• Tidak ada hasil yang ditemukan

BAB III. METODE PENELITIAN

4.5. Kadar Protein

Kadar protein yang terlarut dalam ekstrak kasar enzim protease ditentukan dengan analisis secara kuantitatif menggunakan metode Bradford. Persamaan regresi linier kurva standar Bovine Serum Albumin yang diperoleh adalah y = 0,009x + 0,0042 dengan koefisien regresi linier (R2) = 0,995 (Lampiran 3). Nilai absorbansi dari pengukuran kadar protein pada λ595 nm dimasukkan ke dalam persamaan tersebut untuk mendapatkan nilai kadar protein.

Analisis kadar protein dengan metode Bradford melibatkan pewarna Coomassie Brilliant Blue (CBB) G-250 yang membentuk warna kebiruan pada larutan sampel. Hal ini karena CBB G-250 berikatan dengan protein yang terdapat pada larutan enzim dalam suasana asam dan membentuk warna larutan kebiruan (Masri, 2013). Kadar protein diukur pada λ595 karena absorbansi yang dihasilkan sebanding dengan pewarna yang terikat pada protein (Malle et al., 2015).

Gambar 10. Nilai kadar protein enzim protease isolat JE-DP4 menggunakan substrat; (a) kasein, (b) susu skim

Kadar protein yang diukur dari ekstrak kasar enzim protease menunjukkan jumlah substrat yang telah didegradasi oleh mikroorganisme proteolitik. Kadar protein mengggunakan substrat kasein tertinggi sebesar 0,107 mg/mL pada hari ke-1 inkubasi karena jumlah substrat protein masih tinggi. Pada waktu inkubasi berikutnya jumlah substrat kasein terus mengalami penurunan hingga akhir waktu inkubasi hari ke-7 (Gambar 10a). Kadar protein menggunakan substrat susu skim tertinggi sebesar 0,068 mg/mL pada hari ke-1 inkubasi karena jumlah substrat protein masih tinggi. Pada waktu inkubasi berikutnya substrat protein susu skim terus mengalami penurunan hingga akhir waktu inkubasi (Gambar 10b). Kadar protein mengalami penurunan seiring dengan pertambahan umur isolat kapang.

Hal ini karena enzim protease yang dihasilkan oleh kapang endofit proteolitik b

a

mampu mendegradasi substrat protein kasein dan susu skim. Kespesifikan suatu enzim terhadap substrat dapat diketahui dari kemampuan enzim dalam mendegradasi substrat tersebut untuk menyintesis enzim (Sajuthi et al., 2010).

Jain et al. (2012), melaporkan dalam penelitiannya kadar protein yang diuji dari enzim protease yang dihasilkan oleh kapang endofit Acremonium sp. sebesar 0,02 mg/mL. Ramadhani et al. (2015), juga melaporkan dalam penelitiannya kadar protein enzim protease tertinggi yang dihasilkan dalam pengujian aktivitas enzim protease oleh Aspergillus niger PAM18A sebesar 0,460 mg/mL. Hal ini menunjukkan bahwa penggunaan substrat protein untuk menyintesis enzim protease setiap jenis kapang endofit berbeda dipengaruhi oleh variasi gen penyandi protease dan kemampuan kapang dalam mendegradasi substrat protein.

Rata-rata kadar protein total enzim protease isolat kapang endofit JE-DP4 menggunakan substrat kasein sebesar 0,063 mg/mL sedangkan menggunakan substrat susu skim sebesar 0,047 mg/mL. Kadar protein yang diukur pada substrat kasein sebesar 0,063 mg/mL lebih tinggi dari 0,047 mg/mL pada substrat susu skim. Hal ini menunjukkan bahwa aktivitas enzim protease yang dihasilkan menggunakan substrat kasein lebih tinggi dibandingkan susu skim. Kandungan protein dalam enzim berpengaruh terhadap daya katalitik enzim (Ramadhani et al., 2015). Kadar protein yang tinggi tidak berarti menunjukkan kandungan enzim protease yang tinggi. Hal ini karena protein yang mengendap bukan hanya dari enzim protease tetapi dari protein non enzim yang terukur ketika analisis kadar protein (Pasaribu et al., 2018).

41 BAB V

KESIMPULAN DAN SARAN 5.1. Kesimpulan

Berdasarkan hasil penelitian yang telah dilakukan maka dapat disimpulkan:

1. Isolat kapang endofit JE-DP4 memiliki kemampuan terbaik menghasilkan enzim protease dengan indeks hidrolisis protein sebesar 1,45 dibandingkan kedua isolat lain yang tidak menghasilkan zona bening.

