Functional Green Carbon Nanocomposites for Heavy Metal
2.5 Conclusion and Future Directions
treatment process: Ballasted electroflocculation. J. Hazard. Mater., 344, 968–
980, 2018.
3. Damalas, C.A. and Eleftherohorinos, I.G., Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public Health, 8, 1402–
1419, 2011.
4. Jan, A.T., Azam, M., Siddiqui, K., Ali, A., Choi, I., Haq, Q.M.R., Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. Int. J. Mol. Sci., 16, 29592–29630, 2015.
5. Lee, H.Y., Bae, D.R., Park, J.C., Song, H., Han, W.S., Jung, J.H., A Selective Fluoroionophore Based on BODIPY-functionalized Magnetic Silica Nanoparticles: Removal of Pb2+ from Human Blood. Angew. Chem. Int.
Edit., 48, 1239–1243, 2009.
6. Yasr,i N.G. and Gunasekaran S., Electrochemical Technologies for Environmental Remediation, in: Enhancing Cleanup of Environmental Pollutants. N. Anjum, S. Gill, N. Tuteja (eds), Springer, Cham, 2017. doi:
https://doi.org/ 10.1007/978-3-319-55423-5_2
7. Ross, I., McDonough, J., Miles, J., Storch, P., Thelakkat Kochunarayanan, P., Kalve, E., Hurst, J., Dasgupta, S.S., Burdick, J., A review of emerging technol- ogies for remediation of PFASs. Remediat. J., 28, 101–126, 2018.
8. Amin, M.T., Alazba, A.A., Manzoor, U., A Review of Removal of Pollutants from Water/Wastewater Using Different Types of Nanomaterials. Adv. Mater.
Sci. Eng., 2014, 24, 2014.
9. Ray, P.Z. and Shipley, H.J., Inorganic nano-adsorbents for the removal of heavy metals and arsenic: A review. RSC Adv., 5, 29885–29907, 2015.
10. Lu, F. and Astruc, D., Nanomaterials for removal of toxic elements from water. Coord. Chem. Rev., 356, 147–164, 2018.
11. Duffus John, H., “Heavy metals” a meaningless term? (IUPAC Technical Report). Pure Appl. Chem., 793, 2002.
12. Rahim, M. and Mas Haris, M.R.H., Application of biopolymer composites in arsenic removal from aqueous medium: A review. J. Radiat. Res. Appl. Sci., 8, 255–263, 2015.
13. Ali, H., Khan, E., Anwar Sajad, M., Phytoremediation of heavy metals—
Concepts and applications. Chemosphere, 91, 7, 869–881, 2013.
14. Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J., Heavy metal toxicity and the environment. Experientia Suppl., 2012 101, 133–164, 2012.
15. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., Beeregowda, K.N., Toxicity, mechanism and health effects of some heavy metals. Interdiscip.
Toxicol., 7, 60–72, 2014.
16. McCarty, K.M., Hanh, H.T., Kim, K.-W., Arsenic geochemistry and human health in South East Asia. Rev. Environ. Health, 26, 71–78, 2011.
17. Oyem, H.H., Oyem, I.M., Usese, A.I., Iron, manganese, cadmium, chro- mium, zinc and arsenic groundwater contents of Agbor and Owa communi- ties of Nigeria. SpringerPlus, 4, 104–104, 2015.
18. Kohnhorst, A., Arsenic in Groundwater in Selected Countries in South and Southeast Asia: A Review. JTMP, 28, 2005.
19. Kirk, T., Kitchin, K., Recent Advances in Arsenic Carcinogenesis: Modes of Action, Animal Model Systems, and Methylated Arsenic Metabolites.
Toxicol. Appl. Pharmacol., 172, 3, 249–261, 2001.
20. Parfett, C.L. and Desaulniers, D., A Tox21 Approach to Altered Epigenetic Landscapes: Assessing Epigenetic Toxicity Pathways Leading to Altered Gene Expression and Oncogenic Transformation In Vitro. Int. J. Mol. Sci., 18, 1179, 2017.
21. Rehman, K., Fatima, F., Waheed, I., Akash, M.S.H., Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem., 119, 157–184, 2018.
