Carbon-Based Nanocomposites as Heterogeneous Catalysts
4.6 Conclusion and Perspectives
GO sheets uniformly decorated with MnO2 nanorods as an efficient heterogeneous catalyst for the synthesis of amides from alcohols in an environmentally benign aqueous media. The high dispersion of reactants and catalyst in water leads to relatively high yields. The excess amount of water is found to be useful for the amide synthesis and the product separation from catalyst is very much simplified due to the use of water as solvent. The catalyst showed high recyclability without major loss in catalytic activity. The high catalytic efficiency of MnO2/GO for the syn- thesis of amides in presence of NH3 and molecular O2 in various solvents is compared in Table 4.12.
been addressed, such as activity, selectivity, and reusability of the catalyst.
However, several challenges still need remains unexplored. Also, the fun- damental understanding of the intermediates formed during the reaction and the theoretical and mechanistic approach of the kinetics of the reac- tion still need to be developed. In summary, we propose that there is still a lot of room left for the rational design and development of the carbon support-based materials for the organic transformation reactions in envi- ronmentally benign solvents.
References
1. Kumar, A., Kumar, K., Krishnan, V., Sunlight driven methanol oxidation by anisotropic plasmonic Au nanostructures supported on amorphous titania:
Influence of morphology on photocatalytic activity. Mater. Lett., 245, 45–48, 2019.
2. Kumar, A., Sharma, V., Kumar, S., Kumar, A., Krishnan, V., Towards utiliza- tion of full solar light spectrum using green plasmonic Au–TiOx photocata- lyst at ambient conditions. Surf. Interfaces, 11, 98–106, 2018.
3. Kumar, A., Reddy, K.L., Kumar, S., Kumar, A., Sharma, V., Krishnan, V., Rational Design and Development of Lanthanide-Doped NaYF4@ CdS–Au–
RGO as Quaternary Plasmonic Photocatalysts for Harnessing Visible–Near- Infrared Broadband Spectrum. ACS Appl. Mater. Interfaces, 10, 15565–15581, 2018.
4. Sharma, Y.C., Singh, B., Korstad, J., Latest developments on application of heterogenous basic catalysts for an efficient and eco friendly synthesis of bio- diesel: A review. Fuel, 90, 1309–1324, 2011.
5. Kim, K.-H. and Ihm, S.-K., Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: A review. J. Hazard.
Mater., 186, 16–34, 2011.
6. Augustine, R.L., Yaghmaie, F., Van Peppen, J.F., Heterogeneous catalysis in organic chemistry. 2. A mechanistic comparison of noble-metal catalysts in olefin hydrogenation. J. Org. Chem., 49, 1865–1870, 1984.
7. Santoro, S., Kozhushkov, S.I., Ackermann, L., Vaccaro, L., Heterogeneous catalytic approaches in C–H activation reactions. Green Chem., 18, 3471–
3493, 2016.
8. Stibingerova, I., Voltrova, S., Kocova, S., Lindale, M., Srogl, J., Modular approach to heterogenous catalysis. Manipulation of cross-coupling catalyst activity. Org. Lett., 18, 312–315, 2015.
9. Bahuguna, A., Choudhary, P., Chhabra, T., Krishnan, V., Ammonia-Doped Polyaniline–Graphitic Carbon Nitride Nanocomposite as a Heterogeneous
Green Catalyst for Synthesis of Indole-Substituted 4 H-Chromenes. ACS Omega, 3, 12163–12178, 2018.
10. Bahuguna, A., Kumar, A., Chhabra, T., Kumar, A., Krishnan, V., Potassium- Functionalized Graphitic Carbon Nitride Supported on Reduced Graphene Oxide as a Sustainable Catalyst for Knoevenagel Condensation. ACS Appl.
Nano Mater., 1, 6711–6723, 2018.
11. Stankovich, S., Dikin, D.A., Dommett, G.H., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S., Graphene-based composite materials. Nature, 442, 282, 2006.
12. Chen, L., Hernandez, Y., Feng, X., Müllen, K., From nanographene and graphene nanoribbons to graphene sheets: Chemical synthesis. Angew.
Chem. Int. Ed., 51, 7640–7654, 2012.
13. Novoselov, K., Mishchenko, A., Carvalho, A., Neto, A.C., 2D materials and van der Waals heterostructures. Science, 353, aac9439, 2016.
14. Titirici, M.-M., White, R.J., Brun, N., Budarin, V.L., Su, D.S., del Monte, F., Clark, J.H., MacLachlan, M.J., Sustainable carbon materials. Chem. Soc. Rev., 44, 250–290, 2015.
15. White, R.J., Budarin, V., Luque, R., Clark, J.H., Macquarrie, D.J., Tuneable porous carbonaceous materials from renewable resources. Chem. Soc. Rev., 38, 3401–3418, 2009.
