• Tidak ada hasil yang ditemukan

HASIL DAN PEMBAHASAN Transisi Gelas

IX. SIMPULAN DAN SARAN

Simpulan

Keberhasilan proses beras tiruan instan dari tepung jagung putih ditentukan oleh beberapa parameter proses yang kritis, yaitu air yang ditambahkan dalam adonan, konsentrasi GMS, suhu barrel, kecepatan putaran ulir, dan waktu pengukusan setelah proses ekstrusi. Parameter suhu barrel dan proses pengukusan setelah ekstrusi dari beras tiruan yang dihasilkan terutama membantu dalam memperpendek waktu pemasakan, sehingga dapat digunakan untuk parameter optimasi untuk menghasilkan kriteria beras instan. Berdasarkan hasil identifikasi parameter kritis tersebut, maka beras tiruan instan yang memenuhi kriteria yang diinginkan dapat dilakukan dengan menggunakan parameter tetap yaitu penambahan air kedalam adonan 50%, kecepatan putaran ulir 168 rpm, konsentrasi GMS 2% dengan faktor peubah berupa suhu barrel dan waktu pengukusan. Hasil optimasi proses menunjukkan suhu optimum suhu barrel

adalah 96°C sedangkan waktu pengukusan setelah proses ekstrusi adalah 5 menit. Optimasi formula dilakukan dengan membandingkan pengggunaan jenis dan konsentrasi hidrokoloid glukomanan, natrium alginat, tara gum dan guar gum. Penggunaan jenis dan konsentrasi hidrokoloid tersebut mempengaruhi respon waktu pemasakan, derajat gelatinisasi, indeks penyerapan air dan indeks pengembangan. Hasil optimasi proses menunjukkan penggunaan kombinasi 0,96% glukomanan dan 0,04% guar gum memperbaiki indeks absorpsi air beras tiruan instan. Adanya penambahan hidrokoloid 0,96% glukomanan dan 0,04% guar gum menghasilkan karakteristik tekstur, whiteness index, penampang mikrostruktur dan pola kristalinitas yang berbeda dibandingkan dengan adanya penambahan hidrokoloid natrium alginat 1%.

Analisis stabilitas produk beras tiruan instan dengan menggunakan pendekatan aktivitas air pada lapisan monolayer. Model persamaan GAB dapat digunakan untuk melakukan analisis isotermis sorpsi air pada lapisan monolayer dengan rentang aw yang lebih luas yaitu dari nilai aw 0,076-0,971. Model persamaan BET hanya dapat digunakan untuk rentang nilai aw yang lebih sempit antara 0,076-0,514. Sampel OPT1 (penggunaan hidrokoloid natrium alginat 1%) membutuhkan energi adsorpsi yang lebih besar dibandingkan dengan sampel OPT2 (penambahan hidrokoloid glukomanan 0,096% dan guar gum 0,04%) serta beras padi komersial, karena adanya penambahan natrium alginat. Umur simpan beras tiruan instan OPT2 dengan kemasan aluminium foil lebih lama yaitu 82,62 bulan daripada OPT1 67,20 bulan dan beras komersial dari padi yaitu 52,81 bulan dengan jenis kemasan lainnya pada kondisi RH 75%.

Analisis state diagram dilakukan untuk sampel OPT2 (penambahan hidrokoloid glukomanan 0,096% dan guar gum 0,04%). Analisis freezing point, transisi glass dan melting point OPT2 dilakukan dengan pendekatan model Chen, Gordon Taylor modifikasi dan Flory Huggins. Berdasarkan hasil analisis diperoleh hasil (Tm)u sebesar -8.3oC, (Tg)u sebesar -8.4oC dengan karakteristik kadar padatan

Xs yaitu 0.76 g/g sampel. Berdasarkan hasil grafik state diagram dapat diketahui

garis perubahan fase transisi gelas dan pembekuan yang dapat digunakan untuk menentukan kondisi stabilitas beras tiruan instan optimal.

Saran

Saran yang dapat disampaikan terkait dengan hasil penelitian disertasi ini adalah: (1) Melakukan analisis interaksi antar perlakuan terhadap pembentukan butiran beras tiruan instan dengan menggunakan rancangan percobaan; (2) Melakukan analisis state diagram beras tiruan instan dibandingkan dengan beras komersial dari padi; (3) Melakukan penelitian hubungan kurva melting dengan karakteristik proses pengolahan dan pemasakan beras tiruan instan.

