform F(s), then
) ( ) ( lim ) (
limsF s f t f
0
s t
Again, the utility of this theorem lies in not having to take the inverse of F(s) in order to find out the final value of f(t) in the time domain.
This is particularly useful in circuits and systems.
Final Value Theorem
The Laplace Transform
Final Value Theorem:
Example: Given:
ss
note F s te ts
F ( ) tcos3
3 ) 2 (
3 ) 2 ) (
( 2 2 1 2
2 2
Find f().
(( 22)) 33
0lim )
( lim )
( 2 2
2
2
s s s s
sF f
0 s
0 s
State variable technique
Linear System
) m (
u y(p)
) n ( x
) t ( x
) t ( x
) t ( x
) t ( x ) n ( x
n i 2 1
State vector
) t ( u
) t ( u
) t ( u
) t ( u ) m ( u
m i 2 1
Input vector
) t ( y
) t ( y
) t ( y
) t ( y ) p ( y
p i 2 1
Output vector
) t ( u ) t ( D ) t ( x ) t ( C ) t ( y
) t ( u ) t ( B ) t ( x ) t ( dt A x dx
Multivariable linear system (MIMO) Representation of x AxBu
xdt
x x
Bu +
A +
State representation of a linear system
D
A B
x u
x
Bu Ax x
C
yDu Cx
y
A= System Matrix(n,n) B= Input Matrix (n,m) x= State Vector (n,1) u= Input Vector (m,1)
C= Output Matrix (r,n)
D= Direct Transmission Matrix (r,m) y= Output Vector (r,1)
Transition matrix x AxBu
Assuming that the system is continuous and linear that A and B are time-invariant and
Using Laplace transform
) s ( BU ) s ( AX ) 0 ( x ) s (
sX
) s ( BU ) 0 ( x ) s ( X ) A sI
(
)]
s ( BU ) 0 ( x [ ) A sI ( ) s (
X 1
Taking the inverse Laplace transform of resolvent matrix
] ) A sI [(
L ) t
( 1 1
Transition matrix
Transition matrix
The state vector will take the following form (convolution)
t
0
d ) ( Bu ) t ( )
0 ( x ) t ( ) t (
x
Or more generally
t
t 0
0
d ) ( Bu ) t ( )
0 ( x ) t t ( ) t (
x
The output vector will take the following form Assuming that C and D are time-invariant
) t ( Du ) t ( Cx ) t (
y
) t (
u R L
C
i(t) v(t) State variable technique
dt Cdv i
dt v Ldi Ri u
Basic circuit equation
Can be arranged
C i dt dv
Lu v 1 L i 1 L u R dt di
In matrix form
2 1
1 1
1 1 1
2
u u R R
R R R
R v
i C 0
1 L
1 L
R
dt dv dt di
State variable technique
v 1 i v 0
C i
y
2 1
1 1
1 1 1
2
u u ) R R ( L
R ) R R ( L
R v
i C 0
1 L
1 L
R
dt dv dt di
) s ( Ld
R ) s ( d
s ) s ( Cd
1
) s ( Ld
1 )
s ( sd
1
L s R C
1 L
s 1
LC 1 L s sR ] 1 A sI [
2 1
1
1
C s 1
L 1 L s R ] A sI [
Solution: resolvent matrix
LC 1 L s sR ) s (
d 2
State variable technique
b] s
1 a s [ 1 a b
1 ) b s )(
a s (
1 )
s ( d
1
b ] e a [ e a b dt 1 ) t ( f
] be ae a[ b
1 dt df
] e e a[ b ) 1 ) s ( d ( 1 L ) t ( f
bt at
bt at
bt at 1
) b s )(
a s LC (
1 L s sR ) s (
d 2
بلتم رد سلاپلا لیدبت (
لاثم )
سناکرف هزوح رد یطخ یاهمتسیس
• یلع یاهمتسیس :
یلع ییاه متسیس
ز طرش اهنآ هبرض خساپ هک دنتسه ری
دنک هدروآرب ار :
h(t)=0 for t<0
• یلع یاه متسیس ییارگمه هیحان
روحم تسار تمس رد هشیمه
jw دنراد رارق
رادیاپ یاه متسیس :
ئارا یفلتخم فیراعت یرادیاپ یارب هدش ه
تسا . فیصوت نامز هزوح رد هک یطخ متسیس کی یارب
پ ینحنم ریز حطس ندوب دودحم یانعم هب یرادیاپ دوشیم خسا
ینعی تسا هبرض :
کی هب سناکرف هزوح رد هدش فیصوت یاه متسیس یارب زا ی
دشاب دناوتیم ریز ینعم ود :
ییارگمه هیحان وزج یموهوم روحم و دشاب یلع متسیس 1. دشاب . لاقتنا عبات جرخم یاه هشیر مامت 2. (
متسیس یاهبطق )
یارب
دنشاب یموهوم روحم پچ تمس رد یلع یاه متسیس .
