Xac djnh cdu giao due dqi lioc d Viet Nam:
tiep can bang nno hinh lira chon Hecl<man
T R t r O N G N H A T HOA N G U Y E N KHAC M I N H
fuc dich cua nghien cdu nay ia Udc idOng ham ciu cua ho gia dinh cho giao due dai hgc bang viec sd dung ddc lifdng chi phi cd hgi va t$p hdp cac nhan to tac dgng den quyit dinh cua hg gia dinh vi chi tieu cho thanh vien cua hg hgc dai hgc. De phan biet rd nhan to'quyit dinh hanh vi ra quyit dinh vi chi tieu cua ho gia dinh vao giao due dai hgc, mo hinh Hecicman hai budc dddc ap dung vao bg dd lieu Khao sat mdc song hg gia dinh Viet Nam nam 2016. Kit qua cho thay, tinh trang xa hgi va kinh ticua gia dinh co inh hudng tUdng doi ldn din chi tieu hg gia dinh cho giao due dai hgc. Chi phi cd hgi dUdc bieu hien nhif mgt yeu to quan trgng trong quyei dinh dau td vao giao due dai hgc.
Ttt k h d a : giao due dai hgc, ciu giao due dai hgc, mo hinh Heckman.
1. Gidi t h i e u
Nghien cflu v l giao due tfl q u a n diem kinh t l da dfldc cac n h a k i n h t l q u a n t a m ra't nhieu vi nhflng ly do khac n h a u . Mgt trong cac ly do la vide d l u tU vao vd'n con ngfldi thdng qua giao due dildc thifa n h a n nhfl mpt t h a n h p h i n q u a n trpng cua t a n g trudng kinh t e (Lucas, 1988; Mankiw va cgng 811, 1992; Barro va Sala-i-Martin, 1995). Them vao dd nhiing v a n d l khac nhfl anh hfldng cua giao due cd vai trd q u a n trpng trong viec lam giam sil b a t binh dang v l thu nhap, hoac cac md'i q u a n he gifla giao due va thi trfldng lao ddng. N h i l u each tid'p can da dfldc s\i dung de nghien cflu cac ndi dung nay. Cd t h e tha'y cac each t i i p can do tfl cac nghien cflu v l ty le h o a n von giao due (Psacharopoulos va Woodhall, 1987; Al- Qudsi, 1989) d i n nhflng nghien cflu v l sU khac biet gifla t r i n h dp hgc van cua can bd, nhan vien va d i l u kien c l n thie't cho mgt cdng viec cu the (Alba-Ramrez, 1993;
Beneito va cdng sfl, 2000).
Bai v i l t nay nghien cflu ve giao due tfl quan d i l m c l u giao due, nhifng khdng xem xet c l u giao due chung m a chi t a p t r u n g vao cau giao due dai hgc, dac trifng ciia nd la nhflng hd gia dinh cd con, em td't nghiep pho
thdng t r u n g hgc m a hg dflng trUdc 2 lila chpn: hoac la tiep tuc dau tfl vao viec hpc t a p b dai hpc, hoac di lam de k i l m t h u n h a p . Neu cac hd gia dinh q u y l t dinh d l u tfl cho con, em vao dai hpc t h i hp ky vgng dieu gi.
Beneito va cdng sU (2001) cho rang mdt trong ye'u to' quan trpng la chi phi cd hdi khi di hpc dai hpc.
Xua't phat tfl muc tieu nghien cflu cac n h a n to' xac dinh cau giao due dai hpc, bai vie't xem viec cau giao due dai hpc la ke't qua cua qua trinh r a q u y l t dinh 2 giai doan:
quye't dinh cho phep t h a n h vien cua hg di hpc va quyet dinh danh mdt p h i n thu nhap cua hd de dau tfl vao dai hgc. Dfla tren thdng tin v l Khao s a t miie sd'ng hd gia ifinh Viet Nam (VHLSS) n a m 2016 eua Tong cue Thoiig ke, nghien cflu nay p h d n tich cac ye'u td' quye't dinh chi tieu cua cac hg gia dinh Viet Nam trong viec d l u tfl vao dai hpc. Nghien cflu nay gia dinh r i n g , quyet dinh chi tieu cho giao due dUdc ngUdi dflng dau cua gia dinh thflc hien chd cac t h a n h vien cua he. Mac dii chi tieu cua hd gia cEnh cho giao due tao t h a n h mdt k h o a n chi tieu h i n g n a m , nhifng
Tmang Nhat Hoa; Nguyin Khic Minh, GS., Tnrcmg dai hpc Thang Long.
Nghiin cOU Kinh lSs6 7(494) -, Thing 7/2019 2 1
Xdc djnh cau giio due .
chi tieu nay cung dfldc coi la mdt lua chgn dau tif cho ca n h a n (thanh vien cua hd). Mdt trong nhflng nhan to' a n h hudng manh me nha't den cau cho giao due dai hgc la mflc t h u nhap hg gia dinh va chi phi phat sinh cua mdt gia dinh khi hg cd quyet dinh dau tfl vao giao due. Trong cac nghien cflu v l nhu cau giao due hd gia dinh, cac yeu to' v l xa hdi va kinh te quan trpng trong viec xac dinh chi tieu cho giao due thfldng dfldc cha'p nhan.
c a c khia canh nhfl gidi tinh, tinh trang hdn nhan, trinh dp hgc v&n, n g h i nghiep cua ciia chu hd (cha, me hoac ngfldi bao trd), vi tri dia ly cua ndi cif t n i , quy md cua hg gia dinh hoac tham chi xem xet tinh trang xa hdi cua gia dinh, cac yeu td' nay giiip giai thfch cac gia tri khac n h a u cua mdi gia dinh doi vdi giao due. Trong thUc td', muc tieu khac ciia nghien cflu nay la de xdc dinh phflc hdp cac n h a n td' xa hdi va kinh te' cua nhflng gi cd the dfldc gpi la gia dinh "giao due" (Anderson, 1983), tflc la cac gia dinh dUdc danh dau bdi mpt sd thich manh me cho viec giao due cac t h a n h vien cua hg.
