• Tidak ada hasil yang ditemukan

The Laplace Transform

N/A
N/A
Protected

Academic year: 2024

Membagikan "The Laplace Transform"

Copied!
20
0
0

Teks penuh

(1)

مود هسلج

The Laplace Transform

wlg

(2)

The Laplace Transform

دنکیم لقتنم سناکرف هزوح هب ار نامز هزوح رد عبات هک یطخ هتسویپ عبات کی سلاپلا لیدبت

0

) ( )

( )]

(

[ f t F s f t e dt

L

st

سلاپلا لیدبت سوکعم

 

j

j

ts

ds e s j F

t f s

F L

( )

2 ) 1 ( )]

(

1

[

*notes

Eq A

Eq B

هحفص زا یا هدودحم هب ای و ییارگمه هیحان دشابیم ارگمه نآ رد قوف لارگتنا هکs

دنمانیمROC .

The Laplace Transform

دحاو هلپ عبات سلاپلا لیدبت

*notes

|

0

0

1 1 )]

(

[

 

st

e

st

dt s

e t

u L

t s u

L 1

)]

(

[ 

(3)

The Laplace Transform

Pictorially, the unit impulse appears as follows:

0 t0

f(t) (t – t0)

Mathematically:

(t – t0) = 0 t

0

*note

0 1

) (

0

0

0

 

dt t t

t

t

The Laplace Transform

The Laplace transform of a unit impulse:

An important property of the unit impulse is a sifting or sampling property. The following is an important.

2

        

1 0 1 0 2

2 0 1 0

0

0 ,

) ) (

( ) (

t

t

t t t t

t t t t

dt f t t t

f 

(4)

The Laplace Transform

The Laplace transform of a unit impulse:

In particular, if we let f(t) = (t) and take the Laplace

1 )

( )]

(

[

0

0

 t estdt e s

t

L  

The Laplace Transform

Building transform pairs:

e

L(

at

u t  e

at

e

st

dt 

e

e

s a t

dt e

L

0

) ( 0

)]

( [

a s a

s t e

u e L

st

at

 

 

1 )

)] ( (

[ |

0

a t s

u e

at

 

1

) (

A transform pair

(5)

The Laplace Transform

Building transform pairs:

0

)]

(

[ tu t te dt

L

st

 

0 0

|

0

vdu

uv

udv

u = tdv = e-stdt

2

) 1

( t s

tu 

A transform

pair

The Laplace Transform

Building transform pairs:

2 2 0

1 1

2 1

2 ) )] (

[cos(

w s

s

jw s jw s

dt e e

wt e

L st

jwt jwt

 



 

 

 

 

2

) 2

( )

cos( s w

t s u

wt   A transform

pair

(6)

The Laplace Transform

Time Shift

 

0 0

)

( ( )

) (

, . ,

0 ,

,

) ( )]

( ) ( [

dx e x f e dx e

x f

So x

t as and x

a t As

a x t and dt dx then a t x Let

e a t f a

t u a t f L

sx as

a x s

a

st

) ( )]

( ) (

[ f t a u t a e F s

L   

as

The Laplace Transform

Frequency Shift

0

) ( 0

) (

) (

)]

( [

)]

( [

a s F dt e

t f

dt e t f e t

f e L

t a s

st at

at

) (

)]

(

[ e f t F s a

L

at

 

(7)

The Laplace Transform

Example: Using Frequency Shift Find the L[e-atcos(wt)]

In this case, f(t) = cos(wt) so,

2 2 2

2

) (

) ) (

( ) (

w a

s

a a s

s F and

w s s s F

 

 

2

2 ( )

) (

) )] (

cos(

[ s a w

a wt s

e L at

 

The Laplace Transform

Time Integration:

The property is:

st st

t

st t

se v dt e dv and

dt t f du dx x f u Let

parts by

Integrate

dt e dx x f dt

t f L



 

 



 

 

, 1

) ( ,

) (

: ) ( )

(

0

0 0 0

(8)

The Laplace Transform

Time Integration:

Making these substitutions and carrying out The integration shows that

) 1 (

) 1 (

) (

0 0

s sF

dt e t s f dt t f

L st



 

The Laplace Transform

Time Differentiation:

If the L[f(t)] = F(s), we want to show:

) 0 ( )

( ) ]

[ ( sF s f

dt t

L df  

Integrate by parts:

) ( ),

) ( ( ,

t f v so t df dt dt

t dv df

and dt se du

e

u

st st

*note

(9)

The Laplace Transform

Time Differentiation:

Making the previous substitutions gives,

 



 

0 0 0

) ( )

0 ( 0

) ( )

(

|

dt e t f s f

dt se t f e

t dt f

L df

st st st

So we have shown:

) 0 ( ) ) (

( sF s f

dt t

L df  



The Laplace Transform

Time Differentiation:

We can extend the previous to show;

) 0 ( .