2. Substrat media produksi berupa kasein menghasilkan aktivitas enzim protease lebih tinggi dibandingkan susu skim dengan aktivitas enzim tertinggi sebesar 46,72 U/mL.

3. Rata-rata aktivitas enzim protease tertinggi isolat kapang endofit JE-DP4 sebesar 22,64 U/mL pada suhu 37°C, waktu inkubasi pada hari ke-7, dan pH pertumbuhan sebesar 6 menggunakan substrat kasein.

5.2. Saran

Saran dari penelitian ini adalah:

1. Perlu adanya analisis molekuler isolat kapang endofit JE-DP4 yang diisolasi dari daun tanaman pepaya untuk diidentifikasi.

2. Perlu dilakukan pengujian variasi pH aktivitas enzim protease isolat kapang endofit JE-DP4 untuk mengetahui faktor lain yang memengaruhi aktivitas enzim.

3. Kapang endofit daun pepaya yang kemampuan aktivitas enzimnya menurun dapat diinduksi dengan penambahan ekstrak daun pepaya pada media pertumbuhan kapang agar kondisinya sesuai lingkungan tempat tumbuh kapang endofit.

42 DAFTAR PUSTAKA

A. Das dan A. Varma. (2009). Symbiosis: the art of living in symbiotic fungi principles and practice. Germany, Berlin: Springer, 1–28.

Abdennabi, R., Triki, M. A., Salah, R. Ben, & Gharsallah, N. (2017). Antifungal activity of endophytic fungi isolated from date palm sap (Phoenix dactylifera L.). EC Microbiology, 13(4), 123–131.

Abonyi, D. O., Eze, P. M., Abba, C. C., Chukwunwejim, C. R., Ejikeugwu, C. P., Okoye, F. B. C., & Esimone, C. O. (2019). Metabolites of endophytic Colletotrichum gloeosporioides isolated from leaves of Carica papaya.

American Journal of Essential Oils and Natural Products, 7(1), 39–46.

Achakzai, A. K. K., Achakzai, P., Masood, A., Kayani, S. A., & Tareen, R. B.

(2009). Response of plant parts and age on the distribution of secondary metabolites on plants found in Quetta. Pakistan Journal of Botany, 41(5), 2129–2135.

Adachukwu, I., Ann, O., & Faith, E. (2013). Phytochemical analysis of Paw-Paw (Carica papaya) leaves. International Journal of Life Science Biotechnology and Pharma Research, 2(3), 347–351.

Agrawal, P. K., Rajput, K., & Chanyal, S. (2016). Optimization of protease production by endophytic fungus, Alternaria alternata isolated from gymnosperm tree-Cupressus torulosa D. Don. World Journal of Pharmacy and Pharmaceutical Sciences, 5(7), 1034–1054.

Akinyemi, A. (2017). Antimicrobial activities of secondary metabolites from fungal endophytes. IOSR Journal of Pharmacy and Biological Sciences, 12(6), 13–17. https://doi.org/10.9790/3008-1206061317

Akram, M., Asif, H. M., Uzair, M., Akhtar, N., Madni, A., Ali Shah, S. M., Hasan, Z. U., Ullah, A. (2011). Amino acids: a review article. Journal of Medicinal Plants Research, 5(17), 3997–4000.

Al-Askar, A. A., Abdulkhair, W. M., & Rashad, Y. M. (2014). Production, purification and optimization of protease by Fusarium solani under Solid state fermentation and isolation of protease inhibitor protein from Rumex vesicarius L. Journal of Pure and Applied Microbiology, 8(1), 239–250.

Amazu, L. U., Azikiwe, C. C. A., Njoku, C. J., Osuala, F. N., Nwosu, P. J. C., Ajugwo, A. O., & Enye, J. C. (2010). Antiinflammatory activity of the methanolic extract of the seeds of Carica papaya in experimental animals.

Asian Pacific Journal of Tropical Medicine, 3(11), 884–886.

Aravind, G., Debjit, B., Duraivel, S., & Harish, G. (2013). Traditional and medicinal uses of Carica papaya. Journal of Medicinal Plants Studies, 1(1), 7–15.

Arifah, S. P. (2019). Gula pasir sebagai pengganti dektrosa pada komposisi PDA untuk efisiensi biaya praktikum dan penelitian di laboratorium fitopatologi.

Jurnal Teknologi Dan Manajemen Pengelolaan Laboratorium (Temapela),

2(1), 28–32.