2. Tong q u a n n g h i e n ctfu v e c a u giao d u e d a i h o c
Cho den nay da cd ra't nhieu nghien cflu v l nhu c l u giao due dai hpc d cac nudc tren t h i gidi. Cac nghien cflu nay da chi ra r i n g cac yeu td' nhdn k h a u hgc, xa hdi va cac ye'u to' kinh te ddng mdt vai trd quan trgng trong viec xac dinh chi tieu hd gia dinh cho giao due ndi chung va giao due dai hgc noi rieng.
Cac y l u to' xa hdi bao gdm: trinh dp hpc va'n, gidi tinh, tuoi tac, quy md hd gia dinh, tinh t r a n g hdn n h a n va loai trfldng hpc (trudng cdng hay tfl); cac y l u td'kinh te'bao gdm: thu nhap hd gia dinh, tai san, viec lam va nghi nghiep (Albert, 2000; Flannery va O'Donoghue, 2009). Nhflng nghien cflu nay cho tha'y anh hfldng d i n c l u giao due d cac qud'e gia khac nhau la khdng gidng n h a u .
Black va cdng sU (2005) cho tha'y cd mdi .tfldng quan dUdng m a n h gifla trinh dp hpc va'n cua cha, me va con, em hp b i n g each sii
dung dii h§u cua Na Uy. Hazans va cgng sfl (2008) eung thay rkng, giao due cua cha, m^
cd tac ddng tich cilc de'n ea viec ghi danh va hoan t h a n h giao due t r u n g hgc va dai hgc d cac nfldc vung Baltic. Albert (2000) nghien cflu cau giao due dai hgc d Tay Ban Nha cho tha'y r i n g , cae yeu to quyet dinh quan trgng nha't nhu c l u nay la dac d i l m cua hd gia dinh, dac bi§t la t r i n h dp hpc vd'n cua cac ba me.
Hashimoto va H e a t h (1995) chi r a dd co gian t h u nhdp cua chi tieu cho giao due dat dinh d p h a n gifla eua day p h a n phdi thu nhap, ma khdng n a m b dfldi day p h a n phdi doi vdi cac hd t h u n h a p tha'p, ciing khdng bi am dd'i vdi cac nhdm cd t h u n h a p cao. Ngfldc lai vdi nghien cflu cua Tansel va Bircan (2006) v l CO gian ddn vi ciia chi tieu cho khoan muc phu dao rieng d Thd Nhi Ky, k i t qua nghien cflu cua Hashimoto va Heath (1995) chi r a r i n g , cac hd gia <finh t r u n g lUu d Nhat Ban cd do co gian t h u n h a p ldn nha't v l giao due. K i t qua khac n h a u difdc chd la do phfldng phap nghien eflu va chgn m a u khac nhau. Chang ban, m l u cua Psacharopoulos va Papakonstantinou (2005) khac so vdi cac nghien cflu con lai d chd m l u difdc lifa chgn tii cac sinh vien dai hpc. Hdn nfla, cac ky t h u a t kinh te lifdng difdc sii dung trong nghien eflu cua hg khdng gidng n h a u . Vi du, h a u h i t cae nghien cflu s^ dung cac fldc lifdng OLS, md hinh Logit, Probit va Tobit, Carla Sa' va cgng sil (2003) svt dung md hinh lUc ha'p d i n . Vi du nhu, Psacharopoulos va Papakonstantinou (2005) s\i dung phfldng phap binh phUdng nhd n h a t (OLS) va Tansel va Bircan (2006) ap dung md hinh Tobit... Cd mpt vai nghien ciiu svi dung md hinh lUa chgn Heckman va s\i dung ky thuat Heckman hai budc. De tim k i l m nhiing gi ^^h hifdng d i n su khac biet trong sif tham gia giao due dai hgc, Cameron va Heckman (2001) ukc lUdng md h i n h lifa chpn rdi rac done va cho thay r i n g cac y l u to' la dai han, chang h a n nhfl n i n tang gia (Hnh va sfl khac biet v l t ' ddng cua phu h u y n h trong vi§c di hpc dai ho
22 Nghiin cAi Knh les67(494) • IhSia'
Xdc djnh cdu gido due ,
d Hoa Ky. Andreou (2012) da nghien cflu chi tieu hd gia dinh v l giao due d Sip, md hinh Heckman dfldc ap dung de p h a n tich dQ lieu tfl cude dilu tra chi tieu gia dinh n a m 1996- 1997, 2002-2003 va 2008-2009. Trong p h a n tich thflc nghiem, nghien cflu cho b i l t cac ylu to' sau sac n h a t a n h hfldng den mflc ehi tieu la sd' tre em trong hg gia dinh, viing cU tni, tud'i trfldng t h a n h va giao due. Mflc ehi phi giao due tang theo t h u n h a p va quy md hd gia dinh.
Mdt trong cac nghien ciiu cd net k h a dac sac khac vdi cac nghien cflu khac la nghien ciiu eua Beneito va cdng sU (2001), nghien ciiu nay trinh bay each thiic xdy dflng mdt biln dai didn cho chi phi cd hdi va sii dung nd trong vide r a q u y l t dinh cua hd gia <finh v l chi tieu cho giao due t r u n g hpc va dai hgc.
Cac tac gia nay da xua't p h a t tii bai toan cilc dai ldi ich cua hd gia dinh trfldc cdc q u y l t dinh chi tidu tieu dung va quye't dinh dau tif cho con, em hp vao hpc t r u n g hpc hay dai hgc d l thu dfldc phfldng trinh c l u cua hd gia dinh cho ca giao due t r u n g hgc va dai hge d Tay Ban Nha. Hg da d l xua't phfldng phap fldc Ifldng chi phi cd hdi lien quan den vide r a quylt dinh d l u t u vao giao due. Hp da sxl dung md hinh bien p h u thudc gidi h a n (md hinh Tobit) dd fldc lifdng cae n h a n to' tac ddng din clu giao due tren cd sd dfl lieu "Khao sat ngan sach gia dinh n a m 1991" cua TSy B a n Nha. K i t qua udc lUdng cua hg da ehi r a rang, tinh t r a n g xa hdi va kinh t e cua gia dinh cd anh hfldng tUdng doi ldn d i n ehi tieu hd gia dinh cho giao due t r u n g hgc hdn la v l giao due dai hpc; chi phi ed hdi ciing la mgt biln quylt dinh trong dau tif vao giao due trung hge, nhflng khdng hdn trong trfldng hdp ciia giao due dai hgc.