DAFTAR PUSTAKA

Adawiyah DR. 2006. Hubungan sorpsi air, suhu transisi gelas dan mobilitas air serta pengaruhnya terhadap stabilitas produk pada model pangan. Disertasi Program Studi Ilmu Pangan, IPB, Bogor.

Adawiyah DT, Soekarto ST. 2010. Pemodelan isotermis sorpsi air pada model pangan. Jurnal Teknologi dan Industri Pangan. 21 (1): 33-39.

Ahza AB. 1996. Pengenalan bahan baku dan bahan tambahan untuk produk ekstrusi, bakery dan penggorengan. Pelatihan Produk-Produk Olahan Ekstrusi, Bakery dan Frying. 2-3 Oktober 1996. Tambun. Bekasi.

Alam N, Saleh MS. 2009. Karakteristik pati dari batang pohon aren pada berbagai fase pertumbuhan. Journal of Agroland 16 (3) : 199-205.

Bajpai S, Tiwari P. 2013. Investigation of moisture sorption behavior of an indian

sweet ‘son-papdi. International Journal of Micro BioBiotechnology and Food Science. 5: 2277-2282.

Baz AA, Hsu JY, Scoville E. 1992. Preparation of quick cooking rice. US Patent 5.089.281.

Bell LN, Labuza TP. 2000. Moisture sorption: practical aspects of isotherm measurement and use. American Association Cereal Chemistry, Minnesota, USA.

Bhattacharya KR. 1985. Parboiling of rice. Chemistry and Technology. American Association of Cereal Chemistry, Minnesota, USA. Pp 289-348.

Bjorck danAsp NG. 1983. The effects of extrusion cooking on nutritional value, A literate review. In Jowitt R (ed). Extrusion cooking technology. Elsevier Applied Publisher. London dan New York.

Bourbon A.I, Pinheiro AC, Ribeiro C, Miranda C, Maia JM, Teixeira JA, Vicente AA. 2010. Characterization of galactomannans extracted from seeds of Gleditsia triacanthos and Sophora japonica through shear and extensional rheology: Comparison with guar gum and locust bean gum. Food Hydrocolloids 24: 184–192.

Budi FS, Hariyadi P, Budijanto S, Syah D. 2013. Teknologi proses ekstrusi untuk membuat beras analog. Pangan, Media komunikasi dan Informasi. Vol. 22 No.3 :263-274.

Budijanto S, Syah D, Sitanggang AB, Subarna, Suwarto dan Budi FS. 2011. Pengembangan rantai nilai serealia lokal (indigenous cereal) untuk memperkokoh ketahanan pangan nasional. Laporan Program Riset Strategis Nasional. Fakultas Teknologi Pertanian, IPB. Bogor.

Budijanto S, Yuliyanti. 2012. Studi persiapan tepung sorgum (Sorghum bicolor L. Moench) dan aplikasinya pada pembuatan beras analog. Jurnal Teknologi Pertanian 13: 177-186.

ChangYK,Bustos FM, Park TS, Kokini JL. 1998. The Influence of specific mechanical energy on cornmeal measured by an on-line system during twin- screw extrusion. Braz Journal Chemical Engineering. Vol 16.

Chirife J. Buera MP. 1994. A Critical Review: Water activity, glass transition and microbial stability in concentrated/ semimoist food system. Journal of Food Science. 59(5): 921-927.

Chung H, Lee E, Lim S. 2002. Comparison in glass transition and enthalpy relaxation between native and gelatinized rice starches. Carbohydrate Polymers. 48: 287-298.

Chung H, Lim S. 2003. Physical aging of glassy normal and waxy rice starches: effect of aging temperature on glass transition and enthalpy relaxation. Carbohydrate Polymers. 53: 205-211.

Cnossen AG, Siebenmorgen TJ. 2000. The glass transition suhue concept in rice drying and tempering: effect of milling quality. Transactions of the American Society of Agricultural Engineers. 43:1661-1667.

Cox JP, Cox JM. 1993. Cohesive vegetable product and process for manufacture. United States Patent, 5252351.

