• Tidak ada hasil yang ditemukan

Growth Performance of Jati Unggul Nusantara (JUN) Clonal Trials at 15 months in Purwakarta Regency, West Java

N/A
N/A
Protected

Academic year: 2017

Membagikan "Growth Performance of Jati Unggul Nusantara (JUN) Clonal Trials at 15 months in Purwakarta Regency, West Java"

Copied!
77
0
0

Teks penuh

(1)

UJI PERTUMBUHAN KLON JATI UNGGUL NUSANTARA

(JUN) UMUR 15 BULAN

DI KABUPATEN PURWAKARTA, JAWA BARAT

ARGHA ADITYA CIPTA NUGRAHA

DEPARTEMEN SILVIKULTUR FAKULTAS KEHUTANAN INSTITUT PERTANIAN BOGOR

(2)

ii

UJI PERTUMBUHAN KLON JATI UNGGUL NUSANTARA

(JUN) UMUR 15 BULAN

DI KABUPATEN PURWAKARTA, JAWA BARAT

ARGHA ADITYA CIPTA NUGRAHA

Skripsi

sebagai salah satu syarat untuk memperoleh gelar Sarjana Kehutanan pada

Departemen Silvikultur

DEPARTEMEN SILVIKULTUR FAKULTAS KEHUTANAN INSTITUT PERTANIAN BOGOR

(3)

iii RINGKASAN

ARGHA ADITYA CIPTA NUGRAHA. Uji Pertumbuhan Klon Jati Unggul Nusantara (JUN) umur 15 bulan di Kabupaten Purwakarta, Jawa Barat. Di bawah bimbingan ISKANDAR Z SIREGAR

Jati (Tectona grandis L.f) merupakan salah satu jenis kayu unggulan di Indonesia. Sifat fisik seperti tekstur, corak, keawetan, serta kekuatannya menjadikan kayu jati cocok untuk dijadikan kayu pertukangan hingga mebel yang bernilai ekonomis tinggi. Jati Unggul Nusantara (JUN) merupakan salah satu nama dagang (merek) jati yang diklaim memiliki sifat unggul yaitu, cepat tumbuh, dan dapat dipanen mulai umur 5 tahun dengan target diameter 20 cm. Uji keragaan klon JUN diperlukan untuk memverifikasi sifat-sifat yang diinginkan tersebut serta untuk menentukan klon-klon unggul diantara klon-klon lain yang diuji (n=41 klon) untuk rekomendasi penanaman masal.

Uji klon JUN menggunakan rancangan acak lengkap berblok yang terbagi dalam 4 tapak mikro, 4 replikasi, dan pada setiap replikasi terdapat 4 tree plot. Hasil pengamatan pada uji klon JUN berumur 15 bulan di Kabupaten Purwakarta menunjukkan nilai repeatability klon ( 2) yang cukup tinggi yaitu untuk karakter diameter 2=0,86 dan untuk karakter tinggi 2=0,73. Nilai korelasi antara karakter tinggi dan diameter juga menunjukkan korelasi yang kuat yaitu untuk korelasi genetik sebesar 0,88 dan untuk korelasi fenotipik sebesar 0,80. Nilai persen hidup di lapangan untuk JUN berumur 15 bulan juga sangat tinggi yaitu >90%. Tapak mikro terbaik untuk JUN berumur 15 bulan ini adalah pada tapak mikro 3 (jarak tanam 5x2 m dengan pupuk dasar 3 kg).

(4)

iv SUMMARY

ARGHA ADITYA CIPTA NUGRAHA. Growth Performance of Jati Unggul Nusantara (JUN) Clonal Trials at 15 months in Purwakarta Regency, West Java. Under the guidance of ISKANDAR Z SIREGAR

Teak (Tectona grandis L. f) is one of the most popular timber in Indonesia. It’s physical properties such as texture, durability, and strength make it suitable for carpentry and furniture uses.. Jati Unggul Nusantara (JUN) is a commercial tradename (brand) and is claimed to have superior properties, for example fast growing and early harvestable (5 years) with targetted diameter ( 20 cm). However, there are lack of data on tested clones and therefore a clonal trial of JUN is still necessary to confirm the growth performances of previously selected clones (n = 41 clones) as they are now promoted for mass planting, especially in West Java.

Clonal trial was arranged following randomized complete block design (RCBD), i.e. 41 clones and 1 control seedlot , 4 tree plots, 4−5 replicates (blocks), and planted in 4 different micro sites. The results of a JUN clonal trial at 15 months of age in Purwakarta Regency showed high survival rates (above 90%), while clonal repeatabilities ( 2) for diameter and height are 2 = 0,86 and 2 = 0,73, respectively. Phenotypic and genetic correlations between height and diameter were 0,88 and 0,80. Respectively among 4 microsites, the best performace of JUN clones was observed in the microsite 3 (5x2 m planting with fertilizer base 3 kg).