3. P h U d n g p h a p l u a n
Khac vdi mdt so' nghidn cflu tnfdc v l chi dinh ham c l u eho giao due dai hpc, bai viet xem c l u giao due dai hgc la mdt qua t r i n h r a quylt dinh hai bifdc: bu^dc thd nhit, hd gia dinh ed con td't nghiep phd thdng diing trfldc hai quye't dinh, hoac tiep tue cho con, em hg
vao mdt trudng dai hgc, hoac de con em hp di lam k i l m t h u n h a p ngay hoac hpc nghi; budc
thd hai, neu da q u y l t dinh cho con em hg vao dai hgc thi vd'n d l la d chd phai danh bao nhieu t h u n h a p cho con, em minh hoan t h a n h viec hgc dai hgc. Ngi dung nay lien quan de'n va'n d l kinh te Ifldng thfldng dfldc gpi la md hinh lila chpn Heckman.
3.1. M6 hinh lUa chgn Heckman Md hinh lUa chpn Heckman (1979) (hay md hinh Heckit), la mdt md hinh eho phep Ude lUdng cac mo hinh hoi quy hi chech chgn m l u . Ly do de chgn md hinh lila chgn Heckman la bdi vi bien phu thudc y, chi tieu hgc dai hgc, chi cd t h i quan sat dUdc doi vdi mgt phan dfl lieu, tflc la chi nhflng gia dinh cd ngudi dUdc quyet dinh vao dai hgc, cdn nhflng gia dinh cd ngfldi sau khi td't nghiep phd thdng di lam ngay hay hgc nghe hoac khdng cd t h a n h vien b tudi di hgc dai hpc thi chung ta khdng quan sat dfldc. Md hinh lila chgn Heckman dfldc chi dinh la:
y, = X,'P + e.(l) z, = W,Y+u.(2)
Trong dd: y, la chi cho giao due dai hpc; X, la vee td eac bie'n ddc lap bieu thi dac trflng cua chu hg, hg va mdi tnfdng (dUde dinh nghia d p h i n phu luc); z, la mdt bien nhi phan bieu thi quye't dinh cua hd gia dinh, nhan gia tri bang 1 neu hd gia dinh q u y l t dinh cho con vao dai hpc va bang khdng trong trfldng hdp ngfldc lai; yi la chi cho giao due dai hpc nen nd chi difdc quan sat khi hd gia (£nh da cd quylt dinh cho con em vao dai hpc, nghia la yi chi dfldc quan sat khi Zi = 1; Ei va Ui la cac sd'h^ng sai so"theo mdt p h a n phdl chuan hai chieu:
pa 1
- N (3)
Vdi t h a m sd' ty le a va he so' tifdng quan p.
Lilu y r a n g chiing ta chuan hda phfldng sai cua u, v l 1 vi phUdng sai nay khdng dfldc n h i n dang trong md h i n h nay. Phfldng trinh (1) dUdc ggi la phUdng trinh p h a n flng, vdi y, la bien t h e hien quyet dinh d l u tfl vao dai
Nghiin cAi Knh t4s67(494) • Thing 7/2019 23
Xdc djnh cdu gido due ,
hpc cua hd gia dinh, nghia la khi quyet dinh cho thanh vien gia dinh vao dai hpc thi se y, CO gia tri dfldng (co chi tieu dau tfl cho t h a n h vien gia dinh vao dai hpc). PhUdng trinh (2) dfldc gpi la phfldng trinh Ifla chpn quye't dinh cho con vao dai hpc de xac dinh y, cd dfldc quan sat hay khong (cd danh p h a n t h u n h a p ciia hd gia dinh cho con hgc dai hpc khdng).
3.2. Phuang phdp kinh telUdng (phUdng phdp Heckman hai bitdc)
Phifdng phap Heckman hai budc b i t dau tfl xem xet ky vpng ciia yi (quyet dinh chi tieu ciia hd i cho cac t h a n h vien ciia hp hpc dai hgc) trong dilu kien quyet dinh ciia hd gia dinh (ddng y dau tU z,=l) cho t h a n h vien gia dinh di hpc dai hgc:
E(y. I 2, = 1) = X.'p + poXi(W,7) (4) Trong dd: >.(X) = (t)(X)/*(x) la ty so Mills nghich dao (Greene, 2008), (j) va <(> tUdng flng la ham mat do va h a m phan phoi luy k l chuIn chuan tac. Khi dd cd the chi dinh mdt md hinh hdi quy:
y, = X,'p -H poX,(W,Y) + V. (5) Phfldng phap hai bfldc b i t dau bang viec dau tien fldc lupng mdt hdi quy Probit doi vdi phfldng trinh (2) de t h u dflpc mdt fldc lUdng cua ^ , tfl dd cd the tinh toan X,((Wi7); sau dd tinh toan hdi quy binh phfldng be nha't cua yi (chi tieu cho giao due dai hpc) theo Xi'^
va XH:
y> = X.'P + p o l j + v , , (6) mang lai cac fldc Ifldng vflng ciia p va 9 = pa.
Cd the t h u dfldc mgt fldc Ifldng doi vdi do lech c h u i n sai sd' a tfl sai so' chuan thdng thudng cua hdi quy, sau dd la fldc lifdng ty sd
p = § / s . Udc lUdng cua ma t r a n hiep phifdng sai cua he sd' cua phfldng phap h a i bfldc dfldc cho bdi:
n=d2(X*-X*)''(X*'(I-p'A)X*-K2)(X*'X*)-^7) Trong dd: X*. = (X,', X-j)', A la ma t r a n difdng cheo vdi Sj = l i ( l i - W;^) t r e n dfldng cheo, I la ma t r a n dong nha't, Q =
p ^ ( X * ' A W ) V ( X * ' A W ) , V i a ma t r a n hiep phuong sai eua he so tfl udc Ifldng Probit cua phfldng trinh (2).
4. Dii l i e u v a c a c g i a t h u y d ' t 4.1. DQ lieu
Cac dfl lieu dUdc srt dung trong cac ifdc tinh dflcfc la'y td. Khao sat mflc so'ng hp gia dinh Viet Nam (VHLSS) n a m 2016. Cupc khao sat cho phep k h a i thac ta't ca cac thdng tin c l n thie't de xay dilng cac bie'n can thiep vao thdng sd' ky t h u a t kinh te khac nhau dUdc SL( dung trong nghien cflu nay.