. .

) 0 ( ' )

0 ( )

) ( (

) 0 ( '' ) 0 ( ' ) 0 ( )

) ( (

) 0 ( ' ) 0 ( ) ) (

(

) 1 (

2 1

2 3

3 3

2 2

2

n

n n

n n

n

f

f s f

s s F dt s

t L df

case general

f sf

f s s F dt s

t L df

f sf

s F dt s

t L df

(10)

The Laplace Transform

Transform Pairs:

______

__________

__________

__________

) ( )

(t Fs

f

f(t) F(s)

1 2

! 1

1 ) 1

(

1 )

(

n n

st

s t n

t s

a e s

t s u

t

The Laplace Transform

Transform Pairs:

f(t) F(s)

 

2 2

2 2

1 2

) cos(

) sin(

) (

! 1

w s wt s

w s wt w

a s e n

t

a s te

n at

n at

(11)

The Laplace Transform

Transform Pairs:

f(t) F(s)

2 2

2 2

2 2

2 2

sin ) cos

cos(

cos ) sin

sin(

) ) (

cos(

) ) (

sin(

w s

w wt s

w s

w wt s

w a

s

a wt s

e

w a

s wt w

e

at at

 

 

 

  Yes !

The Laplace Transform

Common Transform Properties:

f(t) F(s)

) 1 ( )

(

) ) (

(

) 0 ( .

. . ) 0 ( ' )

0 ( )

) ( (

) ( )

(

) ( [ 0

), ( ) (

) ( 0

), ( ) (

0

1 0 2

1 0 0

0 0 0

s sF d

f

ds s t dF

tf

f f s f

s f s s F s dt

t f d

a s F t

f e

t t f L e t

t t u t f

s F e t

t t u t t f

t

n n

n n

n n

at

os t

os t

(12)

The Laplace Transform

نآ سوکعم و سلاپلا لیدبت یارب بلتم روتسد

Example Use Matlab to find the transform of t

te4

The following is written in italic to indicate Matlab code

syms t,s

laplace(t*exp(-4*t),t,s) ans =

1/(s+4)^2

The Laplace Transform

سوکعم سلاپلا لیدبت یارب بلتم روتسد

Example Use Matlab to find the inverse transform of

19 . 12 . )

18 6 )(

3 (

) 6 ) (

( 2 prob

s s s

s s s

F   

 

syms s t

ilaplace(s*(s+6)/((s+3)*(s^2+6*s+18))) ans =

-exp(-3*t)+2*exp(-3*t)*cos(3*t)

(13)

The Laplace Transform

Theorem: نامز هزوح رد هیلوا رادقم هیضق

If the function f(t) and its first derivative are Laplace transformable and f(t) Has the Laplace transform F(s), and the exists, thenlimsF(s)

0

) 0 ( ) ( lim ) ( lim

t s

f t f s

sF

The utility of this theorem lies in not having to take the inverse of F(s) in order to find out the initial condition in the time domain. This is particularly useful in circuits and systems.

s

Initial Value Theorem

The Laplace Transform

Initial Value Theorem:

Example: Given;

2 2 5 ) 1 (

) 2 ) (

(

s s s F

Find f(0)

1 ) 26 ( 2

lim 2

25 1 2 lim 2

5 ) 1 (

) 2 lim (

) ( lim ) 0 (

2 2

2 2

2 2

2

2 2 2

2

s s

s s s

s s s s

s s

s s s

s s s

sF

f s s s

s

(14)

The Laplace Transform

Theorem: نامز هزوح رد ییاهن رادقم هیضق

If the function f(t) and its first derivative are Laplace transformable and f(t) has the Laplace transform F(s), then

) ( ) ( lim ) (

limsF s f t f

0

s t

Again, the utility of this theorem lies in not having to take the inverse of F(s) in order to find out the final value of f(t) in the time domain.

This is particularly useful in circuits and systems.