(5)

v LEMBAR PENGESAHAN

Judul Skripsi : Uji Pertumbuhan Klon Jati Unggul Nusantara (JUN) Umur 15 Bulan di Kabupaten Purwakarta, Jawa Barat Nama Mahasiswa : Argha Aditya Cipta Nugraha

NIM : E44080085

Menyetujui, Dosen Pembimbing

Prof Dr Ir Iskandar Z Siregar, MForSc NIP 19660320 199002 1 001

Mengetahui,

Ketua Departemen Silvikultur

Prof Dr Ir Nurheni Wijayanto, MS NIP 19601024 198403 1 009

(6)

vi PERNYATAAN

Dengan ini saya menyatakan bahwa skripsi berjudul “Uji Pertumbuhan Klon Jati Unggul Nusantara (JUN) Umur 15 Bulan di Kabupaten Purwakarta, Jawa Barat” adalah benar-benar hasil karya saya sendiri dengan bimbingan dosen pembimbing dan belum pernah digunakan sebagai karya ilmiah pada perguruan

tinggi atau lembaga manapun. Sumber informasi berasal atau dikutip dari karya

yang diterbitkan maupun tidak diterbitkan dari penulis lain telah disebutkan dalam

teks dan dicantumkan dalam Daftar Pustaka di bagian akhir skripsi ini.

Bogor, Oktober 2012

(7)

vii RIWAYAT HIDUP

Penulis dilahirkan di Kediri (Jawa Timur) pada 24 April 1990. Penulis

merupakan putra dari pasangan Sucipto dan Tri Sulistyana. Perjalanan pendidikan

yang telah ditempuh oleh penulis adalah pada jenjang Sekolah Menengah Atas di

SMAN 2 Pare, Kediri pada tahun 2005 hingga 2008 kemudian dilanjutkan ke

jenjang Perguruan Tinggi pada Institut Pertanian Bogor melalui jalur SNMPTN

(Seleksi Nasional Masuk Perguruan Tinggi Negeri) pada tahun 2008.

Selama menempuh pendidikan di Fakultas Kehutanan IPB, penulis juga

mengikuti kegiatan praktik lapang untuk aplikasi ilmu yang didapat di bangku

kuliah. Beberapa kegiatan praktik yang telah dilakukan penulis antara lain:

Praktik Pengenalan Ekosistem Hutan (PPEH) jalur Cilacap-Baturraden pada tahun

2009; Praktik Pengelolaan Hutan (PPH) di Hutan Pendidikan Gunung Walat,

Sukabumi pada tahun 2010; dan Praktik Kerja Profesi pada salah satu perusahaan

pertambangan di Barito Utara Kalimantan Tengah, PT Padang Anugerah pada

tahun 2012.

Selain menempuh pendidikan formal di IPB, penulis juga aktif pada

berbagai organisasi, antara lain: Unit Kegiatan Mahasiswa (UKM) Catur pada

tahun 2008 sebagai anggota; Organisasi Mahasiswa Daerah (OMDA) Kamajaya

Kediri sebagai Wakil Ketua pada tahun 2009/2010; dan Himpunan Profesi

(Himpro) Tree Grower Community (TGC) sebagai Wakil Ketua Umum pada tahun 2009/2010. Penulis juga aktif sebagai asisten praktikum Mata Kuliah

Silvikultur (tahun ajaran 2011/2012) dan Mata Kuliah Ekologi Hutan (tahun

(8)

viii KATA PENGANTAR

Puji syukur penulis panjatkan atas kehadirat Allah SWT yang telah

memberikan rahmat dan hidayah-Nya, sehingga penelitian yang berjudul “Uji

Pertumbuhan Klon Jati Unggul Nusantara (JUN) Umur 15 bulan di Kabupaten Purwakarta, Jawa Barat” ini dapat terselesaikan. Hasil dari penelitian ini kemudian didokumentasikan dalam bentuk skripsi sebagai salah satu syarat untuk

memperoleh gelar sarjana pada Fakultas Kehutanan, Institut Pertanian Bogor.

Penelitian ini merupakan kerjasama antara Fakultas Kehutanan IPB

dengan Koperasi Perumahan Wana Bhakti Nusantara (KPWN). Hasil dari

penelitian ini nantinya diharapkan bisa menjadi acuan dalam pengambilan

keputusan dalam rangka penanaman dan pemeliharaan jati untuk pasokan kayu

produksi yang berkualitas.

Penulis menyadari bahwa dalam penulisan hasil penelitian ini masih

terdapat beberapa kesalahan. Kritik serta saran dari pembaca sangat dibutuhkan

oleh penulis untuk perbaikan di masa yang akan datang.