22. Singh, D.J. and Kalamdhad, A., Effects of Heavy Metals on Soil, Plants, Human Health and Aquatic Life. Int. J. Res. Chem. Environ., 1, 15–21, 2011.
23. Hernandez-Ramirez, O. and Holmes, S.M., Novel and modified materials for wastewater treatment applications. J. Mater. Chem., 18, 2751–2761, 2008.
24. Domènech, B., Bastos - Arrieta, J., Alonso, A., Macanás, J., Muñoz, M., Muraviev, D., Bifunctional Polymer-Metal Nanocomposite Ion Exchange Materials, in: Ion Exchange Technologies, yben Kilislioğlu (ed), pp. 35–72, IntechOpen, 2012.
25. Zhao, G., Huang, X., Tang, Z., Huang, Q., Niu, F., Wang, X., Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: A review. Polym. Chem., 9, 3562–3582, 2018.
26. Sun, D.T., Peng, L., Reeder, W.S., Moosavi, S.M., Tiana, D., Britt, D.K., Oveisi, E., Queen, W.L., Rapid Selective Heavy Metal Removal from Water by a Metal–Organic Framework/Polydopamine Composite. ACS Cent. Sci., 4, 349–356, 2018.
27. Colmenares, J.C., Varma, R.S., Lisowski, P., Sustainable hybrid photocata- lysts: Titania immobilized on carbon materials derived from renewable and biodegradable resources. Green Chem., 18, 5736–5750, 2016.
28. Mhatre, A.M., Asm, R., Saxena, S., Patil, P.G., Environmentally Benign and Sustainable Green Composites: Current Developments and Challenges:
Sustainable Raw Materials. pp. 53–90, Springer, Singapore, 2019.
29. Bharath, K.N. and Basavarajappa, S., Applications of biocomposite mate- rials based on natural fibers from renewable resources: A review. Sci. Eng.
Compos. Mater., 23, 2, 123–133, 2016. doi: https://doi.org/10.1515/secm- 2014-0088 2016.
30. Wang, Z., Shen, D., Wu, C., Gu, S., State-of-the-art on the production and application of carbon nanomaterials from biomass. Green Chem., 20, 5031–
5057, 2018.
31. Imre, B. and Pukánszky, B., Compatibilization in bio-based and biodegrad- able polymer blends. Eur. Polym. J., 49, 6, 1215–1233, 2013.
32. Mohanty, A., Misra, M., Drzal, L., Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World. J.
Polym. Environ., 10, 19–26. 2002. https://doi.org/10.1023/A:1021013921916.
33. Ramamoorthy, S.K., Skrifvars, M., Persson, A., A Review of Natural Fibers Used in Biocomposites: Plant, Animal and Regenerated Cellulose Fibers.
Polym. Rev., 55, 107–162, 2015.
34. Sangay, M.R., Arpitha, G.R., Yogesha, B., Study on Mechanical Properties of Natural - Glass Fibre Reinforced Polymer Hybrid Composites: A Review, Mater. Today, 2, 4–5, 2959–2967, 2015.
35. Mishra, R.K., Ha, S.K., Verma, K., Tiwari, S.K., Recent progress in selected bio-nanomaterials and their engineering applications: An overview. J. Sci.:
Adv. Mater. Devices, 3, 263–288, 2018.
36. Xi, P., Zhao, T., Xia, L., Shu, D., Ma, M., Cheng, B., Fabrication and charac- terization of dual-functional ultrafine composite fibers with phase-change energy storage and luminescence properties. Sci. Rep., 7, 40390, 2017.
37. Bhattacharya, M., Polymer Nanocomposites-A Comparison between Carbon Nanotubes, Graphene, and Clay as Nanofillers. Materials (Basel, Switzerland), 9, 262, 2016.
38. Yao, K.J., Song, M., Hourston, D.J., Luo, D.Z., Polymer/layered clay nano- composites: 2 polyurethane nanocomposites. Polymer, 43, 1017–1020, 2002.
39. Shao, D., Jiang, Z., Wang, X., Li, J., Meng, Y., Plasma Induced Grafting Carboxymethyl Cellulose on Multiwalled Carbon Nanotubes for the Removal of UO22+ from Aqueous Solution. J. Phys. Chem. B, 113, 860–864, 2009.