16. Órfão, J., Silva, A., Pereira, J., Barata, S., Fonseca, I., Faria, P., Pereira, M., Adsorption of a reactive dye on chemically modified activated carbons—
Influence of pH. J. Colloid Interface Sci., 296, 480–489, 2006.
17. Toles, C.A., Marshall, W.E., Johns, M.M., Surface functional groups on acid-activated nutshell carbons. Carbon, 37, 1207–1214, 1999.
18. Shen, W., Li, Z., Liu, Y., Surface chemical functional groups modification of porous carbon. Recent Pat. Chem. Eng., 1, 27–40, 2008.
19. Karanfil, T. and Kilduff, J.E., Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 1. Priority pollutants.
Environ. Sci. Technol., 33, 3217–3224, 1999.
20. Polshettiwar, V. and Varma, R.S., Green chemistry by nano-catalysis. Green Chem., 12, 743–754, 2010.
21. Julkapli, N.M. and Bagheri, S., Graphene supported heterogeneous catalysts:
An overview. Int. J. Hydrogen Energy, 40, 948–979, 2015.
22. Corma, A. and Garcia, H., Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev., 37, 2096–2126, 2008.
23. Varma, R.S., Journey on greener pathways: From the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation. Green Chem., 16, 2027–2041, 2014.
24. Li, W., Wang, J., Gong, H., Catalytic combustion of VOCs on non-noble metal catalysts. Catal. Today, 148, 81–87, 2009.
25. Papp, A., Galbács, G., Molnár, Á., Recyclable ligand-free mesoporous heteroge- neous Pd catalysts for Heck coupling. Tetrahedron Lett., 46, 7725–7728, 2005.
26. Hassan, J., Sevignon, M., Gozzi, C., Schulz, E., Lemaire, M., Aryl– aryl bond formation one century after the discovery of the Ullmann reaction. Chem.
Rev., 102, 1359–1470, 2002.
27. Mathews, C.J., Smith, P.J., Welton, T., Palladium catalysed Suzuki cross- coupling reactions in ambient temperature ionic liquids. Chem. Commun., 14, 1249–1250, 2000.
28. Sun, J., Fu, Y., He, G., Sun, X., Wang, X., Green Suzuki–Miyaura coupling reaction catalyzed by palladium nanoparticles supported on graphitic car- bon nitride. Appl. Catal. B: Environ., 165, 661–667, 2015.
29. Li, Y., Fan, X., Qi, J., Ji, J., Wang, S., Zhang, G., Zhang, F., Palladium nanoparticle-graphene hybrids as active catalysts for the Suzuki reaction.
Nano Res., 3, 429–437, 2010.
30. Scheuermann, G.M., Rumi, L., Steurer, P., Bannwarth, W., Mülhaupt, R., Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki–Miyaura coupling reac- tion. J. Am. Chem. Soc., 131, 8262–8270, 2009.
31. Elazab, H.A., Siamaki, A.R., Moussa, S., Gupton, B.F., El-Shall, M.S., Highly efficient and magnetically recyclable graphene-supported Pd/Fe3O4 nanoparticle catalysts for Suzuki and Heck cross-coupling reactions. Appl.
Catal. A: Gen., 491, 58–69, 2015.
32. Moussa, S., Siamaki, A.R., Gupton, B.F., El-Shall, M.S., Pd-partially reduced graphene oxide catalysts (Pd/PRGO): laser synthesis of Pd nanoparticles supported on PRGO nanosheets for carbon–carbon cross coupling reac- tions. ACS Catal., 2, 145–154, 2011.
33. Bariwal, J. and Van der Eycken, E., C–N bond forming cross-coupling reac- tions: An overview. Chem. Soc. Rev., 42, 9283–9303, 2013.
34. Vats, T., Gogoi, R., Gaur, P., Sharma, A., Ghosh, S., Siril, P.F., Pristine Graphene–Copper (II) Oxide Nanocatalyst: A Novel and Green Approach in CuAAC Reactions. ACS Sustainable Chem. Eng., 5, 7632–7641, 2017.
35. Ruoff, R., Graphene: Calling all chemists. Nat. Nanotechnol., 3, 10, 2008.
36. Long, J., Xie, X., Xu, J., Gu, Q., Chen, L., Wang, X., Nitrogen-doped graphene nanosheets as metal-free catalysts for aerobic selective oxidation of benzylic alcohols. ACS Catal., 2, 622–631, 2012.
37. Patil, M.R., Kapdi, A.R., Vijay Kumar, A., Recyclable Supramolecular Ruthenium Catalyst for the Selective Aerobic Oxidation of Alcohols on Water: Application to Total Synthesis of Brittonin A. ACS Sustainable Chem.
Eng., 6, 3264–3278, 2018.