Bogor, Oktober 2012

(9)

ix UCAPAN TERIMAKASIH

Saat menempuh pendidikan di Fakultas Kehutanan IPB, masa penelitian,

dan penulisan skripsi, penulis banyak mendapat bantuan dari berbagai pihak. Pada

kesempatan ini, penulis mengucapkan terimakasih kepada:

1. Prof Dr Ir Iskandar Z Siregar, MForSc sebagai dosen pembimbing skripsi atas

segala bantuan dan bimbingannnya.

2. Dr Ir Muhdin, MSc sebagai dosen penguji dan Prof Dr Ir Nurheni Wijayanto,

MS sebagai ketua sidang atas arahan, masukan, dan bimbingannya.

3. Ir E Kosasih (Alm) dari pihak Koperasi Perumahan Wanabakti Nusantara

(KPWN)

4. Ayahanda Sucipto dan ibunda Tri Sulistyana serta yang terkasih Realita DP,

SHut yang telah memberikan do’a, kasih sayang, perhatian, dan dorongan tak

terputus kepada penulis.

5. Staf Departemen Silvikultur (Bu Kokom, Bu Aliyah, Pak Ismail, Kang Saepul,

Bi Ita, Mbak Puja,dll) yang selalu sabar dan memfasilitasi semua kebutuhan

akademik selama studi di departemen.

6. Teman-teman yang telah membantu serta memberi semangat selama masa

penelitian dan penulisan skripsi: Eka Perdanawati Yunus, SHut; Jumadin

Sidabutar; Kasiran; Mira Novianti; Laswi Irmayanti, SHut; dan Asep

Mulyadiana, SHut.

7. Teman-teman TGC (Tree Grower Community): Hariadi Propantoko, Said

Firman Furqan, Dikdik Sodikin, Rusdi Indra, Rhomi Ardiansyah, Izzudin,

Dyah Ayu, Cyntia Yuni Ardanari, Ririn, Lilik Sugiharti, Rosario Reza,

Hendryana Rachman, Arya Panji Wicaksono, serta rekan-rekan silvikultur 42

sampai 47 yang selalu menjadi teman dalam berdinamika.

8. Teman-teman perkumpulan Sadulur: Feri Ketut, Alim Adi, Andrian Fauzi,

Dedy Setiawan yang memperluas pengetahuan tentang makna dibalik dunia.

9. Teman satu perjuangan di rumah singgah EBONI: Febryandi Randana, Erekso

Hadiwijoyo, dan Muhaemin, serta penghuni gelap tetap Rosario Reza yang

telah memberikan semangat dan bantuannya.

10.Teman-teman satu rantau yang tergabung dalam OMDA (Organisasi

(10)

x Grahan Sugeng Aprilian, Rado Puji Santoso, As’ad Ali, Hening Pram, Frandi

Taqwa, Elka Firmanda, Ibnu Malkan, Tabah Wira, Ahmad Sururi, Dodi

Setyawan, Hasna Izdihar, Nining, Depta, Azizah Binti, Altamai Nurmila.

11.Keluarga besar FAHUTAN khususnya angkatan 45 atas kebersamaan serta

pelajaran hidup yang telah ditularkan sehingga bisa menjadi pengalaman

untuk menjadi lebih baik.

12.Pihak-pihak yang tidak bisa disebutkan satu persatu yang telah membantu

(11)

xi

3.4 Pengambilan dan Pengolahan Data ... 8

IV. HASIL DAN PEMBAHASAN 12 4.1 Keragaman Sifat Pertumbuhan dan Taksiran Repeatability ... 12

4.2 Korelasi antar Variabel Pertumbuhan ... 16

4.3 Implikasi pada Pemuliaan Pohon ... 19

4.4 Estimasi Perolehan Genetik ... 21

V. KESIMPULAN 23 5.1 Kesimpulan ... 23

5.2 Saran ... 23

(12)

xii DAFTAR TABEL

Halaman

1 Kondisi umum tapak mikro (microsite) ... 7

2 Alat dan bahan penelitian ... 7

3 Nilai rata-rata variabel pertumbuhan pada setiap tapak mikro ... 12

4 Analisis ragam, komponen ragam (%), dan repeatability ... 13

5 Taksiran nilai repeatability pada setiap tapak mikro ... 16

6 Korelasi fenotipik dan genotipik... 17

7 Korelasi genetik antar tapak mikro ... 19

8 Rangking tapak mikro berdasarkan uji Duncan... 19

(13)

xiii DAFTAR GAMBAR

Halaman

1 Peta sketsa lokasi penelitian ... 8

2 Trubusan pohon bekas tebangan pada tapak mikro 1 dan 2 ... 15

3 Kerangka penyebaran korelasi fenotipik ... 18

(14)

xiv DAFTAR LAMPIRAN

Halaman

1 Peta pohon di lapangan (tapak mikro 1 dan 2). ... 26

2 Sidik ragam daya sintas pada empat tapak mikro ... 28

3 Rangking serangan hama dan tabel ANOVA ... 29

(15)

I. PENDAHULUAN 1.1Latar Belakang

Jati merupakan jenis kayu yang paling bernilai serta termasuk ke dalam kayu

premium pada perdagangan kayu dunia (Lyngdoh et al. 2010). Corak kayu serta sifat awet kelas 1 membuat kayu jati banyak digunakan sebagai bahan mebel,

bahan bangunan, serta kerajinan yang bernilai ekonomi tinggi. Harga kayu jati

diperkirakan akan terus meningkat setiap tahun. Berdasarkan data selama 25

tahun diperkirakan harga kayu jati akan terus meningkat sepanjang tahun sampai

2 kali lipat per lima tahun (Bio Teak 2011).