40. Wang, W.-P. and Pan, C.-Y., Preparation and characterization of polystyrene/
graphite composite prepared by cationic grafting polymerization. Polymer, 45, 3987–3995, 2004.
41. Chen, X., Matsumoto, N., Hu, Y., Wilson, G.S., Electrochemically Mediated Electrodeposition/Electropolymerization To Yield a Glucose Microbiosensor with Improved Characteristics. Anal. Chem., 74, 368–372, 2002.
42. Lackner, M., Bioplastics, in: Encyclopedia of Chemical Technology, Kirk‐Othmer (ed.), John Wiley & Sons, Inc., 2015. doi:10.1002/0471238961.koe00006
43. Azizi, B., Farhadi, K., Samadi, N., Functionalized carbon dots from zein bio- polymer as a sensitive and selective fluorescent probe for determination of sumatriptan. Microchem. J., 146, 965–973, 2019.
44. Sharma, B., Malik, P., Jain, P., Biopolymer reinforced nanocomposites: A comprehensive review. Mater. Today Commun., 16, 353–363, 2018.
45. Giripunje, M., Fulke, A., Meshram, P.U., Remediation Techniques for Heavy‐
Metals Contamination in Lakes: A Mini‐Review. Clean Soil Air Water, 43, 1350–1354, 2015. doi:10.1002/clen.201400419
46. Sigg, L., Sturm, M., Kistler, D., Vertical transport of heavy metals by settling particles in Lake Zurich. Limnol. Oceanogr., 32, 112–130, 1987.
47. Khaydarov, R.A., Khaydarov, R.R., Gapurova, O., Water purification from metal ions using carbon nanoparticle-conjugated polymer nanocomposites.
Water Res., 44, 1927–1933, 2010.
48. Teh, C.Y., Budiman, P.M., Shak, K.P.Y., Wu, T.Y., Recent Advancement of Coagulation–Flocculation and Its Application in Wastewater Treatment. Ind.
Eng. Chem. Res., 55, 4363–4389, 2016.
49. Fosso-Kankeu, E., Mittal, H., Waanders, F., Ntwampe, I.O., Ray, S.S., Preparation and characterization of gum karaya hydrogel nanocomposite flocculant for metal ions removal from mine effluents. Int. J. Environ. Sci.
Technol., 13, 711–724, 2016.
50. Mittal, H., Jindal, R., Kaith, B.S., Maity, A., Ray, S.S., Flocculation and adsorption properties of biodegradable gum-ghatti-grafted poly(acryl- amide-co-methacrylic acid) hydrogels. Carbohydr. Polym., 115, 617–628, 2015.
51. Lin, Q., Peng, H., Zhong, S., Xiang, J., Synthesis, characterization, and secondary sludge dewatering performance of a novel combined silicon–
aluminum–iron–starch flocculant. J. Hazard. Mater., 285, 199–206, 2015.
52. Liu, H., Bruton, T.A., Doyle, F.M., Sedlak, D.L., In situ chemical oxidation of contaminated groundwater by persulfate: Decomposition by Fe(III)- and Mn(IV)-containing oxides and aquifer materials. Environ. Sci. Technol., 48, 10330–10336, 2014.
53. Liu, J., Wang, C., Shi, J., Liu, H., Tong, Y., Aqueous Cr(VI) reduction by elec- trodeposited zero-valent iron at neutral pH: Acceleration by organic matters.
J. Hazard. Mater., 163, 1, 370–375, 2008.
54. Liu, T., Zhao, L., Sun, D., Tan, X., Entrapment of nanoscale zero-valent iron in chitosan beads for hexavalent chromium removal from wastewater.
J. Hazard. Mater., 184, 724–730, 2010.
55. Lv, X., Zhang, Y., Fu, W., Cao, J., Zhang, J., Ma, H., Jiang, G., Zero-valent iron nanoparticles embedded into reduced graphene oxide-alginate beads for efficient chromium (VI) removal. J. Colloid Interface Sci., 506, 633–643, 2017.