Derycke V, Vandeputte GE, Vermeylen R, De Man W, Goderies B, Koch MHJ. Delcour JA. 2005. Starch gelatinization and amylose-lipid interactions during rice parboiling investigated by suhue resolved wide angle X-ray scattering and differential scanning calorimetry. Journal of Cereal Science 42(3): 334-343.

Duckworth RB. 1981. Solute mobility in relation to water content and water activity. Didalam: Water activity Influences on Food Quality, L. B. Rockland dan G. F. Steawart (eds). Academic Press, NY, USA.

Dupart P, Huber GR.2003. Low shear extrusion process for manufacture of quick cooking rice. United States Patent, 9178774.

Eun YL, Kyung LL,Lim JK,Lim ST. 2000. Effects of gelatinization and moisture content of extruded starch pellets on morphology and physical properties of microwave-expanded products. Cereal Chemistry, 6, 769–773.

Faubion JM, Hoseney RC, Seib PA. 1982. Fucntionality of grain components in extrusion. Cereal Food World. 27 : 212 – 216.

Frey, Peston. 1967. Microfibrillar morphology of mannan. Advance in Carbohydrate, Volume 21. Academic Press, Inc New York.

Govindasamy S, Campanella OH, Oates CG. 1996. High moisture twin-screw extrusion of sago starch: 1 Influence on granule morphology and structure.

Carbohydrate Po lymers. 30 : 215-286.

Handoko DD. 2004. Kajian isotermi sorpsi dekstrin pati garut (Maranta arundinaceae L.) pada berbagai tingkat hidrolisis. [Tesis]. Bogor:Program Pascasarjana, Insitut Pertanian Bogor.

Harrow AD, Martin JW. 1981. Reformed rice product. United States Patent. 4325976.

Harper JM. 1981. Extrusion of food. CRC Press, Inc. Boca Raton, Florida.

Herawati H dan Widowati S. 2009. Karakteristik beras mutiara dari ubi jalar (Ipomea batatas). Buletin Teknologi Pascapanen Pertanian. Vol 5(1):39-48.

Herawati H, Arif A, OktavianiK, Widowati S. 2011. Karakteristik beras tiruan berbasis ubikayu dan kedelai. Disampaikan pada Seminar Nasional Teknologi Pascapanen 2011, Bogor.

Herawati H, Kusnandar F, Adawiyah DR, Budijanto S. 2013. Teknologi proses pembentukan butiran beras tiruan instan dengan metode ekstrusi. Pangan, Volume 22 Nomer 4, Desember 2013. ISSN 0852-0607.

Holmer ZA. 2007. Extrusion. Oregon State University Publisher: Oregon.

Ichikawa K, Chiharu M. 2007. Method of producing artificial rice from soybean employed as the main starting material and artificial rice produced by the method. Weblink: http://www.wipo. int/pctdb/en/wo.jsp?WO=2007055122. Last accessed: November 29, 2011.

Kato K. 2006. Soy-based rice substitute. United States Patent, 11233906.

Koide K, Fukushima T,Tomita T, Kuwata T. 1999. Fabricated rice. United States Patent, 5932271.

Koocheki A, Ghandi A, Razavi MAS, Mortazavi SA, Vasiljevic T.2009. The rheological properties of ketchup as a function of different hydrocolloids and suhue. International Journal of Food Science Technology.44:596–602. Kumagai H, Byeong-Heon L, Toshimasa Y. 1987. Flour treatment to improve the

quality of extrusion-cooked rice flour products. Agricultural Biological Chemistry. 51(8) : 2067–2071.

Kumar A, Gupta RK. 1998. Fundamentals of polymers. The Mc Graw-Hill Co. New York.

Kurachi H. 1995. Process of making enriched artificial rice. US. Patent No. 5,403,606.

KurniaA. 2012. Pengaruh pengeringan terhadap mutu nasi uduk instan. Skripsi- IPB, Bogor.

Labuza T P.1968. Sorption phenomena in Foods. Food Tech. 22 (3) : 263-270.

Labuza T P. 1982. Shelf life dating of food. Westport, Connecticut: Food and Nutrition Press. Inc.

Lauridsen JB .1976. Food plastisizers: Surface activity, edibility, manufacture, composition, and application. Journal of the American Oil Chemistry Society. 53 (6): 400–407.