Pertumbuhan jati yang cenderung lama sehingga baru dapat dipanen setelah

60 tahun, membuat pasokan kayu jati Indonesia semakin menurun seiring dengan

permintaan yang terus melonjak. Seiring permintaan konsumen yang tinggi

terhadap kayu jati, maka perlu dilakukannya rekayasa teknologi dalam pemuliaan

jati sehingga pohon jati dapat dipanen dalam waktu yang singkat. Salah satu hasil

dari program pemuliaan jati adalah Jati Plus Perhutani (JPP) (Perhutani 2011).

Perbanyakan vegetatif dari sejumlah klon JPP kini yang disebut dengan Jati

Unggul Nusantara (JUN).

JUN memiliki beberapa keunggulan jika dibandingkan dengan jati

konvensional, menurut PT Setyamitra Bhaktipersada (2011), beberapa

keunggulan JUN ialah memiliki perakaran tunjang yang majemuk, cepat tumbuh,

kokoh, kayu berkualitas, dan dapat dipanen mulai umur 5 tahun. Berdasarkan

kemampuan serta keunggulan JUN, pembangunan hutan jati dengan

menggunakan bibit JUN merupakan salah satu jawaban atas semakin menurunnya

pasokan jati. Akan tetapi untuk mendapatkan hasil yang maksimal, keragaan

beberapa klon JUN masih perlu diverifikasi melalui penelitian uji klon. Penelitian

uji klon merupakan kegiatan lanjutan untuk mengetahui keragaan klon-klon JUN.

1.2Tujuan

Tujuan dari penelitian ini ialah untuk mengetahui kinerja/keragaan 41 klon

JUN berumur 15 bulan hasil pembiakan vegetatif. Adapun tujuan khususnya ialah

i) menduga parameter genetik hasil uji klon berumur 15 bulan, mencakup

(16)

tapak mikro (microsite) terhadap kinerja pertumbuhan masing-masing klon terkait

jarak tanam dan dosis pupuk dasar yang diaplikasikan.

1.3Manfaat

Hasil dari penelitian ini diharapkan dapat memberi manfaat berupa:

1. Rekomendasi klon-klon JUN terbaik untuk penanaman dengan skala

besar pada kondisi tapak yang sama.

2. Informasi mengenai perlakuan pemeliharaan JUN untuk pertumbuhan

(17)

II. TINJAUAN PUSTAKA 2.1Jati

Jati merupakan pohon penghasil kayu dengan mutu yang tinggi. Jati termasuk

ke dalam komoditas kayu mewah dengan nilai jual yang tinggi karena sifat

keawetannya termasuk ke dalam kelas awet 2. Menurut Heyne (1987) dalam

Wibowo (2005) jati juga dikenal sebagai teak (Inggris), kyan (Myanmar), sagwan

(India), maisak (Thailand), teca (Brazil), java teak (Jerman). Secara ilmiah,

taksonomi jati digolongkan ke dalam (Sumarna 2003):

Divisi : Spermatophyta

Jati bukan merupakan vegetasi asli Indonesia. Jati tumbuh alami di Negara India,

Burma, Muangthai, dan Vietnam (Wibowo 2005). Jati merupakan spesies yang

menggugurkan daun saat musim kemarau sebagai respon untuk mengurangi

transpirasi akibat suhu yang tinggi.

2.1.1 Morfologi

Menurut Dephut (2008) habitus jati adalah berupa pohon besar dengan batang

yang bulat lurus, tinggi total mencapai 40 m. Batang bebas cabang dapat

mencapai 18−20 m. Kulit batang coklat kuning keabu-abuan, terpecah-pecah

dangkal dalam alur memanjang mengikuti batang.

Daun umumnya besar, bulat telur terbalik, berhadapan, dengan tangkai yang

sangat pendek. Daun pada anakan pohon berukuran besar, sekitar 60−70 cm × 80−100 cm; sedangkan pada pohon tua menyusut menjadi sekitar 15 × 20 cm. Berbulu halus dan mempunyai rambut kelenjar di permukaan bawahnya. Daun

yang muda berwarna kemerahan dan mengeluarkan getah berwarna merah darah

apabila diremas. Ranting yang muda berpenampang segi empat, dan berbonggol

(18)

Bunga majemuk terletak dalam malai besar, 40 cm × 40 cm atau lebih besar,

berisi ratusan kuntum bunga tersusun dalam anak payung menggarpu dan terletak

di ujung ranting; jauh di puncak tajuk pohon. Taju mahkota 6−7 buah,

keputih-putihan, 8 mm. Berumah satu.