Viec lap dfl toan chi tieu ca n h a n hg gia dinh cho giao due da dUdc thuc hien rieng cho giao due dai hpc. Nghien cflu nay se dfla vao tai khoan chi tieu trong gia dinh trong giao due dai hpc tinh theo so' cac t h a n h vien trong gia dinh. Chi phi bao gom t n i n g t u y i n va dang ky le phi, t h a n h toan thfldng xuyen cua hgc va cac chi phi sach giao khoa va tai heu hpc tap...
4.2. Chi phi cd hgi vd cdc gid thuyet Trong so' cac bie'n giai thich cua md hinh Heckman dfldc md t a trong phfldng trinh (1) va (2), chi phi cd hgi (hoac gia bdng) cua giao due dai hpc dfldc d l cap dac biet, dieu quan trpng trong quye't dinh v l thdi gian ma cac hp gia dinh danh cho cac t h a n h vidn cua minh di hpc dai hgc. Bien nay dfldc xay dflng tren cd sd du doan t h u n h a p lien quan d i n cac tinh hudng lam viec khac n h a u cd the cd ciia mdi ngfldi. Viec tinh toan cua b i l n nay tao thanh mgt trong nhflng muc tieu cua nghien cflu nay, cho du do la mdt giai doan trung gian c l n t h i l t cho viec xac dinh cac y l u to' chinh trong viec xac dinh chi cho giao due.
Chi phi cd hgi, dUde hieu la thu n h a p khdng dUde n h a n bdi mot t h a n h vien cua hd la k i t qua cua quyet dinh cua hp gia dinh d l cho t h a n h vien dd di hgc dai hpc va neu de t h a n h vien nay di lam thi se kilm dudc (cd the gpi la t h u n h a p ky vpng bi mjit), c6 t h e dfldc la'y ifdc lUdng t h u n h a p trung binh nh*
difdc tfl cac chu hd vdi nhflng dac diem tud
24 Nghien ciiu Kinh tgs6 7(494) - Tb^
Xdc djnh edu gida due ,
tfl iam XEfp xi. D i l u nay ra't khd dd so s a n h , gia t h i l t la mdi t h a n h vien t r o n g mgt gia dinh, n l u khdng di hpe ma di lam vdi thdi gian lam viee gid'ng nhif chu hg t h i t h a n h vien nay ciing cd t h e k i l m dfldc t h u n h a p b i n g t h u n h a p cua chii hg cua minh. Vi the', d l xua't t h u tuc t i n h chi p h i cd hdi k h i mdt t h a n h vien cua gia dinh tii bd cd hpi di hoc t h i cd t h e k i l m dfldc t h u n h a p n h u sau:
Bddc 1: xay dilng md h i n h t i l n lifdng cd hdi. Tien Ifldng thu difdc bdi "ngfldi chu gia dinh" difdc gia dinh la p h u thugc vao cha't Ifldng cua cac dich vu ma hp cung cap. Cha't Ifldng dieh vu xa'p xi bang thdi gian lam vide va trinh dp nghiep vu (xd'p xi bien gia cd bang dai hpc hoac khdng) va ndi cfl t r u (d cac vung khac nhau).
Md hinh nhfl sau: Lnx27=ao-i-ailnx25+ a2A+
E,piDi+u (8)
Trong dd: X27 la t h u n h a p ciia "chu hd gia dinh", X25 la sd' ngay lam viec cua chii hd, trong nam A la bien nhi p h a n bang 1 n l u chu hg tdt nghiep dai hgc va bang 0 trong trfldng hdp ngfldc lai va D, la b i l n gia cho cac vung kinh t l .
Bddc 2: fldc Ifldng md hinh (8) va dfl bao thu nhap ky vgng.
Sti dung dii lieu khao s a t hg gia dinh (VHLSS) nam 2016 d l fldc Ifldng cae md hinh (8), sau dd dfl doan cho bien phu thudc cua mo hinh) difdc b i l u thi bang Lnx27f.
Bddc 3: xay dilng bien ehi phi ed hdi.
Chi phi cd hdi cua viec khdng di hgc dai hpc dila tren gia dinh rang, t h u n h a p ky vgng kiem dfldc khdng dfldc tha'p hdn mfle Ifldng trung binh cua chii he va mflc t i l n Ifldng kilm dfldc theo dil bao, nghia la Lnwf = Max (lnx27, lnx27f), nhil vay n l u anh/chi t a quyet dinh di hpc cd t h i se p h a i hy sinh mflc t h u nhap la lnwf. Biln lnwf se difdc dfla vao md hinh Ifla chpn Heckman.
Gia thuyit 1: chi phi cd hgi eho di hoc dai hgc cang cao thi k h a n a n g hg se q u y l t dinh thanh vien di lam cang ldn.
4.3. Ddc diem hg gia dinh vd quyei dinh chi tieu gido due dai hgc D l cap d i n cac dac diem n h a n k h i u hgc xa hgi cua cac chu hg gid'ng n h u tudi tac, gidi tinh, t i n h t r a n g hon n h a n , t r i n h dp hpc va'n, tinh t r a n g giao due va viec lam. Theo Takwa (2005), cac dac t i n h nay cd t i m quan trgng doi vdi dieu kien sd'ng eua cac t h a n h vien cua hd gia dinh, quy md hg, tieu dung h a n g hda dich v u va xua't hien cua eac hien tUdng n h a n k h a u hgc nhfl hdn n h a n va di cfl.