Li B, Xie BJ. 2006. Single molecular chain geometry of konjac glucomannan as a high quality dietary fiber in East Asia. Food Research International 39: 127– 132.

Linco PP, Colonna P,Mercier P. 1981. HTST extrusion cooking in Pomeron Z. (ed). Advance in cereal science and technology. The AVI Inc. St Paul. Minnesota.

Lisnan 2008.Pengembangan beras artificial dari ubi kayu (Manihot Esculenta Crant.) dan ubi jalar (Ipomoea Batatas) sebagai upaya diversifikasi pangan. Skripsi.Institut Pertanian Bogor.

Luh BS,Roberts RL, Li CF. 1980. Quick cooking rice. Di dalam Luh, B. S.(ed.). Rice Production and Utilization. AVI Publ. Comp. Inc. Westport. Connecticut.

Mercier C, danFeillet P. 1975. Modification of carbohydrat component by extrussion cooking of cereal product. Journal of Cereal Chemistry. 52 (3): 283-286.

Meutia. 2013. Pengaruh penambahan ekstrak teh hijau pada pengolahan beras ekstrusi terhadap penurunan indeks glikemik. Skripsi S1. Ilmu dan Teknologi Pangan IPB, Bogor.

Mishra A,Mishra HN, Rao PS. 2012. Preparation of rice analogues using extrusion technology. International Journal Food Science and Technology: 1-9.

Muchtadi D. 2011. Karbohidrat pangan dan kesehatan. Alfabeta Bandung.

Muchtadi TR, Purwiyatno H, Basuki A. 1988. Teknologi pemasakan ekstrusi. PAU Pangan dan Gizi. Institut Pertanian Bogor. Bogor.

MuhammadN,Parr J, Smith MD,dan Wheatley AD. 1998. Adsorption of heavy metal in slow sand filters. Proceedings of the 24th WEDC International Conference on Water Supply and Sanitation. Durban, South Africa. 346- 349.

Murray JCF . 2000. Cellulosics. In: Philips GO, Williams PA (eds) Handbook of hydrocolloids. Woodhead Publ Ltd, New York, pp219–229.

Nakano M,Takikawa K,Arita T. 1979.Release characteristics of dibucaine dispersed in konjac gels, Journal of Biomedical. Mater. Res. 13 : 811–819. Ong M H, Blanshard JMV. 1995. Texture determinants of cooked, parboling rice

II. Physichocemichal properties and leaching behaviour of rice. Journal of Cereal Sceince. 21(3): 261-269.

Owens G. 2000. Cereals processing technology. Boca Raton: CRC Press.

Pilli TD, Jouppila K, Ikonen J, Kansikas J, Derossi A, Severini C. 2008. Study on formation of starch-lipid complexes during extrusion-cooking of almond flour. Journal of Food Engineering 87(4): 495-504.

PrasertAW, Suwannaporn P. 2009. Optimization of instant jasmine rice process and its physicochemical properties. Journal of Food Engineering. 95: 54–61.

Purnamawati, Purwono H. 2007. Budidaya 8 jenis tanaman pangan unggul. Jakarta: Penebar Swadaya.

Purnomo H. 1995. Aktivitas air dan peranannya dalam pengawetan pangan. Jakarta: UI Press.

RahmanMS. 2006. State diagram of foods: Its potential use in food processing and product stability. Trends in Food Science and Technology. 17: 129–141. Rahman MS. 2009. Food stability beyond water activity glass transition: macro–

micro region concept in the state diagram. International Journal of Food Properties. 12(4): 726–740.

RahmanM S. 2010. Food stability determination by macro–micro region concept in the state diagram and by defining a critical temperature. Journal of Food Engineering. 99(4): 402–416.

RahmanMS. 2012. Applications of macro-micro region concept in the state diagram and critical suhue concepts in determining the food stability. Food Chemistry.132: 1679-1685.

Raundaut G, Simatos D, Champion D, Contreras-Lopez E, Le Meste M, 2004. Molecular mobility around the glass transition temperature: A Mini Review Innovative Food Science and Emerging Technologies. 5: 127-248.

