• Tidak ada hasil yang ditemukan

King Abdul Aziz University Faculty of Sciences Mathematics Department Math

N/A
N/A
Protected

Academic year: 2025

Membagikan "King Abdul Aziz University Faculty of Sciences Mathematics Department Math"

Copied!
6
0
0

Teks penuh

(1)

1

King Abdul Aziz University Faculty of Sciences Mathematics Department Math 110 Workshop 8 Section 2.3

Professor Hamza Ali Abujabal [email protected]

1) 3

lim ( 2 2 1)

x x x

    

A 3

B 3

C  11

D 13

2) 2

lim(32 4)

x x x

  

A 10

B 2

C 4

D 10

3) 2 3

lim(1 3 5)

x x x

  

A 1

B 1

C 3

D 13

4) 3 2

lim (22 3 5)

x x x

   

A 11

B 5

C 1

D 1 5)

2 2

lim 2

2

x

x

  x

 

A 0

B 1

 2

C 2

D 1 2 6)

3 2 2

lim 5

1

x

x

x

 

A does not exist

B 9

5

C 11

5 D 13

5 7)

2 0 2

3 5

limx 3

x x

x

 

 

A does not exist

B 5

3

C 5

3 D 5

8) 2

1

lim 1

5

x

x

x x

 

 

A does not exist

B 2

3

C 0

D 1

9) 3

lim1 10 7

x x x

   

A does not exist

B 3

C 4

D 5 10)

2 1

1 ( 4)

lim 2

x

x x



  

A does not exist

B 8

27

C 8

3

D 8 27

(2)

2

11)

1

lim 8 2

x x

A does not exist

B 3

10

C 3

 4

D 3

 10 12)

2 4

lim 3 5

x

x x

x

A does not exist

B 4

9

C 4

9 D 8

 9 13)

2 4

lim 4 5

x

x x

x

A does not exist

B 0

C 4

3 D 8

 9 14)

1 1

4

3 (2 5)

lim 4

x

x x

 

A does not exist

B 0

C 2

9 D 2

 9 15)

3 2

0 2

lim 5

x

x x

x

 

a 5

b 5

c

10

d 0

16) 6 2

lim 6

36

x

x

x

 

a 12

b 1

12 c 1

8 d 0 17)

2 6

lim 36

6

x

x

x

 

a 12

b 1

12 c 8

d 0

18) 6 2

lim 6

36

x

x

 x

 

a 12

b 1

8

c 1

12

d 0 19)

3 3

lim 27

3

x

x

x

 

a 27

b 1

27 c 18

d does not exist

20) 3 3

lim 3

27

x

x

x

 

a 27

b 1

27 c 1

18 d does not exist

(3)

3

21) 2 3

lim 2

8

x

x

 x

 

a 12

b 1

12 c 1

8 d does not exist 22)

3 2

lim 8

2

x

x

 x

 

a 12

b 1

12 c 8

d does not exist 23)

2 4

3 4

limx 4

x x

x

  

a 5

b 8

c 5

d does not exist 24)

2 3 2

4 21

limx 8 15

x x

x x

  

  a 5

b 1

5

c 5

d does not exist

25) lim0 2

1 (1 )

x

x

x

  a 1

2

b 1

2 c 0

d does not exist 26)

3 2

6 2

limx 2

x

x

  

a 1

12

b 12

c 0

d does not exist 27)

0

25 5

xlim x

x

  

a  10

b 1

 10

c 10

d 1 10 28)

lim 0

25 5

x

x

x

  a  10

b 1

 10

c 10

d 1 10 29)

2

lim 2

2 6

x

x

x

 

  a does not exist

b 0

c 1

4 d 4 30) 2

2 6

lim 2

x

x

x

  

a does not exist

b 0

c 1

4 d 4

(4)

4

31) lim 3

2 1

x x

  a does not exist

b 0

c 1

2 d 2 32) If 2xf x( )3x28, then

2

lim ( )

x f x

a does not exist

b 4

c 0

d 4 33)

0

lim cos( 1)

x x x

x

a does not exist

b 0

c

d 1 34)

0

lim sin( )1

x x

x

a does not exist

b

c 0

d 1 35) If

2 1

( ) 1

1

x f x x

x

   

 , then

lim ( )0

x f x

a does not exist

b 1

c 0

d 1 36) If 4(x  1) f x( )x3 x 2, then

lim ( )1

x f x

a does not exist

b 1

c 0

d 4 37) If

3

( ) 4

lim 3

1

x

f x

x

 

 , then

3

lim ( )

x f x

a 0

b 10

c 2 d 3 38)

