This work was financially supported by the ministry of science and technology- taiwan (MOST 107-2113-M-033-003).
References
1. Hay, J.N., Shaw, S.J., Nanocomposites—Properties and applications. J. Miner.
Mater. Char. Eng., 11, 4, 2014.
2. Njuguna, J., Pielichowski, K., Desai, S., Nanofiller-reinforced polymer nano- composites. Polym. Adv. Technol., 19, 947–959, 2008.
3. Leja, K. and Lewandowicz, G., Polymer biodegradation and biodegradable polymers—A review. Pol. J. Environ. Stud., 19, 255–266, 2010.
4. Adeosun, S.O., Lawal, G.I., Balogun, S.A., Akpan, E.I., TPA Plast global Engineering Nanocomposite polymers. J. Miner. Mater. Char. Eng., 11, 4, 2012.
5. Drzal, L.T., Misra, M., Mohanty, A.K., Sustainable Biodegradable Green Nanocomposites from Bacterial Bioplastic for Automotive applications. In:
Proceedings of the US EPA 2004 STAR progress review workshop – nano- technology and the environment II. Washington, DC (USA): Published by US Environmental Protection Agency. Report number EPA/600/R-05/089;
pp. 23–5. 2005.
6. Jamshidian, M., Tehrany, E.A., Imran, M., Jacquot, M., Desobry, S., Poly- lactic acid: Production, applications, nanocomposites, and release studies.
Compr. Rev. Food Sci. Food Saf., 9, 552–571, 2010.
7. Amass, W., Amass, A., Tighe, B., A review of biodegradable polymers: Uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biode- gradation studies. Polym. Int., 47, 89–144, 1998.
8. Chandra, R. and Rustgi, R., Biodegradable polymers. Prog. Polym. Sci., 23, 1273–1335, 1998.
9. Mohanty, A.K., Misra, M., Hinrichsen, G., Biofibres, biodegradable poly- mers and biocomposites: An overview. Macrmol. Mater. Eng., 276/277, 1–24, 2000.
10. Siracusa, V., Rocculi, P., Romani, S., Rosa, M.D., Biodegradable polymers for food packaging: a review. Trends Food Sci. Technol., 19, 634–643, 2008.
11. Adeosun Sunday, O., Lawal, G.I., Balogun Sambo, A., Akpan Emmanuel, I., Review of Green Polymer Nanocomposites. J. Miner. Mater. Charact. Eng., 11, 483–514, 2012.
12. Pandey, J.K., Chu, W.S., Lee, C.S., Ahn, S.H., Preparation characteriza- tion and performance evaluation of nanocomposites from natural fiber reinforced biodegradable polymer matrix for automotive applications.
Presented at the International Symposium on Polymers and the Environment:
Emerging Technology and Science, BioEnvironmental Polymer Society (BEPS), Vancouver, WA, USA, 17–20 October, 2007.
13. Sinha, S.R. and Bousmina, M., Biodegradable polymer/layered silicate nanocomposites. In Polymer Nanocomposites, Mai, Y. and Yu, Z. (Eds.), pp.
57–129, Woodhead Publishing and Maney Publishing, Cambridge, England, 2006.
14. Tsai, T.-Y., Laio, J.-R., Naveen, B., Preparation and Characterization of PET/LDH or Clay Nanocomposites through the Microcompounding Process. J. Chin. Chem.
Soc., 62, 547–553, 2015.
15. Tsai, T.Y., Naveen, B., Shiu, W.C., Lu, S.W., An advanced preparation and charac- terization of the PET/MgAl-LDH nanocomposites. RSC Adv., 4, 25683–25691, 2014.
16. Moja, T.N., Bunekar, N., Mojaki, S., Mishra, S.B., Tsai, T.Y., Hwang, S.S., Mishra, A.K., Polypropylene–Polypropylene-Grafted-Maleic Anhydride–
Montmorillonite Clay Nanocomposites for Pb (II) Removal. J. Inorg.
Organomet. Polym. Mater., 28, 2799–2811, 2018.
17. Ong, Y.T., Ahmad, A.L., Zein, S.H.S., Tan, S.H., A review on carbon nano- tubes in an environmental protection and green engineering perspective.
Brazil J. Chem. Eng., 27, 227–242, 2010.
18. Mauter, M.S. and Elimelech, M., Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol., 42, 5843, 2008.
19. Kausar, A. and Siddiq, M., Conducting Polymer/Graphene Filler-based Hybrids: Energy and Electronic Applications, in: Polymer Science: Research Advances, Practical Applications and Educational Aspects. Formatex Research Center, Méndez-Vilas, A. and Solano-Martín, A. (Eds.), pp. 177–87.