Buah berbentuk bulat agak gepeng berukuran 0.5–2.5 cm berambut kasar dengan inti tebal, berbiji 2−4, tetapi umumnya hanya satu kecambah yang tumbuh dalam kegiatan penyemaian. Buah tersungkup oleh perbesaran kelopak bunga

yang melembung menyerupai balon kecil.

2.1.2 Tempat Tumbuh

Jati tumbuh subur pada daerah beriklim tropis yang panas serta lembab dengan curah hujan 1200−2500 mm/tahun (Sastrosumarto dan Suhaendi 1985 dalam Wibowo 2005). Jati akan tumbuh lebih baik pada tekstur tanah dengan fraksi lempung, lempung berpasir, atau pada lahan liat berpasir. Habitus jati

merupakan pohon dengan diameter dan tinggi yang cukup besar, oleh karena itu

tanaman ini membutuhkan solum tanah yang dalam untuk pertumbuhan akarnya

dengan sifat keasaman tanah (pH) optimum pada 6. Toleransi jati terhadap pH

tanah termasuk tinggi karena jati masih bisa tumbuh dengan baik pada pH 4−5.

Tanaman jati membutuhkan tanah dengan porositas dan drainasi yang baik untuk

pertumbuhannya dalam hal penyerapan hara karena jati termasuk jenis yang

sensitif terhadap rendahnya nilai pertukaran oksigen dalam tanah (Sumarna 2003). Jati juga dikenal dengan julukan “calciolus tree species” karena jati memerlukan unsur kalsium dengan jumlah yang relatif besar untuk pertumbuhan

dan perkembangannya. Hal ini telah dibuktikan dari hasil penelitian dengan

menganalisis abu jati yang kemudian ditemukan unsur-unsur yang paling banyak

terkandung pada kayu jati yaitu Kalsium (CaO) dengan kadar 31,3%, Pospor

(P2O5) dengan kadar 29,7%, dan Silika (SiO2) dengan kadar 25% (Sarjono 1984

dalam Wibowo 2005). Hal ini kemudian diperkuat dengan argumen Sumarna (2003) bahwa unsur hara makro yang penting dalam mendukung pertumbuhan jati

adalah:

1. Kalsium (Ca) yang berperan mendukung pertumbuhan meristem batang dan

(19)

5

memiliki kandungan kalsium rendah (8,18%−9,27%) menunjukkan

pertumbuhan yang kurang baik.

2. Pospor (P) yang dibutuhkan jati berkisar antara 0,022%−0,108% atau setara dengan 19−135 mg/100g di dalam tanah. Jati akan cepat menggugurkan daun jika kekurangan pospor sehingga proses fotosintesis akan terganggu.

3. Kalium (K) dibutuhkan oleh jati pada permukaan atas berkisar antara

0,54%−1,80% (45−625 ppm/100g) dan pada permukaan bawah antara

0,4%−1,13% (113−647 ppm/100g).

4. Nitrogen (N) dengan kadar 0,072%−0,13% pada permukaan tanah dan sekitar 0,0056%−0,05% pada permukaan bawah. Rata-rata nitrogen yang dibutuhkan oleh jati adalah sekitar 0,0039%.

2.1.3 Jati Unggul Nusantara (JUN)

Jati Unggul Nusantara merupakan salah satu merk dagang jati dengan sifat

yang unggul serta memiliki kemampuan tumbuh yang lebih cepat jika

dibandingkan dengan jati lokal yang selama ini dikenal oleh masyarakat luas.

Merk dagang jati unggul yang lain disajikan pada Tabel 1.

Tabel 1 Beberapa merek dagang jati unggul yang telah beredar di pasar (Irwanto 2006)

No Nama Dagang Produsen Materi Asal

1 Jati Plus Perhutani Perum Perhutani Jawa

2 Jati Super PT Monfori Thailand

3 Jati Emas PT Katama Suryabudi Birma

4 Jati Unggul PT Bumindo Jawa

5 Jati Unggul Lamongan KBP Lamongan Thailand 6 Jati Kencana PT Dafa Teknoagro Mandiri Jawa

Perkembangan pengetahuan dan ilmu rekayasa genetik (pemuliaan pohon)

telah menjawab kegelisahan pasar akan semakin berkurangnya pasokan jati akibat

siklus tebang jati yang sangat lama. Hasil dari penelitian serta percobaan dalam

pemuliaan pohon telah menghasilkan beberapa jenis jati unggul yang memiliki

daur pendek, yaitu dapat di panen mulai umur ±15 tahun, serta memiliki batang

silindris yang lurus dengan sedikit cabang. Berbeda dengan jati yang ditanam

masyarakat pada umumnya, yang biasanya dikecambahkan dari biji, jati dengan

kemampuan super ini dibiakkan dengan cara vegetatif (stek pucuk ataupun kultur

(20)