Baehaki, A., & Rinto. (2012). Karakterisasi protease dari isolat bakteri asal tumbuhan rawa dari Indralaya. Jurnal Pengolahan Hasil Perikanan Indonesia, 15(1), 59–65. https://doi.org/10.17844/jphpi.v15i1.5335

Baehaki, A., Rinto, & Budiman, A. (2011). Isolasi dan karakterisasi protease dari bakteri tanah rawa Indralaya, Sumatera Selatan. Jurnal Teknologi Dan Industri Pangan, 22(1), 37–42.

Baehaki, A., Suhartono, M. T., Palupi, S. N., & Nurhayati, T. (2008). Purifikasi dan karakterisasi protease dari bakteri patogen Pseudomonas aeruginosa.

Jurnal Teknologi Dan Industri Pangan, 19(1), 80–87.

Benmrad, M. O., Mechri, S., Jaouadi, N. Z., Elhoul, M. Ben, Rekik, H., Sayadi, S., Bejar, S., Kechaou, N., Jaouadi, B. (2019). Purification and biochemical characterization of a novel thermostable protease from the oyster mushroom Pleurotus sajor-caju strain CTM10057 with industrial interest. BMC Biotechnology, 19(1), 1–18. https://doi.org/10.1186/s12896-019-0536-4 Choliq, A. (2008). Aktivitas enzim protease dari Mucor javanicus yang

ditumbuhkan pada media tepung singkong (Mannihot utilissima). Jurnal Berila Biologi, 9(3), 299–303.

Chow, B. F., & Peticolas, M. (1948). A rapid method for the determination of proteolytic activities of enzyme preparations. The Journal of General Physiology, 32(1), 17–24.

de Souza, P. M., de Assis Bittencourt, M. L., Caprara, C. C., de Freitas, M., de Almeida, R. P. C., Silveira, D., Fonseca, Y. M., Filho, E. X. F., Junior, A. P., Magalhães, P. O. (2015). A biotechnology perspective of fungal proteases.

Brazilian Journal of Microbiology, 46(2), 337–346.

https://doi.org/10.1590/S1517-838246220140359

Dhillon, A., Sharma, K., Rajulapati, V., & Goyal, A. (2016). Current developments in biotechnology and bioengineering production, isolation, and purification of industrial product. Edition 1. Amsterdam, Netherlands:

Elsevier Radarweg, 149-173. Abba, C. C., & Okoye, F. B. C. (2018). Antimicrobial activity of metabolites of an endophytic fungus isolated from the leaves of Citrus jambhiri (Rutaceae). Tropical Journal of Natural Product Research, 2(3), 145–149.

https://doi.org/10.26538/tjnpr/v2i3.9

Fadiji, A. E., & Babalola, O. O. (2020). Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. Frontiers in Bioengineering and Biotechnology, 8(467), 1–20.

Fathimah, A. N., & Wardani, A. K. (2014). Ekstraksi dan karakterisasi enzim protease dari daun kelor (Moringa oliefera Lamk.). Jurnal Teknologi Pertanian, 15(3), 191–200. https://doi.org/10.1038/423136a

Fouda, A. H., Hassan, S. E. D., Eid, A. M., & Ewais, E. E. D. (2015).

Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Annals of Agricultural Sciences, 60(1), 95–104. https://doi.org/10.1016/j.aoas.2015.04.001

Guangrong, H., Tiejing, Y., Po, H., & Jiaxing, J. (2006). Purification and characterization of a protease from Thermophilic bacillus strain HS08.

African Journal of Biotechnology, 5(24), 2433–2438.

Hamza, T. A. (2017). Bacterial protease enzyme: safe and good alternative for industrial and commercial use. International Journal of Chemical and Biomolecular Science, 3(1), 1–10.

Hanafi, A., Purwantisari, S., & Raharjo, B. (2017). Uji potensi bakteri endofit kitinolitik tanaman padi (Oryza sativa L.) sebagai penghasil hormon IAA (Indole Acetic Acid). Bioma, 19(1), 76–82.

Hastuti, U. S., Nugraheni, F. S. A., & Asna, P. M. (2017). Identifikasi dan penentuan indeks hidrolisis protein pada bakteri proteolitik dari tanah mangrove di Margomulyo, Balikpapan. Proceeding Biology Education Conference, 14(1), 265–270.

Ilmiah, S. N., Mubarik, N. R., & Wahyuntari, B. (2018). Characterization of protease from Bacillus licheniformis F11.1 as a bio-detergent agent. Makara Journal of Science, 22(3), 105–112. https://doi.org/10.7454/mss.v22i3.8809 Indarmawan, T., Mustopa, A. Z., Budiarto, B. R., & Tarman, K. (2016).