20. Kausar, A., Mechanical, thermal, and electrical properties of epoxy matrix composites reinforced with polyamide-grafted-MWCNT/poly (azopyridine- benzophenone-imide)/polyaniline nanofibers. Int. J. Polym. Mater. Polym.
Biomater., 63, 831–839, 2014.
21. Kausar, A. and Hussain, S.T., Effect of modified filler surfaces and filler-tethered polymer chains on morphology and physical properties of poly (azopyridyl- urethane)/multi-walled carbon nanotube nanocomposites. J. Plast. Film Sheet., 30, 184204, 2014.
22. Kausar, A. and Ashraf, R., Electrospun, non-woven, nanofibrous membranes prepared from nanodiamond and multi-walled carbon nanotube-filled poly (azo-pyridine) and epoxy composites reinforced with these membranes. J. Plast.
Film Sheet, 30, 369–387, 2014.
23. Kausar, A., Nanocarbon-based Nanocomposite in Green Engineering. Res. J.
Nanosci. Eng., 2, 28–33, 2018.
24. Jariwala, D., Sangwan, V.K., Lauhon, L.J., Marks, T.J., Hersam, M.C., Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing.
Chem. Soc. Rev., 42, 282460, 2013.
25. Pumera, M., Ambrosi, A., Bonanni, A., Chng, E.L.K., Poh, H.L., Graphene for electrochemical sensing and biosensing. TrAC, 29, 95465, 2010.
26. Rabti, A., Raouafi, N., Merkoçi, A., Bio (sensing) devices based on ferro- cenefunctionalized graphene and carbon nanotubes. Carbon, 108, 481514, 2016.
27. Beliatis, M.J., Rozanski, L.J., Jayawardena, K.I., Rhodes, R., Anguita, J.V., Mills, C.A., et al., Hybrid and nano-composite carbon sensing platforms.
Carbon for Sensing Devices, pp. 105–32, Springer, 2015.
28. Li, H., He, X., Liu, Y., Huang, H., Lian, S., Lee, S.-T., Kang, Z., One-step ultra- sonic synthesis of water-soluble carbon nanoparticles with excellent photo- luminescent properties. Carbon, 49, 605–609, 2011.
29. Wu, Y., Lin, X., Zhang, M., Carbon nanotubes for thin film transistor:
Fabrication, properties, and applications. J. Nanomater., 2013, 1–16, 2013.
30. Hecht, D.S., Hu, L., Irvin, G., Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures.
Adv. Mater., 23, 1482–1513, 2011.
31. Wang, X., Zhi, L., Müllen, K., Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett., 8, 323–327, 2008.
32. Seo, D.H., Han, Z.J., Kumar, S., Ostrikov, K., Structure-Controlled, Vertical Graphene-Based, Binder-Free Electrodes from Plasma-Reformed Butter Enhance Supercapacitor Performance. Adv. Energy Mater., 3, 1316–1323, 2013.
33. Seo, D.H., Pineda, S., Yick, S., Bell, J., Han, Z.J., Ostrikov, K.K., Plasma- enabled sustainable elemental lifecycles: Honeycomb-derived graphenes for next-generation biosensors and supercapacitors. Green Chem., 17, 2164–
2171, 2015.
34. Stancu, E.C., Stanciuc, A.-M., Vizireanu, S., Luculescu, C., Moldovan, L., Achour, A., Dinescu, G., Plasma functionalization of carbon nanowalls and its effect on attachment of fibroblast-like cells. J. Phys. D Appl. Phys., 47, 1–10, 2014.
35. Goenka, S., Sant, V., Sant, S., Graphene-based nanomaterials for drug deliv- ery and tissue engineering. J. Control. Release, 173, 75–88, 2014.
36. Yang, K., Zhang, S., Zhang, G., Sun, X., Lee, S.-T., Liu, Z., Graphene in mice:
Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett., 10, 3318–3323, 2010.
37. Bunekar, N., Tsai, T.Y., Huang, H.P., Effect of Functionalized Graphene with Modified Clay on Flammability of Copper Clad Laminated Novolac Cured Epoxy Composites. 58, 547–559, 2019.
38. Bunekar, N., Tsai, T.Y., Huang, J.Y., Chen, S.J., Investigation of thermal, mechanical and gas barrier properties of polypropylene-modified clay nano- composites by micro-compounding process. J. Taiwan Inst. Chem. Eng., 88, 252–260, 2018.