Rewthong O,Soponronnarit S,Taechhapairoj C, Tungtrakul P, Prachayawasakorn S. 2010. Effects of cooking and pretreatment methods on texture and starch digestibility of instant rice. Journal of Food Engineering. 103:258-264.

Riaz MN. 2000. Selecting the right extruder. Didalam: Guy, R (ed) Extrusion Cooking Technologies and Application. CRC Press- Boca Raton, USA.

Rickard JE, Blanshard JMV, Asaoka M. 1992. Effects of cultivar and growth season on the gelatinization properties of cassava (Manihotesculenta) starch Journal of Science Food Agriculture. 59: 53 – 58.

Roberts LR. 2004. Quick cooking rice. Didalam Houston D. F. Rice chemistry and technology. American Association of Cereal Chemist, St Paul, Minnesota.

Rodge AB, Sonkamble SM, Salve RV, Hashmi SI. 2012. Effect of hydrocolloid (guar gum) incorporation on the quality characteristics of bread. Journal of Food Process Technology. 3:2.

Ross YH. 1995. Glass-transition related physicochemical changes in foods. Food Technology. October: 97-102.

Ross YH, Karel M. 1991. Applying state diagrams to food processing and development. Food Technology. December, 66-71.

Roy P, Nei D, Orikasa T, Okadome H, Thammawong M, Nakamura N, Shiina T. 2010. Cooking properties of different forms of cooked with an automatic induction heating system rice cooker. Asian Journal of Food and Agro- Industry 3(4): 373-388.

Sablani SS, Bruno L,Kasapis S, Symaladevi RM. 2009. Thermal transitions of rice: development of a state diagram. Journal of Food Engineering. 90: 110- 118.

Samad Y. 2003. Pembuatan beras tiruan (artificial rice) dengan bahan baku ubikayu dan sagu. Prosiding Seminar Teknologi Untuk Negeri 2003, Vol. Ii, Hal. 36-40 /Humas-Bppt/Any.

Scelia RP, Hegedus E,GiaconeJ, Bruins HB, Benjamin EJ. 1986. Extruded quick cooking rice like product. European Patent, 0226375.

Schenz TW. 1995. Glass transitions and product stability an overview. Food Hidrocolloids (9) : 307-315.

Schebor C, Buera MP, Karel M, Chirife J. 1999. Color formation due to non enzymatic browning in amorfphous, glassy, anhydrous, model system. Food Chemistry. 65:427-432.

Seid RM, Hensel O. 2012. Experimental evaluation of sorption isotherms of chili pepper: an Ethiopian variety, Mareko Fana (Capsicum annum L.) Agricultural Engineering. 14(4): 163-171.

Sharma BR, Dhuldhoya NC, Merchant SU, Merchant UC. 2008.A glimpse of galactomannan. Scince Tech Entepreneur.

Slade L, Levine H. 1991. Beyond water activity: recent advances based on alternative approach to the assesment of food quality and safety. Critical Reviews in food science and nutrition. 30: issues 2,3.

Smith OB. 1981, Extrusion cooking of cereal and fortified foods. Makalah pada Ekstruder Proseeding Technology; Eight Asean Workshop. 14 – 25 January 1980. Bangkok.

Smith DA, Rao RM, Liuzzo JA,Champagne E. 1985. Chemical treatment and process modification for producing improved quick-cooking rice. Journal of Food Science.50:926–931.

Sozer N. 2009. Rheological properties of rice pasta dough supplemented with proteins and gums. Food Hydrocolloids. 23: 849-855.

Steiger G. 2010. Reconstituted rice kernels and processes for their preparation. Weblink: http://www.wipo.int/pctdb/en/wo.jsp?- WO=2010020640. Last accessed: November 29, 2011.

Suarni. 2001. Tepung komposit sorgum, jagung, dan beras untuk pembuatan kue basah (cake). Risalah Penelitian Jagung dan Serealia Lain. Balai Penelitian Tanaman Tanaman Jagung dan Serealia, Maros. Vo 6. Hlm 55-60.

Subagio A, Witono Y, Hermanuadi D, Nafi A, Windarti WS. 2012. Pengembangan beras cerdas sebagai pangan pokok alternatif berbahan baku mocaf. Prosiding Insiasi Nasional. Jember, 29-30 November 2012. Hal 157- 161.