Antibacterial activity of extracellular protease isolated from an algicolous fungus Xylaria psidii KT30 against gram-positive bacteria. HAYATI Journal of Biosciences, 23(2), 73–78. https://doi.org/10.1016/j.hjb.2016.06.005 Irawati, A. F. C., Mutaqin, K. H., Suhartono, M. T., Sastro, Y., Sulastri, &

Widodo. (2017). Eksplorasi dan pengaruh cendawan endofit yang berasal dari akar tanaman cabai terhadap pertumbuhan benih cabai merah. Jurnal Hortikultura, 27(1), 105–112.

Jain, P., Aggarwal, V., Sharma, A., & Pundir, R. K. (2012). Isolation production and partial purification of protease from an endophytic Acremonium sp.

Journal of Agricultural Technology, 8(6), 1979–1989.

Jalgaonwala, R. E., & Mahajan, R. T. (2011). Evaluation of hydrolytic enzyme activities of endophytes from some indigenous medicinal plants. Journal of Agricultural Technology, 7(6), 1733–1741.

Jenitta, X. J., Priya, S. E., & Gnanadoss, J. J. (2015). Optimization of culture conditions and inducers for improved protease production by Penicillium griseofulvum LCJ231 under submerged fermentation. International Journal of Advanced Biotechnology and Research, 6(2), 152–160. Retrieved from http://www.bipublication.com

Joseph, B., & Priya, M. R. (2011). Bioactive compounds from endophytes and their potential in pharmaceutical effect: a review. American Journal of Biochemistry and Molecular Biology, 1(3), 291–309.

https://doi.org/10.3923/ajbmb.2011.291.309

Kailasapathy, K. (2016). Chemical composition, physical, and functional properties of milk and milk ingredients. 2nd Edition. Australia: John Wiley

& Sons, Ltd. 77-105.

Kamath, P., Subrahmanyam, V. M., Rao, J. V, & Raj, P. V. (2010). Optimization of cultural conditions for protease production by a fungal species. Indian Journal of Pharmaceutical Sciences, 72(2), 161–166.

Karima, A., Nurhatika, S., & Prasetyo, E. N. (2016). Modifikasi enzimatik bahan berbasis selulosa sebagai susbtrat potensial bioetanol. Jurnal Sains Dan Seni ITS, 4(1), 1–7.

Khan, R., Shahzad, S., Choudhary, M. I., Khan, S. A., & Ahmad, A. (2010).

Communities of endophytic fungi in medicinal plant Withania somnifera.

Pakistan Journal of Botany, 42(2), 1281–1287.

Khusro, A. (2016). One Factor at a time based optimization of protease from poultry associated Bacillus licheniformis. Journal of Applied Pharmaceutical Science, 6(3), 88–95. https://doi.org/10.7324/JAPS.2016.60315

Konno, K., Hirayama, C., Nakamura, M., Tateishi, K., Tamura, Y., Hattori, M., &

Kohno, K. (2004). Papain protects papaya trees from herbivorous insects:

role of cysteine proteases in latex. The Plant Journal, 37(3), 370–378.

https://doi.org/10.1046/j.1365-313X.2003.01968.x

Kusumadjaja, A. P., & Dewi, R. P. (2005). Penentuan kondisi optimum enzim papain dari pepaya burung varietas Jawa (Carica papaya). Indonesian Journal of Chemistry, 5(2), 147–151. https://doi.org/10.22146/ijc.21822 Laskar, A., & Chatterjee, A. (2009). Protease-revisiting the types and potential.

Journal of Biotechnology, 1(1), 55–61.

Lehninger, A. (2004). Dasar-dasar biokimia. Jakarta: Erlangga.

Maciá-Vicente, J. G., Jansson, H. B., & Lopez-Llorca, L. V. (2009). Assessing fungal root colonization for plant improvement. Plant Signaling and Behavior, 4(5), 445–447. https://doi.org/10.4161/psb.4.5.8393

Mahajan, R. T., & Badgujar, S. B. (2010). Biological aspects of proteolytic enzymes: a review. Journal of Pharmacy Research, 3(9), 2048–2068.

Maitig, A. M. A., Alhoot, M. A. M., & Tiwari, K. (2018). Isolation and screening of extracellular protease enzyme from fungal isolates of soil. Journal of Pure

and Applied Microbiology, 12(4), 2059–2067.

https://doi.org/10.22207/JPAM.12.4.42

Malle, D., Telussa, I., & Lasamahu, A. A. (2015). Isolasi dan karakterisasi papain dari buah pepaya (Carica papaya L.) jenis daun kipas. Indonesian Journal of Chemical Research, 2, 182–189.