Udc lifdng cua bai v i l t tinh den dae diem hg gia dinh cd t h e a n h hudng d i n q u y l t dinh cho t h a n h vien di hpe dai hpc, bao gom cac khd k h a n nhU: t h u n h a p hd gia dinh, gidi tinh cua chu hd, quy md hd gia dinh, nghe nghiep cua chu hg (cha, me hoac ngfldi bao trd), hgc vd'n, tudi tac cua chu hd. Mdt sd' nghien cflu t r e n t h e gidi cho tha'y, cac hd gia dinh do nfl dflng d l u cd n h i l u k h a nang la hd ngheo. Tuy nhien, cd sfl md ho trong thflc nghidm v l vai trd phu nfl dflng d l u gia dinh trong viec c l u giao due. Chang h a n Patrinos va Psacharopoulos (1997) da tim tha'y mdt hp gia dinh cd nfl la chu lam tang k h a nang con em hg lam viec (Peru), edn Lloyd va Gage-Brandon (1994), Canagarajah va Coulombe (1998) p h a t hien r i n g d tieu vung S a h a r a Chau P h i va d Ghana, hd gia dinh cd phu nfl la chu cai thien k h a n a n g di hgc. V l t r i n h do hgc v a n ciia chii hd, theo cac n g h i e n cflu trfldc day, t r i n h dp hpc va'n cua chu hd ed a n h hfldng d i n viec con em hp cd tiep tuc di hgc hay khdng. Chang han Psacharopoulos va Arriagada (1989), Grootaert (1998) deu chi r a r a n g viec hpc va'n cua phu h u y n h a n h hudng den k h a n a n g dfla tre se di hgc hay khdng. Trong khi dd H a n d a (1996), Rosenzweig va Wolpm (1994), Lillard va Willis (1994), Unni (1998) cung chi r a nhflng a n h hfldng tuf hgc va'n cua phu huynh ddi vdi tre.
Dfla t r e n ed sd eac nghien cflu trfldc, nghien ciiu nay ky vgng rang mflc do giao due cua chu hg cd t h e cd a n h hfldng cd y nghia den quyet tiinh eho con, em hp di hpc
Nghiin cHU Knh tgs67(494) • Thing 7/2019 25
Xde djnh clu gido due ..,
dai hpc va quye't dinh chi tieu cho hpc dai hgc.
Gia thuyit 2 chu hd cd giao due cang cao thi cang cd quye't dinh eo y nghia trong vide con em hp vao dai hpc va chi tieu cho con em hp hpc dai hgc.
Tudi ciia chu hp cd anh hfldng cd y nghia den quyet dinh chi tieu cho con, em vao dai hoc. Vi du, ddi vdi gia dinh cd quy md nhd thfldng do cac ngfldi tre tudi dflng d l u (Takwa, 2005). Nhflng trong trUdng hdp quylt dinh cho con em hgc dai hgc, thi ngfldi chu hg thfldng d tudi t r u n g nien, ky vgng rang d i n mdt do tudi nha't dinh thi q u y l t dinh cho con em vao dai hpc cd y nghia nha't.
Vi the', nghien cflu nay dfla vao bien tudi (T) va tudi binh phUdng (T^ va dUa r a gia thuye't:
Gia thuyit S. co mdt dd tudi (cifc dai) ma tai do quye't dinh chi tieu cua chu hg vao giao BANG 1: K e t q u a ddc Itfging
due dai hpc eo y nghia nha't.
Md hinh h a m s a n xua't hg gia tfinh khang dinh rang, h6 gia dinh se ehi tieu trong giao due m i l n la hp gia t a n g mflc do ldi ich chung.
Tuy nhien, ldi ich ho gia dinh dfldc xac dinh bdi cac y l u td' kinh te, xa hdi a n h hfldng den ngdn sach ho gia ifinh. Hon nfla, theo ly thuyd't vd'n n h a n lUc, ehi tieu cho giao due lam t a n g mflc sd'ng, do dd, ngfldi ta mong ddi r i n g hd gia dinh cd mflc t h u nhap cao thi chi cho giao due dai hgc se cao. Vi vdy, nghien cflu nay dfla r a gia thuyet:
Gia thuye't 4: hd gia dinh cd mflc t h u nhap cao se chi tieu n h i l u cho giao due dai hgc.
5 . K e t q u a d&c l i ^ ^ n g m o h i n h H e c k m a n
Thu tuc h a i bfldc dUdc sit dung de fldc lUdng md hinh Heckman. Ke't qua fldc lUdng md hinh dfldc t r i n h bay b bang 1.
m o h i n h H e c k m a n h a i b i i d c 1
1 Dac tmng chu ho
Sex2
T
• p
X .
Xfib
XM
Xa.
XT.
x„
1 1
Cocf.
z
0,25869«»«
(0,06488) 0.08268««»
(0,01182) -0,00064»»»
(0,00011) - 0 , 5 5 7 6 9 " * (0,08418) -0,42227*»»
(0,06345) 0,31869»»»
(0,06089) 0,41063»*»
(0,08113) -0,30391 (0,22453) -0,17477*
(0,09811) Coef.
Z
Std.
Std.
E n . Y5t
0,04782*»*
(0,01289) 0,01718***
(0,00239) -0,00014***
(2,22E-05) -0,088***
(0,01806) -0,07056***
(0,01308) 0,05853***
(0,01195) 0,06054***
(0,01597) -0,04807 (0,0469) -0,01747 (0,02022)
Err. -
- ~ d
26 N^ien cAi Kinh li 367(494) - TO^
Xic djnh ciu giio due .
XB
Ngh6 nghifep chu h6 X, X,»
X,i Dac trung cua hd
X20
Location 1 Miic ,s6ng cua hfl
X30L
XlOh
Chi phi CO h6i Lnwf
P X S6 quan sdt Onsored Obs
Wald- X' Log likelihood
0,21523***
(0,07898)
0,10470*
(0,05713) -0,00512 (0,05659) 0,07816 (0,06032)
0,59051***
(0,02553) 0,02430 (0,05632)
-0,38811***
(0,07005) 0,19284***
(0,05316)
-0,42596***
(0,02904)
0,98020 0,17549 8402 7721 227,61 1 -1124,645
0,03884**
(0,01647)
0,01959*
(0,01136) -0,00112 (0.01155) 0,01611 (0,01188)
0,08961***
(0,00734) -0,00548 (0,01137)
-0,02913**
(0,0149) 0,01558 (0,01073)
-0,0736***
(0,00671)
Ghi chil: (1) sai s6 c h u ^ duoc cli^u chinh Iheo cum d^ Irong dau ngoac don; (2) * /**/*** chi miic ^ nghia th6ng ke 10%, 5% va 1% . tuong iJng; (3) p IS udc luong hft s6 tuong quan giQa cfic s6 hang nhiSu cua hai phuong trinh, nfiii n6 khdc khdng, didu n&y gpi y rSng hai phuong trinh co lifin quan va md hinh lua chpn la phu hop; X la he s6 udc luong ty 16
nghich dao cua Mills, no cho thiy c6 su lua chon mSu; (4) kiem dinh Wald dupc s\i dung de kiem dinh mdic ^ nghia chung cfia md hinh 2 phuang trinh. ki^m dinh nhSn tur Lagrang (LR) cua su doc lap ciia cac phuong trinh bi bac bo 6 mile
y nghia 1%. (rho = 0); chi2 (1) = 151,57 Prob>chi2 = 0,0000.