Tatirot O, Charoenrein S, Kerr WH. 2012. Physicochemical properties of extrusion –modified konjac glucomannan. Carbohydrate Polymers 87(2): 1545-1551.

Troller JA, dan Christian JHB. 1978. Water activity and food. New York: Academic Press.

Vishwakarma RK, Shivhare US, Nanda SK. 2011. Moisture adsorption isotherms of guar (Cyamposis tetragonoloba) grain and guar gum splits. Food Science and Technology 44: 969-975.

Wang XL, Chen M, Xu H. 2002. The effects of food additives on α-instant rice. Journal of ZhengZhou Institute Technology (in Chinese) 22:14-17.

Wang JP, An HZ, Jin ZY, Xie ZJ, Zhuang HN, Kim JM. 2011. Plastisizers and thickeners on extrusion-cooked instant rice product. Journal of Food Science Technology, published online 28th may 2011.

Wenger ML, Huber GR. 1988. Low shear extrusion process for manufacture of quick cooking rice. US Patent 4.769.251.

Widara SS. 2012. Studi pembuatan beras analog dari berbagai sumber karbohidrat menggunakan teknologi hot extrusion. Skripsi Fakultas Teknologi Pertanian, IPB. Bogor.

Widowati S, Astawan M, Muchtadi D, Wresdiati T. 2006. Hypoglycemic activity of some Indonesia rice varieties and their physicochemical properties. Indonesian Journal of Agricultural Science. 7(2): 57-66.

Wijaya IMAS, Suter IK, Yusa NM. 2014. Karaketristik isotermis sorpsi air dan umur simpan ledok instan. Agritech. 34(1): 29-35.

Williams PA. 2006. An overview of the structure-function relationship of hydrocolloids. In: Philips GO, Williams PA (eds) Gums andstabilizers for the food industry, vol 13. RSC Publ, Oxford, pp15–29.

Wooton MDW, Munk N. 1971. A rapid for method for the estimation of starch gelatinization in processed foods. Food Technology. Aust., 1: 612-615.

Xiao C, Gao S, Wang H, Zhang L. 2000. Blend films from chitosan and konjac glucomannan solutions, Journal of Applied Polymer Science. 4: 509–515. Yoshida, T. T. Sagara, T. Ojima, R. Takahashi, dan M. Takahashi. 1971. A

process for producing enriched artificial rice. United States Patent 3620762.

Zhuang H, An H, Chen H. et al. 2010. Effect of extrusion parameters on physicochemical properties of hybrid Indica rice (Type 9718) extrudates. Journal of Food Processing and Preservation. 34:1080–1102.

Design-Expert® Software Cooking Time Design Points 7.5 4.37 X1 = A: Temperature X2 = B: Steaming 90.00 92.50 95.00 97.50 100.00 1.00 2.00 3.00 4.00 5.00 Cooking Time A: Temperature B : S te a m in g 4.92243 5.29758 5.67273 6.04788 6.42303 3

Lampiran 1. Hasil ANOVA waktu pemasakan optimasi proses dengan respon surface method (suhu dan waktu pengukusan)

Use your mouse to right click on individual cells for definitions.

Response 1 Cooking Time

ANOVA for Response Surface Linear Model

Analysis of variance table [Partial sum of squares - Type III]

Sum of Mean F p-value

Source Squares df Square Value Prob > F

Model 5,159024 2 2,579512169 14,95592796 0.0020 significant

A-Temperature 3,264104 1 3,264103748 18,92516776 0.0024 B-Steaming 1,894921 1 1,894920589 10,98668817 0.0106

Residual 1,379794 8 0,172474231

Lack of Fit 1,378927 6 0,229821196 530,356607 0.0019 significant

Pure Error 0,000867 2 0,000433333

Cor Total 6,538818 10

The "Lack of Fit F-value" of 530.36 implies the Lack of Fit is significant. There is only a 0.19% chance that a "Lack of Fit F-value" this large could occur due to noise.

Significant lack of fit is bad -- we want the model to fit.