Indukan yang akan diklon untuk menghasilkan jati unggul merupakan jati

terbaik yang sebelumnya telah dilakukan seleksi terhadap beberapa jati pada suatu

tegakan yang memiliki keunggulan dalam hal sifat fisik daripada populasi jati

yang ada. Salah satu hasil dari program pemuliaan Perhutani sejak tahun 1982

adalah diperolehnya klon unggulan yakni JPP (Jati Plus Perhutani), setelah

sebelumnya dilakukan tes di lapangan pada beberapa lokasi dengan menerapkan

sistem silvikultur intensif. JPP dikembangkan melalui stek pucuk, kultur jaringan,

dan dengan menggunakan biji yang berasal dari kebun benih klonal. Jati Unggul

Nusantara (JUN) merupakan hasil dari pembiakan vegetatif dari JPP.

2.2Uji Klon

Perbanyakan yang dilakukan secara vegetatif atau aseksual (stek, kultur

jaringan, dll) merupakan salah satu usaha untuk mempertahankan suatu sifat

anakan yang diinginkan dari induknya. Menurut Finkeldey (2005) perbanyakan

aseksual mempunyai arti khusus untuk mengekalkan sifat genotip, populasi atau

jenis dari bahaya kepunahan.

Pertumbuhan dari suatu tanaman tidak lepas dari pengaruh lingkungan. Oleh

sebab itu interaksi genetik dengan lingkungannya sangat mempengaruhi fenotip

suatu tanaman. Uji coba lapangan dilakukan secara periodik untuk mengetahui

sifat-sifat yang mempengaruhi performa tanaman uji di lapangan. Sifat-sifat yang

diamati biasanya berhubungan dengan karakter pertumbuhan (tinggi dan

diameter) serta daya sintas atau daya hidup.

Data yang didapatkan dari penelitian yang berturut-turut, lama-kelamaan akan

menunjukkan suatu konsistensi pertambahan pertumbuhan. Konsistensi

(21)

III. METODE PENELITIAN

3.1Waktu dan Tempat

Penelitian uji pertumbuhan klon JUN ini dilakukan pada Desember 2011

sampai Juli 2012 dan bertempat di lahan kerjasama antara KPWN dengan

Fakultas Kehutanan IPB di Desa Sukatani, Kecamatan Sukatani, Kabupaten

Purwakarta, Jawa Barat. Penelitian dilakukan pada empat tapak mikro (microsite)

dengan kondisi umum seperti disajikan pada Tabel 1.

Tabel 1 Kondisi umum tapak mikro (microsite)

Microsite Tanaman Sela oleh Petani Penggarap Kesuburan Lahan Jumlah Petani Penggarap 1 Padi Ladang, Cabai, Talas Keadaan lahan pada

lokasi ini cenderung

Penelitian ini dilakukan pada tanaman klon JUN berumur 15 bulan dengan 41

klon JUN dan 1 jati lokal sebagai kontrol (bibit jati dari Purwakarta). Alat dan

bahan yang digunakan dalam pengambilan serta pengolahan data lapangan

disajikan pada Tabel 2.

Tabel 2 Alat dan bahan penelitian

Jenis Pengambilan Data Lapangan Pengolahan Data Alat Kaliper, galah berskala metrik,

kamera, alat tulis

Komputer, Microsoft Excel, dan

software SAS v9.0 portable

Bahan Tally sheet -

3.3Rancangan Penelitian

Rancangan penelitian pada penelitian uji klon ini menggunakan Rancangan

acak lengkap berblok/Randomized Complete Block Design (RCBD). Penelitian ini

terbagi dalam 4 replikasi dan ditanam dalam 4 tapak mikro (microsite) serta

masing-masing 4 bibit JUN dalam setiap baris (4 tree plot). Kondisi 4 tapak mikro

(TM) adalah sebagai berikut:

1. TM#1 : jarak tanam 3x4 m dengan pupuk dasar 3 kg.

2. TM#2 : jarak tanam 3x4 m dengan pupuk dasar 5 kg.

(22)

4. TM#4 : jarak tanam 5x2 m dengan pupuk dasar 5 kg.

Pupuk dasar yang dipakai dalam penelitian ini adalah pupuk kandang. Pupuk

dasar diberikan pada setiap lubang tanam sebelum kegiatan penanaman. Selain itu

diberikan juga kapur pertanian dan dolomit sebanyak 300 g pada setiap lubang

tanam berukuran 30x30x30 cm. Peta lokasi penelitian disajikan pada Gambar 1.