Ngu6n: Tinh toin cua lac gia dua trfin s6 lieu VHLSS nam 2016 cua Tdng cue Th6'ng ke.
Cac phat hien chinh cho mo hinh Ket qua hdi quy eho md h i n h d^y du (md hinh ifla chgn Heckman) diidc tdm t a t t r o n g bang 1 trong dd edt 2 va 4 tiidng flng tfldng ling vdi cac phfldng t r i n h (1) va (2).
Trfldc h i t , chung t a t h a y gia t h u y e t 1 la ehi phi cd hdi cho di hgc dai hgc cang cao t h i k h a nang hg se q u y l t dinh t h a n h vien di lam cang ldn da dfldc ung hd, vi da'u va he ad' cua
b i l n chi p h i cd hdi dm va ed ^ n g h i a t h d n g ke cao t r o n g ca 2 phUdng t r i n h eua md h i n h H e c k m a n .
N i n t a n g giao due cua chu hg thudng diidc ky vgng se cd tac ddng dfldng den vide cac hd gia dinh quyet d i n h dau tfl vao giao due. Dieu nay ciing diing trong trfldng hdp giao due dai hgc. N l u chu hd da td't nghiep dai hoc thi ed ky vgng n h i l u hdn vao viec hg flu tien hdn de
Nghien aiu Kinh lSs67(494) • Thing 7/2019 27
Xdc djnh ciu gida due ,
con, em hg ciing theo hgc dai hgc. Ke't qua cua nghien cflu cho tha'y rang, chu hd vdi cac trinh do hgc van khac nhau cd anh hudng khac nhau de'n quyet dinh cho con, em ho vao dai hgc va dau tU phan thu nhap cua gia dmh. cho con, em hoc dai hgc. Chang han, he so'cua cac bien bieu thi rang, c h u h g khdng cd bang cap (x6a) va chu hd cd bang cap tieu hgc (x6b) cd dau am va cd y nghia thd'ng ke trong ca 2 phUdng trinh ciia md hinh lUa chgn Heckman.
Cdn bien bieu thi chu hg cd bang cap td't nghidp pho thdng trung hgc (x6d) va ehu hd cd bang cap tdt nghiep tfl cao dang trd len (x6e) deu cd dau dfldng va y nghia thd'ng ke cao trong ca 2 phfldng trinh eua md hinh lUa chgn Heckman, nghia la chu hd cd bang c§!p cao ung hd manh cho con, em hg hgc dai hgc. K i t qua nay ung hd gia t h u y i t thfl 2.
Do tuoi cua va tuoi binh phUdng cua chu hd ca hai phfldng trinh (1) va (2) deu cd y nghia thd'ng ke vdi cac da'u hieu dfldng va am nhfl mong ddi. K i t qua nay ciing tUdng tu nhfl k i t qua phat hien cua Tansel va cdng sU (2006).
Dilu nay ham y rang, chi phi cho giao diic dai hgc tang cung vdi do tudi cua chu hg vdi vdi td'c do giam. K i t qua nay phu hdp vdi mo hinh chi tieu vdng ddi cua chu hd, dac biet phu hop vdi cau vao dai hgc. NhU vay gia thuyet thfl 3 da dUdc sd'lieu thflc nghiem u n g hg.
Cac nghien ciiu trfldc day v l chi tieu giao due eiing de cap d i n vai trd gidi trong ehi tieu giao due nhflng k i t qua khdng nha't quan. Cd nghien cflu da phat hien ra rang, cac hg gia dinh do nfl lanh dao se tang kha nang tre em di lam, trong khi do, Aslam va cgng sfl (2005), Huy (2012), Donkoh va cdng sU (2011) phat hien ra riing, n l u ehii hd la nam cd anh hudng den ehi tieu trung binh thtfp hdn n l u chu hg la nfl. K i t qua fldc lUdng cua md hinh cua nghien cflu nay la sex2 la dfldng va cd y nghia thd'ng ke cae. Dilu nay ung hg k i t luan rang, n l u chu hd la nfl thi cd anh hfldng manh den ca quylt dinh eho con, em hg vao dai hgc va d^u tfl p h i n t h u nhap cua Hd vao dai hge.
D l xem xet a n h hfldng cua cac ra<io thu n h a p den cau giao due dai hgc, nghien cflu nay p h a n chia chi tieu t h a n k 3 mflc: mflc t h u n h a p tha'p, mflc t h u n h a p t r u n g binh va mflc t h u n h a p cao cao. K i t qua cho t h a y rang, viec lua chgn gifla di hgc dai hgc va di lam ve m a t t r u n g binh, cac hd thugc nhdm t h u n h a p tha'p nha't se quyet dinh di lam t h a y vi q u i t dinh cho t h a n h vien di hgc dai hgc (he so x301ow a m va cd y nghia thd'ng ke dd'i vdi ca h a i phfldng t r i n h 1 va phUdng t r i n h 2), trdi vdi quyet dinh cua cac hg gia dinh t r o n g n h d m t h u n h a p tha'p la cac hd trong nhdm t h u n h a p cao nha't (he sd' x30h la dUdng va cd y n g h i a thd'ng ke b mfle 1%
cho phfldng t r i n h 1 (phUdng t r i n h Ifla chgn), cdn t u y cd da'u dfldng nhflng khdng cd y nghia thd'ng ke t r o n g phfldng t r i n h c l u giad due dai hgc. K e t q u a n a y u n g hd cho gia thuye't 4.