38. Wan, X., Zhou, C., Chen, J., Deng, W., Zhang, Q., Yang, Y., Wang, Y., Base- free aerobic oxidation of 5-hydroxymethyl-furfural to 2, 5-furandicarboxylic acid in water catalyzed by functionalized carbon nanotube-supported Au–
Pd alloy nanoparticles. ACS Catal., 4, 2175–2185, 2014.
39. Yu, H., Shao, L., Fang, J., Synthesis and biological activity research of novel ferrocenyl-containing thiazole imine derivatives. J. Organomet. Chem., 692, 991–996, 2007.
40. Westheimer, F. and Taguchi, K., Catalysis by molecular sieves in the prepara- tion of ketimines and enamines. J. Org. Chem., 36, 1570–1572, 1971.
41. Huang, H., Huang, J., Liu, Y.-M., He, H.-Y., Cao, Y., Fan, K.-N., Graphite oxide as an efficient and durable metal-free catalyst for aerobic oxidative coupling of amines to imines. Green Chem., 14, 930–934, 2012.
42. Tomás, R.A., Bordado, J.C., Gomes, J.F., p-Xylene oxidation to terephthalic acid: A literature review oriented toward process optimization and develop- ment. Chem. Rev., 113, 7421–7469, 2013.
43. Heidari, M., Sedrpoushan, A., Mohannazadeh, F., Selective oxidation of benzylic C–H using nanoscale graphene oxide as highly efficient carbo- catalyst: Direct synthesis of terephthalic acid. Org. Process Res. Dev., 21, 641–647, 2017.
44. Xu, X., Luo, J., Li, L., Zhang, D., Wang, Y., Li, G., Unprecedented catalytic performance in amine syntheses via Pd/gC 3 N 4 catalyst-assisted transfer hydrogenation. Green Chem., 20, 2038–2046, 2018.
45. Sharma, P. and Sasson, Y., Highly active Ru-g-C3N4 photocatalyst for visible light assisted selective hydrogen transfer reaction using hydrazine at room temperature. Catal. Commun., 102, 48–52, 2017.
46. Kim, E., Jeong, H.S., Kim, B.M., Efficient chemoselective reduction of nitro compounds and olefins using Pd–Pt bimetallic nanoparticles on functional- ized multi-wall-carbon nanotubes. Catal. Commun., 45, 25–29, 2014.
47. Veerakumar, P., Panneer Muthuselvam, I., Hung, C.-T., Lin, K.-C., Chou, F.-C., Liu, S.-B., Biomass-derived activated carbon supported Fe3O4 nanoparticles as recyclable catalysts for reduction of nitroarenes. ACS Sustainable Chem.
Eng., 4, 6772–6782, 2016.
48. Rubel, A.M. and Stencel, J.M., Effect of pressure on NO x adsorption by acti- vated carbons. Energy Fuels, 10, 704–708, 1996.
49. Irfan, M.F., Goo, J.H., Kim, S.D., Co3O4 based catalysts for NO oxidation and NOx reduction in fast SCR process. Appl. Catal. B: Environ., 78, 267–
274, 2008.
50. Zhang, W.-J., Bagreev, A., Rasouli, F., Reaction of NO2 with activated carbon at ambient temperature. Ind. Eng. Chem. Res., 47, 4358–4362, 2008.
51. Stanmore, B., Tschamber, V., Brilhac, J.-F., Oxidation of carbon by NOx, with particular reference to NO2 and N2O. Fuel, 87, 131–146, 2008.
52. Shirahama, N., Mochida, I., Korai, Y., Choi, K.-H., Enjoji, T., Shimohara, T., Yasutake, A., Reaction of NO with urea supported on activated carbons.
Appl. Catal. B: Environ., 57, 237–245, 2005.
53. Shirahama, N., Mochida, I., Korai, Y., Choi, K.-H., Enjoji, T., Shimohara, T., Yasutake, A., Reaction of NO2 in air at room temperature with urea sup- ported on pitch based activated carbon fiber. Appl. Catal. B: Environ., 52, 173–179, 2004.
54. Qiao, J., Liu, Y., Hong, F., Zhang, J., A review of catalysts for the electrore- duction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev., 43, 631–675, 2014.
55. Whipple, D.T., and Kenis, P.J.A., Prospects of CO2 utilization via direct hete- rogeneous electrochemical reduction. J.Phys. Chem Lett., 1, 3451–3458, 2013.
56. Lin, J., Pan, Z., Wang, X., Photochemical reduction of CO2 by graphitic car- bon nitride polymers. ACS Sustainable Chem. Eng., 2, 353–358, 2013.
57. Hsu, H.-C., Shown, I., Wei, H.-Y., Chang, Y.-C., Du, H.-Y., Lin, Y.-G., Tseng, C.-A., Wang, C.-H., Chen, L.-C., Lin, Y.-C., Graphene oxide as a promising photocatalyst for CO 2 to methanol conversion. Nanoscale, 5, 262–268, 2013.