Final Value Theorem

The Laplace Transform

Final Value Theorem:

Example: Given:

ss

note F s te t

s

F ( ) tcos3

3 ) 2 (

3 ) 2 ) (

( 2 2 1 2

2 2

Find f().

(( 22)) 33

0

lim )

( lim )

( 2 2

2

2

 

s s s s

sF f

0 s

0 s

(15)

State variable technique

Linear System

) m (

u y(p)

) n ( x

) t ( x

) t ( x

) t ( x

) t ( x ) n ( x

n i 2 1

State vector

) t ( u

) t ( u

) t ( u

) t ( u ) m ( u

m i 2 1

Input vector

) t ( y

) t ( y

) t ( y

) t ( y ) p ( y

p i 2 1

Output vector

) t ( u ) t ( D ) t ( x ) t ( C ) t ( y

) t ( u ) t ( B ) t ( x ) t ( dt A x dx

Multivariable linear system (MIMO) Representation of x AxBu

xdt

x x

Bu +

A +

(16)

State representation of a linear system

D

A B

x u

x

Bu Ax x  

C

y

Du Cx

y 

A= System Matrix(n,n) B= Input Matrix (n,m) x= State Vector (n,1) u= Input Vector (m,1)

C= Output Matrix (r,n)

D= Direct Transmission Matrix (r,m) y= Output Vector (r,1)

Transition matrix x  AxBu

Assuming that the system is continuous and linear that A and B are time-invariant and

Using Laplace transform

) s ( BU ) s ( AX ) 0 ( x ) s (

sX   

) s ( BU ) 0 ( x ) s ( X ) A sI

(   

)]

s ( BU ) 0 ( x [ ) A sI ( ) s (

X   1

Taking the inverse Laplace transform of resolvent matrix

] ) A sI [(

L ) t

(  11

Transition matrix

(17)

Transition matrix

The state vector will take the following form (convolution)

t

0

d ) ( Bu ) t ( )

0 ( x ) t ( ) t (

x     

Or more generally

t

t 0

0

d ) ( Bu ) t ( )

0 ( x ) t t ( ) t (

x     

The output vector will take the following form Assuming that C and D are time-invariant

) t ( Du ) t ( Cx ) t (

y  

) t (

u R L

C

i(t) v(t) State variable technique

dt Cdv i

dt v Ldi Ri u

Basic circuit equation

Can be arranged

C i dt dv

Lu v 1 L i 1 L u R dt di

In matrix form

2 1

1 1

1 1 1

2

u u R R

R R R

R v

i C 0

1 L

1 L

R

dt dv dt di

(18)

State variable technique

 

v 1 i v 0

C i

y

2 1

1 1

1 1 1

2

u u ) R R ( L

R ) R R ( L

R v

i C 0

1 L

1 L

R

dt dv dt di

) s ( Ld

R ) s ( d

s ) s ( Cd

1

) s ( Ld

1 )

s ( sd

1

L s R C

1 L

s 1

LC 1 L s sR ] 1 A sI [

2 1

1

1

C s 1

L 1 L s R ] A sI [

Solution: resolvent matrix

LC 1 L s sR ) s (

d 2

State variable technique

b] s

1 a s [ 1 a b

1 ) b s )(

a s (

1 )

s ( d

1

b ] e a [ e a b dt 1 ) t ( f

] be ae a[ b

1 dt df

] e e a[ b ) 1 ) s ( d ( 1 L ) t ( f

bt at

bt at

bt at 1

) b s )(

a s LC (

1 L s sR ) s (

d 2

(19)

بلتم رد سلاپلا لیدبت (

لاثم )

سناکرف هزوح رد یطخ یاهمتسیس

یلع یاهمتسیس :

یلع ییاه متسیس

ز طرش اهنآ هبرض خساپ هک دنتسه ری

دنک هدروآرب ار :

h(t)=0 for t<0

یلع یاه متسیس ییارگمه هیحان

روحم تسار تمس رد هشیمه

jw دنراد رارق

رادیاپ یاه متسیس :

ئارا یفلتخم فیراعت یرادیاپ یارب هدش ه

تسا . فیصوت نامز هزوح رد هک یطخ متسیس کی یارب

پ ینحنم ریز حطس ندوب دودحم یانعم هب یرادیاپ دوشیم خسا

ینعی تسا هبرض :

کی هب سناکرف هزوح رد هدش فیصوت یاه متسیس یارب زا ی

دشاب دناوتیم ریز ینعم ود :

ییارگمه هیحان وزج یموهوم روحم و دشاب یلع متسیس 1. دشاب . لاقتنا عبات جرخم یاه هشیر مامت 2. (

متسیس یاهبطق )

یارب

دنشاب یموهوم روحم پچ تمس رد یلع یاه متسیس .