4. K e t l u S n
Nghien cflu n a y p h a n tieh cae yeu to' q u y l t dinh chi tieu t r o n g giao due dai hgc bang md h i n h lUa chgn H e c k m a n d l xem xdt dong thdi 2 q u y l t dinh: q u y l t dinh cho t h a n h vien cua hd di hgc dai hgc va quyd't dinh d a n h p h a n t h u n h a p d l d a u tU vao hgc dai hgc. Trong so cac b i l n giai thich, nghien cflu nay da xay dflng bien bieu thi chi phi cd hdi p h a t sinh do t h a n h vien cua gia dinh co the k i l m dfldc n l u k h d n g di hgc dai hoc. Thu n h a p du kien t r o n g eac tinh hudng md phong theo cdng viec cua chu hd va vung dUdc udc lUdng. Vilng la mgt y l u t l quan trgng trong viec xac dinh t h u n h a p ky vgng. Nhiing k i t q b a chinh dat dfldc trong viec p h a n tich chi cho giao due x i c n h a n rang, quye't dinh din tfl vao giao due bi a n h hUdng n h i l u bdi cac dac dilm xk hdi va kinh td c i a cac hg gia dinh trong gi^o due khdng b a t huge (giao due daii hgc) Su a n h hudng cua chi phi Cd hgi v l giao* due la tieu cue cho giao due dai hoc, hd sdfiia V-^ . - nghia thong ke cao va am./.
28 N^iin aiu Knh ^ sS 7(494) - ff;^
Xdc djnh cau giao due ..,
TAI LIEU THAM K H A O
] Alba-Ramrez A. (1993), Mismatch in the Spanish labor market. Over education? TTie Journal of Human Resources, 28, 259-278.
2. Albert Cecilia. (2000), Higher education demand in Spain The influence of labor market signals and family background, Higher Education, Vol. 40, No. 2. 147-162 .
3. Al-Qudsi S.S. (1989), Remms lo education, sectoral pay diCEer- entials and determinants in Kuwait, Economics of Education Review, 8,263-276.
4 Andreou S.N (2012), Analysis of household expenditure on education in Cyprus , Cyptus Economic Policy Review, Vol 6, No 2- 17-38 (2012) 1450-14561.
5 Ander.son C A. (1983), SociaJSelection in Education and Economic J^velopment, Washington, DC:
World Bank, Education Department
6. Barro R. & Sala-i-Martin X. (1995), Economic Growth, New York: McGraw-Hill.
7. Beneito P , Ferri J., Molto" L & Uriel E (2001), Detemiinants of the demand for education in Spain, Applied Economics, 33:12, 1540-1551
a. Black S.E., Devereux P. J., Salvanes K.G. (2005), Why the apple doesn 't fall far: understanding intergenerational transmission of human capital, The American Economics Review95(1), pp. 437-449.
9, Cameron S V . & Heckman J,J. (2001), TTie dynamics of educational atlaitment for Black Hispanic and White Males, Tbe Joumal of Political Economy, 109(3), pp.455-499.
10, Canagarajah R.S. & Coulombe H. (1998), Child Laborand Schooling in Ghana, Working Paper Series, No.1844 (Washington, DC: World Bank).
11, Carla Sa' C , Florax R and Rietveld P. (2003), Determinants of the regional demand for higher education in the Netherland. a gravity model approach. Regional 5fc(//e.?, 38 (4), 375-392.
12.Hannery D. & O'Donoghue C. (2009), The determinant of higher education participation in Ireland: A micro analysis. The economic and Social Review, 40(1), pp. 73-107.
13. Grootaert C (1998), Oiild Labor in Cote D'lvoire:
Incidence and Determinants, The World Bank Social Development Department (Washington, DC. World Bank).
14. Handa S. (1996) The determinants of teenage schooling in Jamaica: rich vs. poor, females vs. males, Joumal of Development ^dies, 32, pp. 554-580.
15.Hashimoto K. and Health J.A. (1995), Income elasticity of educational expenditure by income class: the case of Japanese households. Economics of Education
^ewew. Vol. 14, pp. 63-71.
16. Hazans M., Trapeznikova I., Raslrigina O. (2008).
Ethnic and parental effects on schooling outcomes before
and during the transition: evidence from Baltic countries, Joumal ofPopoulation Economic.s,2\(,y),^^.l\9-lA9.
17. Heckman L (1979), Sample selection bias as a specification error", Econometrica, 47,153-161.
18. Kugler B and Psacharopuolos G, (1989), Earnings and education in Argentina, an analysis of the 1985 Buenos Aires household survey. Economics of Education Review, 8, 353-365.
19. UUard L.A. & WiUis R.J. (1994), Intergenerational educational mobility, Joumal of Human Resources, 29, pp.
1126—1166.
20. Lloyd C. & Gage-Brandon A. (1994), High fertility and children's schooling in Ghana: sex differences in parental contributions and educational outcomes, PopulationStudiesA^.pp 293—306.
21. Lucas R. E. (1988), On the mechanics of economic development, Joumalof Monetary Economics, 22, pp. 3-42.
22. Mankiw G , Romer D. & Weil D. (1992) A contribution to the empirics of economic growth. Quarterly Journal of ^onomics, 107, pp. 407—437.
23. Rosenzweig M. R. & Wolpin K. R. (1994), Are there increasing returns to the intergenerational production of human capital-maternal schooling and child intellectual achievement, Journal of Human Resources, 29, pp. 670-693.
24. Patrinos H. A. & Psacharopoulos G. (1997), Family size, schooling and child labor in Pern: an empirical analysis, Joumal of Population Economics, 10, pp. 387-405.
25.Pasacharopoulos G. & Woodhall M. (1987), Education for Development: An Analysis of Investment Choices, (Eds) Oxford University Press.
26. Psacharopoulos G. & Arriagada A, M. (1989), The determinants of early age human capital formation:
evidence from Brazil, Economic Development and Cultural Change, 37, pp. 683—708.
27. Psacharopoulos G. (1989), Time trends of the returns to education: cross-national evidence, Economics of Education Review, 8,225-231.
28. Psacharopoulos G. & Papakonstantinou G. (2005), The real university cost in free higher education country.
Economics of Education Review,2'i,jfp. 103-108.
29. Takwa T. J. (2005), Difference between the social - Economic characteristics of male and female household heads and their households in Cameroon, Demographer, Census Office (BUCREP), P.O.Box 12932 Yaounde- Cameroon, Email; [email protected]
30. Tansel A., Bircan F. (2006), Demand for education in Turkey: A Tobit analysis of private tutoring expenditures. Economic of Education Review, 25 (2006), 303-313.