Marnolia, A., Haryani, Y., & Puspita, F. (2016). Uji aktivitas enzim protease dari isolat Bacillus sp. endofit tanaman kelapa sawit (Elaeis quinensis). Jurnal Photon, 6(2), 1–5.

Masri, M. (2013). Isolasi dan pengukuran aktivitas enzim bromelin dari ekstrak kasar bonggol nanas (Ananas comosus) pada variasi suhu dan pH. Jurnal Biology Science & Education, 2(1), 70–79.

Mótyán, J. A., Tóth, F., & Tőzsér, J. (2013). Research applications of proteolytic enzymes in molecular biology. Biomolecules, 3(4), 923–942.

https://doi.org/10.3390/biom3040923

Mukhtar, H., & Ikram-Ul-Haq. (2012). Purification and characterization of alkaline protease produced by a mutant strain of Bacillus subtilis. Pakistan Journal of Botany, 44(5), 1697–1704.

Muthulakshmi, C., Gomathi, D., Kumar, D. G., Ravikumar, G., Kalaiselvi, M., &

Uma, C. (2011). Production, purification and characterization of protease by Aspergillus flavus under solid state fermentation. Jordan Journal of Biological Science, 4(3), 137–148.

Nair, D. N., & Padmavathy, S. (2014). Impact of endophytic microorganisms on plants, environment and humans. The Scientific World Journal, 250693, 1–

11. https://doi.org/10.1155/2014/250693

Negi, S., & Banerjee, R. (2010). Optimization of culture parameters to enhance production of amylase and protease from Aspergillus awamori in a single fermentation. African Journal of Biochemistry Research, 4(3), 73–80.

Retrieved from http://www.academicjournals.org/AJBR

Noviyanti, T., Ardiningsih, P., & Rahmalia, W. (2013). Pengaruh temperatur terhadap aktivitas enzim protease dari daun sansakng (Pycnarrhena cauliflora Diels). Jurnal Kimia Khatulistiwa, 1(1), 31–34. Retrieved from http://jurnal.untan.ac.id/index.php/jkkmipa/article/view/990

Omotayo, A. R., El-ishaq, A., Tijjani, L. M., & Segun, D. I. (2016). Comparative analysis of protein content in selected meat samples (cow, rabbit, and chicken) obtained within Damaturu Metropolis. American Journal of Food Science and Health, 2(6), 151–155.

Pasaribu, E., Nurhayati, T., & Nurilmala, M. (2018). Ekstraksi dan karakterisasi enzim pepsin dari lambung ikan tuna (Thunnus albacares). Jurnal Pengolahan Hasil Perikanan Indonesia, 21(3), 486–496.

Pavithra, N., Sathish, L., & Ananda, K. (2012). Antimicrobial and enzyme activity of endophytic fungi isolated from Tulsi. Journal of Pharmaceutical and Biomedical Science, 16(12), 1–6.

Peterson, R., Grinyer, J., & Nevalainen, H. (2011). Extracellular hydrolase profiles of fungi isolated from koala faeces invite biotechnological interest.

Mycological Progress, 10(2), 207–218. https://doi.org/10.1007/s11557-010-0690-5

Pinnamaneni, R. (2017). Nutritional and medicinal value of papaya (Carica papaya Linn.). World Journal of Pharmacy and Pharmaceutical Sciences, 6(8), 2559–2578. https://doi.org/10.20959/wjpps20178-9947

Pratush, A., Gupta, A., & Bhalla, T. C. (2013). Microbial proteases: prospects and challenges. Dehradum: Bhalla Publishers, 30-48.

Purwanto, U. M. S., Pasaribu, F. H., & Bintang, M. (2014). Isolasi bakteri endofit dari tanaman sirih hijau (Piper betle L.) dan potensinya sebagai penghasil senyawa antibakteri. Current Biochemistry, 1(1), 45–50.

https://doi.org/10.29244/51-57

Puspitarini, S. (2019). Isolasi dan skrining kapang endofit pada daun tanaman pepaya (Carica papaya L.). Praktikum Kerja Lapangan. Yogyakarta:

Universitas Ahmad Dahlan.

Putri, M. F., Fifendy, M., & Putri, D. H. (2018). Diversitas bakteri endofit pada daun muda dan daun tua tumbuhan Andaleh (Morus macroura miq.).

Eksakta, 19(1), 125–130.