58. Kang, P., Zhang, S., Meyer, T.J., Brookhart, M., Rapid selective electrocata- lytic reduction of carbon dioxide to formate by an iridium pincer catalyst immobilized on carbon nanotube electrodes. Angew. Chem. Int. Ed., 53, 8709–8713, 2014.
59. Wu, J., Yadav, R.M., Liu, M., Sharma, P.P., Tiwary, C.S., Ma, L., Zou, X., Zhou, X.-D., Yakobson, B.I., Lou, J., Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes. ACS Nano, 9, 5364–
5371, 2015.
60. Pevida, C., Plaza, M., Arias, B., Fermoso, J., Rubiera, F., Pis, J., Surface mod- ification of activated carbons for CO2 capture. Appl. Surf. Sci., 254, 7165–
7172, 2008.
61. Roucoux, A., Nowicki, A., Philippot, K., Rhodium and Ruthenium nanopar- ticles in catalysis, in: Nanoparticles and Catalysis, pp. 349–388, 2008.
62. Chen, X., Deng, D., Pan, X., Hu, Y., Bao, X., N-doped graphene as an elec- tron donor of iron catalysts for CO hydrogenation to light olefins. Chem.
Commun., 51, 217–220, 2015.
63. Jagadeesh, R.V., Natte, K., Junge, H., Beller, M., Nitrogen-doped graphene- activated iron-oxide-based nanocatalysts for selective transfer hydrogena- tion of nitroarenes. ACS Catal., 5, 1526–1529, 2015.
64. Yan, H., Cheng, H., Yi, H., Lin, Y., Yao, T., Wang, C., Li, J., Wei, S., Lu, J., Single-atom Pd1/graphene catalyst achieved by atomic layer deposition:
Remarkable performance in selective hydrogenation of 1, 3-butadiene. J. Am.
Chem. Soc., 137, 10484–10487, 2015.
65. Baig, R.N., Verma, S., Varma, R.S., Nadagouda, M.N., Magnetic Fe@ g-C3N4:
a photoactive catalyst for the hydrogenation of alkenes and alkynes. ACS Sustainable Chem. Eng., 4, 1661–1664, 2016.
66. Sharma, P. and Sasson, Y., A photoactive catalyst Ru–gC 3 N 4 for hydrogen transfer reaction of aldehydes and ketones. Green Chem., 19, 844–852, 2017.
67. Bhaskar, R., Joshi, H., Sharma, A.K., Singh, A.K., Reusable catalyst for trans- fer hydrogenation of aldehydes and ketones designed by anchoring palla- dium as nanoparticles on graphene oxide functionalized with selenated amine. ACS Appl. Mater. Interfaces, 9, 2223–2231, 2017.
68. Xu, L.-W., Li, J.-W., Xia, C.-G., Zhou, S.-L., Hu, X.-X., Efficient copper- catalyzed chemo selective conjugate addition of aliphatic amines to α, β- unsaturated compounds in water. Synlett., 2003, 2425–2427, 2003.
69. Verma, S., Mungse, H.P., Kumar, N., Choudhary, S., Jain, S.L., Sain, B., Khatri, O.P., Graphene oxide: an efficient and reusable carbocatalyst for aza-Michael
addition of amines to activated alkenes. Chem. Commun., 47, 12673–12675, 2011.
70. Magro, A.A.N., Eastham, G.R., Cole-Hamilton, D.J., The synthesis of amines by the homogeneous hydrogenation of secondary and primary amides.
Chem. Commun., 30, 3154–3156, 2007.
71. Su, C., Tandiana, R., Balapanuru, J., Tang, W., Pareek, K., Nai, C.T., Hayashi, T., Loh, K.P., Tandem catalysis of amines using porous graphene oxide. J. Am.
Chem. Soc., 137, 685–690, 2015.
72. Baig, R.N., Verma, S., Nadagouda, M.N., Varma, R.S., Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride. Sci. Rep., 6, 39387, 2016.
73. Verma, S., Baig, R.N., Nadagouda, M.N., Len, C., Varma, R.S., Sustainable pathway to furanics from biomass via heterogeneous organo-catalysis. Green Chem., 19, 164–168, 2017.
74. Nie, R., Shi, J., Xia, S., Shen, L., Chen, P., Hou, Z., Xiao, F.-S., MnO 2/graphene oxide: A highly active catalyst for amide synthesis from alcohols and ammo- nia in aqueous media. J. Mater. Chem., 22, 18115–18118, 2012.
121
Ajay Kumar Mishra, Chaudhery Mustansar Hussain and Shivani Bhardwaj Mishra (eds.) Emerging Carbon-Based Nanocomposites for Environmental Applications, (121–146) © 2020 Scrivener Publishing LLC