39. Tsai, T.Y., Bunekar, N., Wu, T.C., Chiang, Y.C., Wang, Z., Wu, L.X., Effect of Organic Nano Carboncapsule Incorporated Modified Clay on Fire-Retardancy of PMMA Nanocomposites. J. Chin. Chem. Soc., 64, 1399–1407, 2017.
40. Tsai, T.Y., Bunekar, N., Huang, C.C., Huang, Y.S., Chen, L.C., Novolac cured epoxy resin/fullerene modified clay composites: Applied to copper clad lam- inates. RSC Adv., 5, 95649–95656, 2015.
41. Sun, X., Sun, H., Li, H., Peng, H., Developing Polymer Composite Materials:
Carbon Nanotubes or Graphene?†. Adv. Mater., 25, 5153–5176, 2013.
42. Mukhopadhyay, P. and Gupta, R.K., Trends and Frontiers in Graphene-Based Polymer Nanocomposites, Plast. Eng., 67, 32–42, 2011.
43. Potts, J.R., Dreyer, D.R., Bielawski, C.W., Ruoff, R.S., Polymer. 52, 5–25, 2011.
44. Musico, Y.L.F., Santos, C.M., Dalida, M.L.P., Rodrigues, D.F., Improved removal of lead(II) from water using a polymer-based graphene oxide nano- composite. J. Mater. Chem. A, 1, 3789–3796, 2013.
45. Kuila, T., Bose, S., Mishra, A.K., Khanra, P., Kim, N.H., Lee, J.H., Chemical functionalization of graphene and its applications. Prog. Mater. Sci., 57, 1061–1105, 2012.
46. Smith, B., Wepasnick, K., Schrote, K.E., Cho, H.H., Ball, W.P., Fairbrother, D.H., Influence of surface oxides on the colloidal stability of multi-walled
carbon nanotubes: A structure–property relationship. Langmuir, 25, 17, 9767–9776, 2009.
47. Upadhyayula, V.K.K., Deng, S., Mitchell, M.C., Smith, G.B., Application of carbon nanotube technology for removal of contaminants in drinking water:
A review. Sci. Total Environ., 408, 1–13, 2009.
48. Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., Seal, S., Graphene based materials: Past, present and future. Prog. Mater. Sci., 56, 1178–1271, 2011.
49. Spitalsky, Z., Tasis, D., Papagelis, K., Galiotis, C., Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Prog.
Polym. Sci., 35, 357–401, 2010.
50. Alpatova, A.L., Shan, W., Babica, P., Upham, B.L., Rogensues, A.R., Masten, S.J.
et al., Single-walled carbon nanotubes dispersed in aqueous media via non- covalent functionalization: Effect of dispersant on the stability, cytotoxicity, and epigenetic toxicity of nanotube suspensions. Water Res., 44, 505–520, 2010.
51. Osorio, A.G., Silveira, I.C.L., Bueno, V.L., Bergmann, C.P., H2SO4/HNO3/ HCl—Functionalization and its effect on dispersion of carbon nanotubes in aqueous media. Appl. Surf. Sci., 255, 2485–2489, 2008.
52. Ma, Y.-w., Liu, Z.-r., Wang, B.-l., Zhu, L., Yang, J.-p., Li, X.-a., Preparation of graphene-supported Pt-Co nanoparticles and their use in oxygen reduction reactions. New Carbon Mater., 27, 250–257, 2012.
53. Upadhyayula, V.K.K., Deng, S., Mitchell, M.C., Smith, G.B., Application of carbon nanotube technology for removal of contaminants in drinking water:
A review. Sci. Total Environ., 408, 1–13, 2009.
54. Wang, S., Sun, H., Ang, H.-M., Tade, M.O., Adsorptive remediation of envi- ronmental pollutants using novel graphene-based nanomaterials. Chem.
Eng. J., 226, 336–47, 2013.
55. Musico, Y.L.F., Santos, C., Dalida, M., Rodrigues, D.F., Surface modification of membrane filters using graphene and graphene oxide-based nanomateri- als for bacterial inactivation and removal. ACS Sustain Chem. Eng., 2, 1559–
1565, 2014.
56. Musico, Y.L.F., Santos, C.M., Dalida, M.L.P., Rodrigues, D.F., Improved removal of lead (ii) from water using a polymer-based graphene oxide nano- composite. J. Mater. Chem. A, 11, 3789–96, 2013.