(20)

کبدیف و یزاوم ،یرس یاهمتسیس

clear all

% system and subsystems g1(s)=s/(s(s+1)) and g2(s)=1/(s^2+2s+2) s=tf('s');

g1=s/(s*(s+1));

g2=1/(s^2+2*s+1);

%%%%%%%%%%%

g_seri=series(g1,g2);

%%%%%%%%%%%

g_feed=feedback(g1,g2);

%%%%%%%%%%%%%%

g_paral=parallel(g1,g2);

%%%%%%%%%%%%%%

figure(1) impulse(g_feed) figure(2) step(g_feed)

0 2 4 6 8 10

-0.2 0 0.2 0.4 0.6 0.8 1

1.2 Impulse Response

Time (seconds)

Amplitude

0 2 4 6 8 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.8 Step Response

Time (seconds)

Amplitude

لاقتنا عبات کی یاهرفص و اهبطق

ار لاقتنا عبات کی تروص یاه هشیر

« رفص » ار جرخم یاه هشیر و

« بطق

» .دنمانیم

تسب هقلح متسیس کی یرادیاپ یارب مزلا ه

هتسب هقلح یاهبطق یاه هشیر لحم تسا روحم پچ تمس رد دنشابjw

.

K 𝐻(𝑠)

𝐻 𝑠 =𝑠(𝑠+1)(𝑠+5)1 and k=20 and k=50 𝑌(𝑠)

𝑅(𝑠)= 𝑘

𝑠3+ 6𝑠2+ 5𝑠 + 𝑘 اب هتسب هقلح یاهبطق لحم k=20

k=50 و

>> roots([1 6 5 20]) ans =

-5.7362 + 0.0000i -0.1319 + 1.8626i -0.1319 - 1.8626i

>> roots([1 6 5 50]) ans =

-6.4314 + 0.0000i 0.2157 + 2.7799i 0.2157 - 2.7799i

>>

𝐻 𝑠 = 1

𝑠(𝑠+1)(𝑠+5) and k=10 𝑌(𝑠)

𝑅(𝑠)= 𝑘 𝑠2+ 𝑠 + 𝑘 ءازاب هتسب هقلح یاهبطق لحم ابk=10

بلتم روتسد

roots([1 1 10]) ans =

-0.5000 + 3.1225i -0.5000 - 3.1225i

دنرادیاپ و پچ تمس یگمه .

0 2 4 6 8 10 12 14

-2 -1 0 1 2

3 Impulse Response

Time (seconds)

Amplitude

0 5 10 15 20 25 30 35 40 45

-1.5 -1 -0.5 0 0.5 1 1.5

2 Impulse Response

Time (seconds)

Amplitude

k=20

0 50 100 150 200 250 300

-3 -2 -1 0 1 2

3x 1028 Impulse Response

Time (seconds)

Amplitude

k=50

Referensi

Dokumen terkait

The result shows that, S-transform is a good solution to analyze power quality disturbances compared to the fourier transform and it also gives an evident that

(a) To characterize the physical and thermal properties of chitosan film via analytical and universal testing instruments such Fourier Transform Infrared Spectroscopy (FT-iR)

Image Compression Using the Discrete Cosine Transform..

In ridgelet transform, the image is represented in radon coefficients using discrete radon transform and a I-D wavelet transformed is performed on the radon coefficients to obtain the

2.3.2 Fundamental of Support Vector Machine SVM 15 2.4 Comparison between Fourier Transform FT, Wavelets Transform WT and Hilbert-Huang Transform HHT 20 2.5 Ensemble Empirical Mode

Through this paper, we also consider a location-scale extension of this distribution which we termed as the “extended alternative Laplace distribution EALD” and attempt to highlight

Chapter 7 A transform of mean-square fractional integrals and derivatives In deterministic fractional calculus the Laplace transform can be used to solve some fractional integral and

“Determination of an unknown source term and the temperature distribution for the linear heat equation involving fractional derivative in time.” Applied Mathematics and Computation 2181