Peta penyebaran pohon tersaji pada Lampiran 1.

Gambar 1 Peta sketsa lokasi penelitian (Yunus 2011)

3.4Pengambilan dan Pengolahan Data

Variabel yang diambil pada penelitian ini adalah berupa tinggi pohon (T),

diameter pohon (D), dan daya sintas (DS) atau daya hidup pohon umur 0 bulan

sampai 15 bulan. Tinggi tanaman diukur dengan galah berskala metrik dari

pangkal batang hingga titik tumbuh apikal. Diameter tanaman diukur 40 cm dari

(23)

9

klon yang hidup dalam setiap tree plot mulai dari umur 0 bulan sampai 15 bulan.

Nilai persen daya sintas dihitung dengan rumus (Yunus 2011):

%DS = ℎ x 100%

Keterangan : DS = Daya sintas Th = Tanaman hidup

Td = Jumlah tanaman total dalam tree plot

Kemudian untuk analisis lebih lanjut dengan analisis ragam, nilai daya sintas

disederhanakan dengan rumus (Yunus 2011):

DS = arcsin %�

Data hasil pengukuran tinggi, diameter, dan daya sintas dianalisis ragamnya

dengan model linear (Zhang et al. 2003; Yu dan Pulkkinen 2003):

Χijkl = µ + Cj + Mk + CjMk + εijkl

Komponen ragam dihitung dengan expected mean square yang dihasilkan dengan

rumus PROC GLM; RANDOM TEST (SAS Institute Inc. 2004).

Repeatability diestimasi dari manipulasi aljabar dari ragam (Zhang et al. 2003; Yu dan Pulkkinen 2003):

�1 = Koefisien yang berhubungan dengan ragam tapak mikro*klon

(24)

Standar error untuk repeatability diestimasi dengan rumus (Zhang et al. 2003; Yu dan

SW( 2) = Standar error repeatability

2 = Repeatability

�1 = Koefisien yang berhubungan dengan ragam tapak mikro*klon

�2 = Koefisien yang berhubungan dengan ragam klon

N = Jumlah klon

Dengan standar erornya dirumuskan dengan (Zhang et al. 2003):

�= 1− �

� = Standar eror korelasi genetik

�2 = Estimasi korelasi genetik

�( 2) = Repeatability karakter x

�( 2) = Repeatability karakter y

2 = Standar eror repeatability karakter x

2 = Standar eror repeatability karakter y

Korelasi genetik antar microsite antara dua sifat x dan y dapat diestimasi dengan rumus

(25)

11

( 1) = Akar dari repeatability x pada tapak mikro 1

( 2) = Akar dari repeatability y pada tapak mikro 2

Hubungan korelasi fenotipik antara variabel pertumbuhan dihasilkan dari PROC CORR

(Sas Institute Inc. 2004).

Pada penelitian ini, diasumsikan bahwa proporsi seleksi yang akan dilakukan

adalah sebesar 61% yaitu sekitar 25 dari 41 klon yang ada dengan intensitas seleksi

sebesar 0,617 (Becker 1992). Pendugaan perolehan genetik pada sifat y berdasarkan

seleksi klon pada sifat x dihitung dengan rumus (Falconer 1981):

G = � � �

Keterangan:

G = Perolehan genetik � = Intensitas seleksi

(26)

IV. HASIL DAN PEMBAHASAN 4.1Keragaman Sifat Pertumbuhan dan Taksiran Repeatability

Penelitian tentang klon JUN hasil perkembangbiakan vegetatif ini

dilakukan untuk mendapatkan performa pertumbuhan serta menaksir nilai

repeatability dari setiap tapak mikro. Tabel 3 menyajikan nilai koefisien keragaman serta pertumbuhan maksimal dan minimal klon JUN pada 4 tapak

mikro.

Tabel 3 Nilai rata-rata variabel pertumbuhan pada setiap tapak mikro

TM 1 TM 2 TM=tapak mikro; D=diameter; T=tinggi; DS=daya sintas

Tabel 3 menunjukkan pertambahan diameter tertinggi klon JUN pada

umur 15 bulan adalah sebesar 7,64 cm yaitu pada tapak mikro 4. Demikian juga

dengan pertambahan tinggi klon JUN yang mencapai 7,33 meter. Koefisien

keragaman pada setiap tapak mikro menunjukkan angka <50% yang menunjukkan

bahwa keragaman pertumbuhan tinggi dan diameter klon JUN umur 15 bulan ini

rendah. Semakin rendah nilai koefisien keragaman menunjukkan bahwa tinggi

dan diameter klon JUN relatif seragam. Hasil untuk karakter daya sintas, keempat

tapak mikro menunjukkan performa yang baik yang ditunjukkan dengan rataan

daya sintas yang bernilai >90%. Menurut Na’iem (2004) dalam Mahfuz et al. (2010) nilai daya sintas sebesar 90% sudah termasuk indikator yang baik dalam

pertanaman uji, karena faktor lingkungan dianggap sudah sesuai dengan jenis

pohon pertanaman uji.