31. Unni J. (1998), Gender differentials in schooling, in: M. Krishnaraj R. M. Sudarshan & A. Shariff (Eds) Gender, Population and Development (Delhi: Oxford University Press).
Nghiin ciiu Knh t^sS 7(494) - Thing 7/2019 29
Xac fljnh cau giio due ...
Phu luc 1: Dinh nghia c i c bi^n
Variable | Definition 1
Bi6h phu thudc ' Y
Z
PhSn chi tieu ciia ho gia dmh cho giAo due dai hoc trong t6nfi chi tiSu La bien lu5ng phan, nhSn gia tri bang 1 n^u h6 gia dinh quyfft dinh cho th&nh viSn cua ho di hoc dai hoc va bing 0 trong trudng hop nguwc lai
Biin ddc lip
Household's head characteristics Sex2
T T ' Size
x»
X.
Bie'n lu5ng phSn nhan gia tn bang 1 ng^u chu h6 Ik nir va biing 0 trong trUimg hop nguoc lai.
Tu6i cua chu h&
Tu^i ciia chu ho binh phuong Quy m6 cua ho (so ngucri trong ho)
Big'n ludng phan nhan gia tri bing I n^u hd c6 s6 hfiu nhk ri^ng vk bing 0 trong trUcmg hop nguoc lai
Bi^n luong phan nhan gid tri bang 1 nfi'u c h i h6 la ngu6i kinh v i bang 0 trong truimg hop nguoc lai
Thu nhSp cOa hd
Hi H, Hj H.
H,
Tliu nhap ciia h6 6 mtic phan vi thii nhflit (thu nhap binh quan cua 20% hd cb thu nhap th^p nhfCt)
Thu nhap cua h6 b miic phSn vi thii hai (thu nhap binh quan ciia 20% h6 c6 thu nhap trung binh thflip)
Thu nhap ctia h6 6 miic phan vi thii ba (thu nhSp binh quSn cua 20% h6 c6 thu nhap tmng binh)
Thu nhap cua h6 cr miic ph4n vi thii tu (thu nhftp binh quAn ciia 20% hfi c6 thu nhap trung binh cao)
Thu nhap c i a h6 b miic phan vi thii nSm (thu nhap binh quftn c6a 20% h6 c6 thu nhap cao nh£(t)
Bi^n thu nhSp
XlHw
x„
Bim mu nnap tnap: mm mong pi,an nha„ gis tri bteg l „«„ thu nhSp cua h6 nSm trong phan Vl thu nhSt hoic thu hai vJ bSng 0 n & nguoc lai nghia Ik
B,Sn thu nhap cao: b.en I m g phto nhan gii tq bang : „J„ ,b„ „hap c i a hO nin, trong phan V, th4 tu hoSc thu nam va bing 0 ngu nguoc lai, n g h f e ™
BiSh ky vgng
lnwf l^y vong ve thu nhap
Trinh dd van hda cua chu hd (tdt nghiep ph6 thdng trung hpc li pham trU casa) ~~ ~
X6.
X6b
Bien luang phan nhan gia tri bang 1 n£'u chii ho la ngu6i khOng co ^ , Z bang 0 trong tru&ng hop ngugc lai S "^ap va Bia^n lu5ng phan nhan gia tri bang I n€u chij h6 la ngutii to't nghiejT^i^T T bing 0 trong tmcmg hop ngugc lai " "?<^ va
— U
30 Nghiin aiti Knh tSsd 7(434^7^
' "WSSajts
Xic ajuh ca'u giio due ...
Variable X6d
X<.
Definitioa
BiSn ludng phfln nhah gia tri bing 1 aSa chu h6 la ngUcri tdt nghiftp cao dSng va bang 0 Irong tiu&ng hop nguoc lai
Bie'n luSng phSn nhan gid tri bang 1 ne'u chii h6 la ngUcri t6t nghiep dai hoc hoac cao hon va bang 0 trong trucmg hop nguoc lai
Tinh trang hdn nhin cua chu hd X 7 .
X7d
Bi^n lu&ng phan nhSn gia tri bSng 1 nfiii chii h6 la co vo hoac ch6ng va bang 0 trong trucmg hop ngugc lai
Bife'n luSng phan nhSn g i i tri bang 1 n^u chii h6 ly than hoac da ly di va bang 0 trong tmcmg hop nguoc lai
NghSnghiip cua chu hd Xi
XlO
X l l
Size
Bie'n luong phan nhan gia tri bang 1 neu chii h6 la ngucri lam q6ng an luong (c6ng nhfln, vien chiic) va bang 0 trong trUcmg hop nguoc lai
Bie'n lu&ng phan nhan gia tri bJing 1 ne'u chii h6 la ngucri Ikra trong ITnh vuc ndng nghiep, tr6ng rimg hay ngh^ ca va bang 0 trong trucmg hop nguoc lai
Bie'n ludng phan nhan gia tri bang 1 neii chu ho la ngudi lam kinh doanh dich vu va bang 0 trong tnrdng hop ngugc lai
T6ng stf ngudi trong h6
Phu luc 2: K€t qu& udc lugng chi phf co hdi di hgc dai hgc d cfic viing khfic nhau Robtist
Lnwd Ln(thiri gian iam vi£c)
Ngh^ nghidp chil h6 Lim cdng an lugng (x?)
Ndng-lam nghigp-thiiy san (xio)
Kinh doanh dich vu (xn) Noi sinh stfng cOa hd Viing 1 (regi)
VClng2(!egj)
Coef.
1,86114***
(0,01457)
0,24598***
(0,04056) -0,16131***
(0,03177) -0,23489***
(0,04998)
1,07361***
(0,07643) 0,70610***
(0.07551)
Lnwd Viing 3 (icga) Viing 5(reg.)
Vimg 6(reg6)
R'
F(9,5567) P r o b > F Qs
Coef.
0,91400***
(0,07658) 1,04076***
(0,07799) 0,74361***
(0,07855) 0,98
77982,15 0,0000
5,576
Ngudn: Tac gia udc lugng t& sfi lifiu VHLSS nam 2016.
Ngiy nhan bai:
Ngiky duyet dang.
26-03-2019 20-05-2019
Nghiin aiu Kinh l4s6 7(494) - Thing 7/2019 31