Radji, M. (2005). Peranan bioteknologi dan mikroba endofit dalam pengembangan obat herbal. Majalah Ilmu Kefarmasian, 2(3), 113–126.

Rahayu, M., & Susanti, E. (2017). Optimasi jenis dan kadar sumber nitrogen serta pH medium untuk produksi protease dari isolat HTcUM6.2.2 dari tauco

Surabaya. Jurnal Kimia Riset, 2(2), 98–107.

https://doi.org/10.20473/jkr.v2i2.6307

Rajamanikyam, M., Vadlapudi, V., Amanchy, R., & Upadhyayula, S. M. (2017).

Endophytic fungi as novel resources of natural therapeutics. Brazilian Archives of Biology and Technology, 60(e17160542), 1–26.

https://doi.org/10.1590/1678-4324-2017160542

Rakte, A., & Nanjwade, B. (2014). Proteolytic enzymes delivery systems: a review. International Journal for Pharmaceutical, 3(2), 188–197.

Ramadhani, P., Rukmi, M. I., & Pujiyanto, S. (2015). Produksi enzim protease dari A. niger PAM18A dengan variasi pH dan waktu inkubasi. Jurnal Biologi, 4(2), 25–34.

Ramya, G., & Bharathi, V. (2015). Production of extracellular protease using Bacillus species from the red soil and optimization of protease activity.

Journal of Chemical and Pharmaceutical Research, 7(8), 446–453.

Rani, K., Rana, R., & Datt, S. (2012). Review on latest overview of proteases.

International Journal of Current Life Sciences, 2(1), 12–18.

Ratnayani, K., Nazib, M., Sibarani, J., & Laksmiwati, A. A. I. A. M. (2018).

Aktivitas protease pada getah bagian batang dari tiga jenis spesies tanaman kamboja (Plumeria L.). Jurnal Kimia, 12(2), 147–151.

Risnawati, M., & Cahyaningrum, S. E. (2013). Pengaruh penambahan ion logam Ca2+ terhadap aktivitas enzim papain. UNESA Journal of Chemistry, 2(1), 76–83.

Rodriguez, R. J., Jr, J. F. W., Arnold, A. E., & Redman, R. S. (2009). Fungal endophytes: diversity and functional roles. New Phytologist, 182(2), 314–

330.

Sabotič, J., & Kos, J. (2012). Microbial and fungal protease inhibitors-current and potential applications. Applied Microbiology and Biotechnology, 93(4), 1351–1375. https://doi.org/10.1007/s00253-011-3834-x

Saeed, F., Arshad, M. U., Pasha, I., Naz, R., Batool, R., Khan, A. A., Nasir, M.

A., Shafique, B. (2014). Nutritional and phyto-therapeutic potential of papaya (Carica papaya Linn.): an overview. International Journal of Food Properties, 17(7), 1637–1653.

Safitri, R., Muchlissin, S. I., Mukaromah, A. H., Darmawati, S., & Ethica, S. N.

(2018). Isolasi bakteri penghasil enzim protease Bacillus thuringiensis pada oncom merah pasca fermentasi 24 jam dan identifikasi molekuler bakteri berbasis gen 16S rRNA. Seminar Nasional Edusaintek, 62–69.

Sajuthi, D., Suparto, I., Yanti, & Praira, W. (2010). Purifikasi dan pencirian enzim protease fibrinolitik dari ekstrak jamur merang. Jurnal Makara Sains, 14(2), 145–150.

Sandhu, S. S., & Gupta, D. (2015). Role of endophytic fungi in preservation of plant biodiversity. International Journal of Advances in Pharmacy, Biology and Chemistry, 4(3), 635–647.

Saranraj, P., Jayaprakash, A., & Bhavani, L. (2017). Commercial production and application of bacterial alkaline protease: a review. Indo-Asian Journal of Multidisciplinary Research (IAJMR), 3(5), 1228–1250.

Sathish, L., Pavithra, N., & Ananda, K. (2012). Antimicrobial activity and biodegrading enzymes of endophytic fungi from eucalyptus. International Journal of Pharmaceutical Sciences and Research, 3(8), 2574–2583.

Sayem, S. M. A., Alam, M. J., & Hoq, M. M. (2006). Effect of temperature, pH, and metal ions on the activity and stability of alkaline protease from novel Bacillus licheniformis MZK03. Proceedings of the Pakistan Academy of Science, 43(4), 257–262.

Sharma, A. K., Sharma, V., Saxena, J., Yadav, B., Alam, A., & Prakash, A.