Std. Dev. 0,4153 R-Squared 0,788984216

Mean 5,672727 Adj R-Squared 0,73623027

C.V. % 7,320997 Pred R-Squared 0,570965198

PRESS 2,805381 Adeq Precision 10,37835613

Coefficient Standard 95% CI 95% CI

Factor Estimate df Error Low High VIF

Intercept 5,672727 1 0,125217712 5,383974713 5,96148

A-Temperature -0,63876 1 0,146830783 -0,977351318 -0,30017 1

Design-Expert® Software Degree of Gelatinization Design Points 83.79 15.264 X1 = A: Temperature X2 = B: Steaming 90.00 92.50 95.00 97.50 100.00 1.00 2.00 3.00 4.00 5.00 Degree of Gelatinization A: Temperature B : S te a m in g 33.3861 46.0142 58.6422 71.2703 83.8984 3

Lampiran 2. Hasil ANOVA derajat gelatinisasi optimasi proses dengan respon surface method (suhu dan waktu pengukusan)

Use your mouse to right click on individual cells for definitions.

Response 2 Degree of Gelatinization

ANOVA for Response Surface 2FI Model

Analysis of variance table [Partial sum of squares - Type III]

Sum of Mean F p-value

Source Squares df Square Value Prob > F

Model 6545,844 3 2181,948 23,14987 0.0005 significant

A-Temperature 2123,631 1 2123,631 22,53114 0.0021

B-Steaming 3729,55 1 3729,55 39,56949 0.0004

AB 692,6634 1 692,6634 7,348968 0.0302

Residual 659,7721 7 94,25316

Lack of Fit 658,1343 5 131,6269 160,7298 0.0062 significant

Pure Error 1,637865 2 0,818932

Cor Total 7205,617 10

Std. Dev. 9,7084066 R-Squared 0,90843641

Mean 45,483 Adj R-Squared 0,86919487

C.V. % 21,345133 Pred R-Squared 0,65879326 PRESS 2458,6049 Adeq Precision 13,9345947

Coefficient Standard 95% CI 95% CI

Factor Estimate df Error Low High VIF

Intercept 45,483 1 2,927194739 38,5612845 52,40472

A-Temperature 16,292757 1 3,432440084 8,17632592 24,40919 1

B-Steaming 21,591519 1 3,432440084 13,4750881 29,70795 1

Design-Expert® Software WAI Design Points 3.046 1.999 X1 = A: Temperature X2 = B: Steaming 90.00 92.50 95.00 97.50 100.00 1.00 2.00 3.00 4.00 5.00 WAI A: Temperature B : S te a m in g 2.42487 2.55971 2.69455 2.82938 2.96422 3

Lampiran 3. Hasil ANOVA indeks absorpsi air optimasi proses dengan respon surface method (suhu dan waktu pengukusan)

Use your mouse to right click on individual cells for definitions.

Response 3 WAI

ANOVA for Response Surface Linear Model

Analysis of variance table [Partial sum of squares - Type III]

Sum of Mean F p-value

Source Squares df Square Value Prob > F

Model 0,706869 2 0,353435 14,66171 0.0021 significant

A-Temperature 0,168356 1 0,168356 6,98398 0.0296

B-Steaming 0,538514 1 0,538514 22,33944 0.0015

Residual 0,192848 8 0,024106

Lack of Fit 0,191303 6 0,031884 41,28247 0.0238 significant

Pure Error 0,001545 2 0,000772

Cor Total 0,899717 10

Std. Dev. 0,155261 R-Squared 0,785657

Mean 2,694545 Adj R-Squared 0,732072

C.V. % 5,762045 Pred R-Squared 0,539131

PRESS 0,414652 Adeq Precision 9,977922

Coefficient Standard 95% CI 95% CI

Factor Estimate df Error Low High VIF

Intercept 2,694545 1 0,046812932 2,586595 2,802496

A-Temperature 0,145067 1 0,054893028 0,018483 0,271651 1

Design-Expert® Software Expansion Index Design Points 208.3 126.5 X1 = A: Temperature X2 = B: Steaming 90.00 92.50 95.00 97.50 100.00 1.00 2.00 3.00 4.00 5.00 Expansion Index A: Temperature B : S te a m in g 133.341 146.31 159.278 172.247 185.216 3

Lampiran 4. Hasil ANOVA indeks pengembangan optimasi proses dengan respon surface method (suhu dan waktu pengukusan)

Use your mouse to right click on individual cells for definitions.