کبدیف و یزاوم ،یرس یاهمتسیس
clear all
% system and subsystems g1(s)=s/(s(s+1)) and g2(s)=1/(s^2+2s+2) s=tf('s');
g1=s/(s*(s+1));
g2=1/(s^2+2*s+1);
%%%%%%%%%%%
g_seri=series(g1,g2);
%%%%%%%%%%%
g_feed=feedback(g1,g2);
%%%%%%%%%%%%%%
g_paral=parallel(g1,g2);
%%%%%%%%%%%%%%
figure(1) impulse(g_feed) figure(2) step(g_feed)
0 2 4 6 8 10
-0.2 0 0.2 0.4 0.6 0.8 1
1.2 Impulse Response
Time (seconds)
Amplitude
0 2 4 6 8 10
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.8 Step Response
Time (seconds)
Amplitude
لاقتنا عبات کی یاهرفص و اهبطق
• ار لاقتنا عبات کی تروص یاه هشیر
« رفص » ار جرخم یاه هشیر و
« بطق
» .دنمانیم
• تسب هقلح متسیس کی یرادیاپ یارب مزلا ه
هتسب هقلح یاهبطق یاه هشیر لحم تسا روحم پچ تمس رد دنشابjw
.
K 𝐻(𝑠)
𝐻 𝑠 =𝑠(𝑠+1)(𝑠+5)1 and k=20 and k=50 𝑌(𝑠)
𝑅(𝑠)= 𝑘
𝑠3+ 6𝑠2+ 5𝑠 + 𝑘 اب هتسب هقلح یاهبطق لحم k=20
k=50 و
>> roots([1 6 5 20]) ans =
-5.7362 + 0.0000i -0.1319 + 1.8626i -0.1319 - 1.8626i
>> roots([1 6 5 50]) ans =
-6.4314 + 0.0000i 0.2157 + 2.7799i 0.2157 - 2.7799i
>>
𝐻 𝑠 = 1
𝑠(𝑠+1)(𝑠+5) and k=10 𝑌(𝑠)
𝑅(𝑠)= 𝑘 𝑠2+ 𝑠 + 𝑘 ءازاب هتسب هقلح یاهبطق لحم ابk=10
بلتم روتسد
roots([1 1 10]) ans =
-0.5000 + 3.1225i -0.5000 - 3.1225i
دنرادیاپ و پچ تمس یگمه .
0 2 4 6 8 10 12 14
-2 -1 0 1 2
3 Impulse Response
Time (seconds)
Amplitude
0 5 10 15 20 25 30 35 40 45
-1.5 -1 -0.5 0 0.5 1 1.5
2 Impulse Response
Time (seconds)
Amplitude
k=20
0 50 100 150 200 250 300
-3 -2 -1 0 1 2
3x 1028 Impulse Response
Time (seconds)
Amplitude
k=50