(2015). Isolation and screening of extracellular protease enzyme from bacterial and fungal isolates of soil. International Journal of Scientific Research in Environmental Sciences, 3(9), 334–340.

https://doi.org/10.12983/ijsres-2015-p0334-0340

Sharma, K. M., Kumar, R., Panwar, S., & Kumar, A. (2017). Microbial alkaline proteases: optimization of production parameters and their properties.

Journal of Genetic Engineering and Biotechnology, 15(1), 115–126.

https://doi.org/10.1016/j.jgeb.2017.02.001

Shen, F. T., Yen, J. H., Liao, C. Sen, Chen, W. C., & Chao, Y. T. (2019).

Screening of rice endophytic biofertilizers with fungicide tolerance and plant growth-promoting characteristics. Sustainability (Switzerland), 11(4), 1–13.

Siala, R., Sellami-kamoun, A., Hajji, M., Abid, I., Gharsallah, N., & Nasri, M.

(2009). Extracellular acid protease from Aspergillus niger I1: purification and characterization. African Journal of Biotechnology, 8(18), 4582–4589.

Soeka, Y. S., & Sulistiani. (2014). Karakterisasi protease Bacillus subtilis A1

InaCC B398 yang diisolasi dari terasi Samarinda. Berita Biologi, 13(2), 203–

212.

Sudha, V., Govindaraj, R., Baskar, K., Al-Dhabi, N. A., & Duraipandiyan, V.

(2016). Biological properties of endophytic fungi. International Journal Brazilian Archives of Biology and Technology, 59(e16150436), 1–7.

https://doi.org/10.1590/1678-4324-2016150436

Sumantha, A., Deepa, P., Sandhya, C., Szakacs, G., Soccol, C. R., & Pandey, A.

(2006). Rice bran as a substrate for proteolytic enzyme production. Brazilian Archives of Biology and Technology, 49(5), 843–851.

https://doi.org/10.1590/S1516-89132006000600019

Sumarlin, L. O. (2008). Aktivitas protease dari Bacillus circulans pada media pertumbuhan dengan pH tidak terkontrol. Jurnal Kimia Valensi, 1(2), 58–62.

https://doi.org/10.15408/jkv.v1i2.215

Sunitha, V. H., Devi, D. N., & Srinivas, C. (2013). Extracellular enzymatic activity of endophytic fungal strains isolated from medicinal plants. World Journal of Agricultural Sciences, 9(1), 01–09.

https://doi.org/10.5829/idosi.wjas.2013.9.1.72148

Suryanarayanan, T. S., Thirunavukkarasu, N., Govindarajulu, M. B., Sasse, F., Jansen, R., & Murali, T. S. (2009). Fungal endophytes and bioprospecting.

Fungal Biology Reviews, 23(1), 9–19.

Susanti, E. (2003). Isolasi dan karakterisasi protease dari Bacillus subtilis 1012M15. Biodiversitas, Journal of Biological Diversity, 4(1), 12–17.

https://doi.org/10.13057/biodiv/d040103

Sushma, K. S., Jayashankar, M., Vinu, A. K., & Saeed, M. A. (2018).

Identification of endophytic fungi from the medicinal plants of Biligirirangana hill, Karnataka. Journal of Applied and Natural Science, 10(4), 1156–1161. https://doi.org/10.31018/jans.v10i4.1890

Suthar, J., Jana, A., & Balakrishnan, S. (2017). High protein milk ingredients - a tool for value-addition to dairy and food products. Journal of Dairy, Veterinary & Animal Research, 6(1), 259–265.

https://doi.org/10.15406/jdvar.2017.06.00171

Tenguria, R. K., Khan, F. N. & Quereshi, S. (2011). Endphytes-mines of pharmacological therapeutics. World Journal of Science and Technology, 1(5), 127–149.

Van Goudoever, J. B., Vlaardingerbroek, H., Van Den Akker, C. H., De Groof, F.,

& Van Der Schoor, S. R. D. (2014). Amino acids and proteins. World Review of Nutrition and Dietetics, 110, 49–63. https://doi.org/10.1159/000358458

Vasudevan, D., Vaidyanathan, K., & Sreekumari, S. (2017). Textbook of biochemistry for medical students. Edition 6th. New Delhi: Jaypee Brothers Medical Pubslishers, 36-51. https://doi.org/10.5005/jp/books/13014

Vishwanatha, K. S., Rao, A. G. A., & Singh, S. A. (2010). Production and characterization of a milk-clotting enzyme from Aspergillus oryzae MTCC 5341. Applied Microbiology and Biotechnology, 85(6), 1849–1859.

https://doi.org/10.1007/s00253-009-2197-z

Vitolo, M. (2015). Brief review on enzyme activity. World Journal of Pharmaceutical Research, 9(2), 60–76. https://doi.org/10.20959/wjpr20202-16660

Yadav, A. N. (2018). Biodiversity and biotechnological applications of host-specific endophytic fungi for sustainable agriculture and allied sectors. Acta Scientific Microbiology, 1(5), 1–5.