Response 4 Expansion Index

ANOVA for Response Surface Quadratic Model Analysis of variance table [Partial sum of squares - Type III]

Sum of Mean F p-value

Source Squares df Square Value Prob > F

Model 9501,182 5 1900,236 16,38848 0.0040 significant A-Temperature 5751,261 1 5751,261 49,60144 0.0009 B-Steaming 451,0881 1 451,0881 3,890385 0.1056 AB 18,49 1 18,49 0,159466 0.7061 A^2 3264,576 1 3264,576 28,15515 0.0032 B^2 424,3608 1 424,3608 3,659877 0.1139 Residual 579,7474 5 115,9495

Lack of Fit 579,2474 3 193,0825 772,3299 0.0013 significant

Pure Error 0,5 2 0,25

Cor Total 10080,93 10

Std. Dev. 10,76798 R-Squared 0,942491

Mean 152,7909 Adj R-Squared 0,884981

C.V. % 7,047529 Pred R-Squared 0,591286

PRESS 4120,218 Adeq Precision 10,81472

Coefficient Standard 95% CI 95% CI

Factor Estimate df Error Low High VIF

Intercept 129 1 6,216898531 113,019 144,981 A-Temperature 26,81245 1 3,807057296 17,0261 36,5988 1 B-Steaming 7,509062 1 3,807057296 -2,27729 17,29541 1 AB 2,15 1 5,383992061 -11,69 15,98999 1 A^2 24,04375 1 4,531304534 12,39566 35,69184 1,094697 B^2 8,66875 1 4,531304534 -2,97934 20,31684 1,094697

Design-Expert® Softw are Desirability Design Points 1 0 X1 = A: Temperature X2 = B: Steaming 90.00 92.50 95.00 97.50 100.00 1.00 2.00 3.00 4.00 5.00 Desirability A: Temperature B : S te a m in g 0.419 0.419 0.559 0.559 0.699 0.827 3 Prediction 0.857

Lampiran 5. Hasil overlay optimasi proses respon surface method (suhu dan waktu pengukusan)

Hasil Overlay Optimasi Constraints

Lower Upper Lower Upper

Name Goal Limit Limit Weight Weight Importance

Temperature is in range 90 100 1 1 3

Steaming is in range 1 5 1 1 3

Cooking Time is target = 5 4,37 7,5 1 1 3

Degree of Gelatinization maximize 15,264 83,79 1 1 3

WAI maximize 1,999 3,046 1 1 3

Expansion Index minimize 126,5 208,3 1 1 3

Solutions

Number Temperature Steaming CT DG WAI EI Desirability

Lampiran 6. Hasil Anova optimasi formula hidrokoloid untuk waktu pemasakan

Use your mouse to right click on individual cells for definitions.

Response 2 CT

ANOVA for Mixture Special Cubic Model *** Mixture Component Coding is L_Pseudo. ***

Analysis of variance table [Partial sum of squares - Type III]

Sum of Mean F p-value

Source Squares df Square Value Prob > F

Model 3,935924 13 0,302763 74,6659 < 0.0001 significant Linear Mixture 1,173449 3 0,39115 96,46327 < 0.0001 AB 0,002608 1 0,002608 0,643077 0.4532 AC 0,306317 1 0,306317 75,54229 0.0001 AD 0,003767 1 0,003767 0,928963 0.3724 BC 0,525891 1 0,525891 129,6925 < 0.0001 BD 0,644782 1 0,644782 159,0127 < 0.0001 CD 0,803505 1 0,803505 198,156 < 0.0001 ABC 0,353099 1 0,353099 87,07932 < 0.0001 ABD 0,005072 1 0,005072 1,250929 0.3061 ACD 0,000152 1 0,000152 0,037415 0.8530 BCD 0,253787 1 0,253787 62,58751 0.0002 Residual 0,024329 6 0,004055 Lack of Fit 0,00431 1 0,00431 1,076589 0.3470 not significant Pure Error 0,020019 5 0,004004 Cor Total 3,960253 19 Std. Dev. 0,063678 R-Squared 0,993857

Mean 5,2675 Adj R-Squared 0,980546

C.V. % 1,208888 Pred R-Squared 0,211798

PRESS 3,121479 Adeq Precision 34,12048

Coefficient Standard 95% CI 95% CI