57. Mejias Carpio, I.E., Mangadlao, J.D., Nguyen, H.N., Advincula, R.C., Rodrigues, D.F., Graphene oxide functionalized with ethylenediamine tri- acetic acid for heavy metal adsorption and anti-microbial applications.
Carbon, 77, 289–301, 2014.
58. Gupta, V.K., Agarwal, S., Saleh, T.A., Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal.
J. Hazard Mater., 185, 17–23, 2011.
59. Wang, L., Zhu, D., Duan, L., Chen, W., Adsorption of single-ringed N-and S-heterocyclic aromatics on carbon nanotubes. Carbon, 48, 3906–15, 2010.
60. Santos, C.M., Mangadlao, J., Ahmed, F., Leon, A., Advincula, R.C., Rodrigues, D.F., Graphene nanocomposite for biomedical applications: Fabrication,
antimicrobial and cytotoxic investigations. Nanotechnology, 23, 395101, 2012.
61. Liu, W.-J., Tian, K., He, Y.-R., Jiang, H., Yu, H.-Q., High-Yield Harvest of Nanofibers/Mesoporous Carbon Composite by Pyrolysis of Waste Biomass and Its Application for High Durability Electrochemical Energy Storage.
Environ. Sci. Technol., 48, 13951−13959, 2014.
62. Lu, C. and Su, F., Adsorption of natural organic matter by carbon nanotubes.
Sep. Purif. Technol., 28, 113–21, 2007.
63. Li, Y.-H., Di, Z., Ding, J., Wu, D., Luan, Z., Zhu, Y., Adsorption thermody- namic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res., 39, 605–9, 2005.
64. Li, R., Liu, L., Yang, F., Preparation of polyaniline/reduced graphene oxide nanocomposite and its application in adsorption of aqueous Hg (II). Chem.
Eng. J., 229, 460–468, 2013.
65. Fan, L., Luo, C., Sun, M., Li, X., Qiu, H., Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites.
Colloids Surf. B, 103, 523–9, 2013.
66. Wang, X., Chen, X., Yoon, K., Fang, D., Hsiao, B.S., Chu, B., High flux filtra- tion medium based on nanofibrous substrate with hydrophilic nanocompos- ite coating. Environ. Sci. Technol., 39, 7684–7691, 2005.
67. Shah, P. and Murthy, C.N., Studies on the porosity control of MWCNT/poly- sulfone composite membrane and its effect on metal removal. J. Membr. Sci., 437, 90–98, 2013.
68. Moon, Y.-E., Jung, G., Yun, J., Kim, H.-I., Poly (vinyl alcohol)/poly (acrylic acid)/TiO2 graphene oxide nanocomposite hydrogels for pH-sensitive pho- tocatalytic degradation of organic pollutants. Mater. Sci. Eng. B, 178, 1097–
103, 2013.
69. Saleh, N.B., Pfefferle, L.D., Elimelech, M., Aggregation kinetics of multi- walled carbon nanotubes in aquatic systems: measurements and environ- mental implications. Environ. Sci. Technol., 42, 7963–7969, 2008.
70. Smith, S.C. and Rodrigues, D.F., Carbon-based nanomaterials for removal of chemical and biological contaminants from water: A review of mechanisms and applications, https://www.sciencedirect.com/science/journal/00086223/91/
supp/C, 91, 122–143m 2015.
71. Li, R., Liu, L., Yang, F., Preparation of polyaniline/reduced graphene oxide nanocomposite and its application in adsorption of aqueous Hg (II). Chem.
Eng. J., 229, 460–468, 2013.
72. Scarselli, M., Scilletta, C., Tombolini, F., Castrucci, P., De Crescenzi, M., Diociaiuti, M., Casciardi, S., Gatto, E., Venanzi, M., Photon harvesting with multi wall carbon nanotubes. SuperlatticMicrostruct., 46, 340, 2009.
73. Jia, Y., Wei, J., Wang, K., Cao, A., Shu, Q., Gui, X., Zhu, Y., Zhuang, D., Zhang, G., Ma, B., Wang, L., Nanotube–Silicon heterojunction solar cells. Adv. Mater., 20, 4594–4598, 2008.
71
Ajay Kumar Mishra, Chaudhery Mustansar Hussain and Shivani Bhardwaj Mishra (eds.) Emerging Carbon-Based Nanocomposites for Environmental Applications, (71–120) © 2020 Scrivener Publishing LLC