1 1

2

2 (3 4)

lim 2

x

x x

 

A does not exist

B 3

C 3

4 D 3

 4 39)

3 0

( 1) 1 limx

x

x

 

A does not exist

B 3

C 3

D 0

40) If 2

1

( ) 3

lim 1

5 ( )

x

f x x

x f x

 

 , then

1

lim ( )

x f x

a 1

b 1

3

c 2

3

d 3 41)

2 4 2

6 8

lim 20

x

x x

x x

  

  a does not exist

b 0

c 2

9 d 1

(5)

5

42)

3 2 2

lim 8

6

x

x

x x



 

  a does not exist

b 12

 5

c 8

5

d 12 43)

2

2 1

lim 2 2

4

x

x x x

x

  

  

  

 

a does not exist

b 6

5 c 1

d 6

5 44)

2 2 2

4 6 4

lim 2 8

x

x x

 x

  

a does not exist

b 5

c 5

4 d 5

4 45)

2

5 3

1

2 3

xlim

x x

x x



  

a does not exist

b 2

c 2

d 4 46)

2

3

2 1( 9)

limx (2 3)( 3)

x x

x x

  

 

a 7

9

b 2

3 c 7

3 d

2 7 3 47)

1

3 2 1

limx 1

x

x

 

 

a 1

b 1

c 2

2 d  2 48)

2 0

( 1) 1 limx

x

x

  

a 0

b 2

c 1

2 d 2 49)

1

2 2 2

limx 3 2 1 x

x

  

 

a 3

2

b 2

3 c 1

3 d 1

3 50)

2

3 2 5

limx 2

x

x

  

a 1

6

b 3

c 1

3 d 1

3 51)

2 1 2

3 2

lim 1

x

x x

 x

  

a 0

b

c does not exist

d 1

(6)

6

52) If lim ( ) 2

x kf x

  and lim ( )

3

x k g x

 , then lim

( )

xk g x

a 1 3

b 1

3

c 3

d 3

4 53)

0

4 2

limx

x

x

  

a 0

b 1

c 1

4 d 4 54)

2 1

5 6

lim 1

x

x x

 x

  

a 0

b 1

c does not exist

d 7 55)

1 1

0

( 3) 3

limx

x x

 

A 1

 9 B 0

C 1

3

D 1 9 56) If

1

lim ( ) 3

x f x

 ,

1

lim ( ) 4

x g x

  ,

1

lim ( ) 1

x h x

  , then

1

5 ( )

lim ( )

2 ( )

x

f x h x

g x

 

 

 

 

a 23 8

b 7

8 c 3

d 23

 8 57) If

1

lim ( ) 4

x g x

  and

1

lim ( ) 1

x h x

  , then

1

lim ( ) ( )

x g x h x

a 2

b 2

c 2

d 3 58) If

1

lim ( ) 3

x f x

 ,

1

lim ( ) 4

x g x

  ,

1

lim ( ) 1

x h x

  , then

 

lim 2 ( ) ( ) ( )1 x f x g x h x

a 24

b 48

c 12

d 24

Referensi

Dokumen terkait

Pada hari ini Senin tanggal tiga bulan Desember tahun dua ribu dua belas (03-12-2012), Panitia Pengadaan Barang Dan Jasa Pembangunan Gedung King Abdul Aziz Asrama Haji Embarkasi

Pada Tesis ini dikonstruksi model matematika tipe SEITR (Susceptible Exposed Infected Treatment Recovery) untuk menggambarkan pengaruh pemberian treatment yang

¤ Tarik KL dengan K titik tengah AB , maka KL tegak lurus pada setiap garis yang terletak pada bidang EFCD yang melalui L.  KL jarak titik tangah AB ke

Hundred years, and each time valuables had been hidden in the earth.. Pilon had emerged from his hard daily shell, as he did now and then. This night he was engaged in a

Degree : Magister Sains (Master of Science) Campus Location : Depok Campus Lecture Schedule : Morning/Daytime Length of Study : 4 Semesters (41 credits) Language :

Untuk melanjutkan studi kita tentang geometri netral, kita jadi tertarik apakah persegi panjang dapat muncul dalam geometri netral ini, dan apa yang dapat didasarkan

- Teacher Assist in Thermodynamics 1 & 2 Concordia University - Teaching MEP 261 Thermodynamics, MEP 290 Fluid Mechanics, IE 201 Introduction to Engineering Design ACADMIC EXPERIENCE

The phase lag of the temperature gradient parameter, the phase lag of the heat flux parameter, power density of laser irradiation value, perfusion rate of blood value, and