56. Dabrowski, A., Hubicki, Z., Podkościelny, P., Robens, E., Selective removal of the heavy metal ions from waters and industrial wastewaters by ion- exchange method. Chemosphere, 56, 91–106, 2004.
57. Zewail, T.M. and Yousef, N.S., Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed. Alexandria Eng. J., 54, 83–90, 2015.
58. Song, W., Gao, B., Guo, Y., Xu, X., Yue, Q., Ren, Z., Effective adsorption/
desorption of perchlorate from water using corn stalk based modified mag- netic biopolymer ion exchange resin. Microporous Mesoporous Mater., 252, 59–68, 2017.
59. Sahu, A., Blackburn, K., Durkin, K., Eldred, T.B., Johnson, B.R., Sheikh, R., Amburgey, J.E., Poler, J.C., Green synthesis of nanoscale anion exchange
resin for sustainable water purification. Environ. Sci.: Water Res. Technol., 4, 1685–1694, 2018.
60. Thakur, M., Pathania, D., Sharma, G., Naushad, M., Bhatnagar, A., Khan, M.R., Synthesis, Characterization and Environmental Applications of a New Bio-Composite Gelatin-Zr(IV) Phosphate. J. Polym. Environ., 26, 1415–1424, 2018.
61. Pal, P., Banat, F., AlShoaibi, A., Removal of heavy metal ions from lean amine solvent using chitosan coated ion-exchange resins in a gas sweetening plant.
in: Separations Division 2013 : Core Programming Area at the 2013 AIChE Annual Meeting: Global Challenges for Engineering a Sustainable Future.
pp. 294-300, American Institute of Chemical Engineers, New York, 2013.
62. Huang, J., Cao, Y., Shao, Q., Peng, X., Guo, Z., Magnetic Nanocarbon Adsorbents with Enhanced Hexavalent Chromium Removal: Morphology Dependence of Fibrillar vs Particulate Structures. Ind. Eng. Chem. Res., 56, 10689–10701, 2017.
63. Thuan Le, V., Kieu Ngan Tran, T., Lam, T., Sinh, L., Van Dat, D., Dung Bui, Q., Nguyen, H.T., One-pot synthesis of a novel magnetic activated carbon/clay composite for removal of heavy metals from aqueous solution. J. Disper. Sci.
Technol., 40, 12, 1761–1776, 2019. DOI: 10.1080/01932691.2018.1541414.
64. Arshad, F., Selvaraj, M., Zain, J., Banat, F., Haija, M.A., Polyethylenimine modified graphene oxide hydrogel composite as an efficient adsorbent for heavy metal ions. Sep. Purif. Technol., 209, 870–880, 2019.
65. Zare, E.N. and Lakouraj, M.M., Biodegradable polyaniline/dextrin conduc- tive nanocomposites: Synthesis, characterization, and study of antioxidant activity and sorption of heavy metal ions. Iran. Polym. J., 23, 257–266, 2014.
66. Petala, E., Georgiou, Y., Kostas, V., Dimos, K., Karakassides, M.A., Deligiannakis, Y., Aparicio, C., Tuček, J., Zbořil, R., Magnetic Carbon Nanocages: An Advanced Architecture with Surface- and Morphology- Enhanced Removal Capacity for Arsenites. ACS Sustain. Chem. Eng., 5, 5782–5792, 2017.
67. Kanmani, P., Aravind, J., Kamaraj, M., Sureshbabu, P., Karthikeyan, S., Environmental applications of chitosan and cellulosic biopolymers: A com- prehensive outlook. Bioresour. Technol., 242, 295–303, 2017.
68. Geneva: World Health Organization (WHO) and the United Nations Children’s Fund (UNICEF). Progress on drinking water, sanitation and hygiene: 2017 update and SDG baselines, 2017.
69. UNICEF, Annual Report 2007, 2008, UNICEF, https://www.unicef.org/publications/
index_44268.html
55
Ajay Kumar Mishra, Chaudhery Mustansar Hussain and Shivani Bhardwaj Mishra (eds.) Emerging Carbon-Based Nanocomposites for Environmental Applications, (55–70) © 2020 Scrivener Publishing LLC