Yuniati, R., Nugroho, T. T., & Puspita, F. (2015). Uji aktivitas enzim protease dari isolat Bacillus sp. galur lokal Riau. Jurnal Online Mahasiswa FMIPA, 1(2), 116–122.

Yusriah, & Kuswytasari, N. D. (2013). Pengaruh pH dan suhu terhadap aktivitas protease Penicillium sp. Jurnal Sains Dan Seni Pomits, 2(1), 48–50.

Zaferanloo, B., Quang, T. D., Daumoo, S., Ghorbani, M. M., Mahon, P. J., &

Palombo, E. A. (2014). Optimization of protease production by endophytic fungus, Alternaria alternata, isolated from an Australian native plant. World Journal of Microbiology and Biotechnology, 30(6), 1755–1762.

https://doi.org/10.1007/s11274-014-1598-z

Zaferanloo, B., Virkar, A., Mahon, P. J., & Palombo, E. A. (2013). Endophytes from an Australian native plant are a promising source of industrially useful enzymes. World Journal Microbiol Biotechnol, 29(2), 335–345.

https://doi.org/10.1007/s11274-012-1187-y

51 LAMPIRAN

Lampiran 1. Komposisi reagen 1. Kasein 1%

a. Kasein 0,5 g b. Akuades 50 mL 2. Asam trikloroasetat 5%

a. Asam trikloroasetat 2,5 g b. Akuades 50 mL

3. Bufer Tris-HCl 0,2 M pH 7,5

a. Tris Base (hydroxymethyl)-aminomethan 1,211 g b. Akuades 50 mL

c. HCl pekat 4. Reagen Bradford

a. Coomassie Brilliant Blue G-250 25 mg b. Metanol 50 mL

c. Asam fosfat (H3PO4) 85% 50 mL d. Akuades 250 mL

e. Disaring, ditambahkan akuades 175 mL 5. Larutan standar tirosin stok 3 mg/mL

a. L-tyrosine 120 mg b. Akuades 20 mL

6. Larutan standar Bovine Serum Albumin (BSA) stok 50 µg/mL a. BSA 0,25 mg

b. Akuabides 5 mL

Lampiran 2. Hasil pengukuran larutan dan kurva standar tirosin a. Pengukuran larutan standar tirosin

No. L-tyrosine (mg/mL)

Stok (mL)

HCl 0,1 M (mL)

Nilai Absorbansi (λ280 nm)

1. 0,01 0,01 0,99 0,119

2. 0,02 0,02 0,98 0,250

3. 0,03 0,03 0,97 0,364

4. 0,04 0,04 0,96 0,457

5. 0,05 0,05 0,95 0,548

6. 0,06 0,06 0,94 0,637

7. 0,07 0,07 0,93 0,774

8. 0,08 0,08 0,92 0,848

9. 0,09 0,09 0,91 0,939

10. 0,10 0,10 0,90 0,984

b. Kurva standar tirosin

Lampiran 3. Hasil pengukuran larutan dan kurva standar bovine serum albumin (BSA)

a. Pengukuran larutan standar BSA

No. BSA

(µg/mL)

Stok (mL)

ddH2O (mL)

Nilai Absrobansi

(λ595 nm)

1. 2 0,08 1,92 0,0217

2. 4 0,16 1,84 0,0387

3. 6 0,24 1,76 0,0531

4. 8 0,32 1,68 0,0786

5. 10 0,40 1,60 0,1000

6. 12 0,48 1,52 0,1177

7. 14 0,56 1,44 0,1321

8. 16 0,64 1,36 0,1428

9. 18 0,72 1,28 0,1680

10. 20 0,80 1,20 0,1825

b. Kurva standar BSA

Lampiran 4. Nilai pH pertumbuhan kapang endofit JE-DP4 menggunakan substrat kasein dan susu skim

No. Hari Ulangan

Substrat kasein Substrat susu skim

pH ƩpH pH ƩpH

Lampiran 5. Konsentrasi tirosin yang dilepaskan hasil hidrolisis protein

Lampiran 5. Konsentrasi tirosin yang dilepaskan hasil hidrolisis protein