Hasil dari taksiran repeatability terhadap diameter, tinggi, dan daya sintas

disajikan dalam Tabel 4. Tabel 4 menunjukkan bahwa variabel klon memiliki

(27)

13

bulan. Hal ini ditunjukkan oleh persentase keragaman klon yang lebih tinggi

daripada tapak mikro dan interaksi antara klon dengan tapak mikro. Pernyataan

tersebut juga diperkuat dengan nilai repeatability karakter tinggi dan diameter yang besar. Nilai repeatability menunjukkan seberapa besar klon/faktor genetik berpengaruh terhadap pertumbuhan suatu tanaman.

Tabel 4 Analisis ragam, komponen ragam (%), dan repeatability

Source DF Type III SS

**= sangat nyata pada taraf 1%; tn= tidak nyata; TM=tapak mikro; DS=daya sintas

Peranan tapak mikro terhadap tinggi juga menunjukkan pengaruh yang

sangat nyata pada taraf 1% namun tidak demikian dengan pengaruhnya terhadap

diameter. Hal ini diduga terjadi karena kecenderungan pohon muda akan tumbuh

ke atas (tinggi) terlebih dahulu sebelum melakukan pertumbuhan ke samping

(diameter). Namun demikian, interaksi antara klon dengan tapak mikro-nya

menunjukkan adanya pengaruh yang sangat nyata terhadap diameter dan tinggi

JUN. Hal ini menunjukkan bahwa pertumbuhan pohon tidak hanya dipengaruhi

oleh genetik atau lingkungan semata, namun perpaduan atau interaksi antara

genetik dengan lingkungan (Kramer dan Kozlowski dalam Sofyan et al. 2011). Matheson dan Raymond (1984) dalam Sofyan et al. (2011) menyatakan bahwa penelitian yang menggunakan materi dari perbanyakan vegetatif akan seringkali

(28)

Kondisi tapak mikro menunjukkan pengaruh yang sangat nyata terhadap daya

sintas JUN. Variabel klon serta interaksi klon dengan tapak mikro belum

menunjukkan pengaruh yang nyata untuk karakter daya sintas di lapangan.

Variabel klon serta interaksi antara klon dengan tapak mikro tidak menunjukkan

pengaruh yang nyata terhadap daya sintas JUN. Hal ini diduga berhubungan

dengan perawatan lahan JUN oleh petani penggarap yang berbeda-beda sehingga

mengakibatkan tempat tumbuh jati yang beragam. Pengolahan lahan yang intensif

oleh petani penggarap membuat unsur hara yang ada di dalam tanah menjadi lebih

kaya karena asupan nutrisi yang ditujukan pada tanaman pertanian secara tidak

langsung berpengaruh pada pertumbuhan JUN. Pernyataan ini diperkuat oleh

argumen Seldbourne (1972) dalam Sofyan et al. (2011) yang menyatakan bahwa faktor lingkungan edafis memberikan pengaruh yang lebih kuat jika dibandingkan

dengan faktor klimatis.

Ragam error/kesalahan dalam penelitian ini cukup besar yakni lebih dari 80%. Hal ini diduga disebabkan oleh adanya heterogenitas lingkungan tempat

tumbuh JUN. Hal yang sama juga terjadi pada penelitian Yu dan Pulkkinen

(2003) pada penelitian klon hibrid Populus spp. umur 3 tahun yang memiliki keragaman error berkisar 80%. Penelitian Yu dan Pulkkinen (2003) memiliki

keragaman tempat tumbuh berupa tipe lahan yaitu lahan pertanian dan kehutanan.

Burdon (1977) dalam Yu dan Pulkkinen (2003) menyatakan bahwa seharusnya perhatian yang utama ditujukan pada faktor lingkungan daripada faktor genetik itu

sendiri untuk pertanaman uji karena karakter lingkungan menjadi sangat penting

apakah dapat menjadi lokasi yang baik dalam pertanaman uji ataukah tidak. Pada

lokasi penelitian ini, lahan yang kini digunakan untuk uji klon diduga beragam.

Hal ini dapat ditunjukkan dengan adanya tunggak-tunggak pohon bekas

penebangan pada beberapa tempat di salah satu tapak mikro (Gambar 2),

sedangkan pada tapak mikro yang lain tidak ditemukan tunggak-tunggak pohon.

Hal ini diduga terdapat perbedaan kegunaan lahan, yaitu pertanian dan

perkebunan. Namun demikian standar eror repeatability yang dihasilkan pada masing-masing karakter menunjukkan nilai yang sangat kecil yaitu 0,028 untuk

karakter diameter; 0,044 untuk karakter tinggi; serta 0,022 untuk karakter daya

(29)

15

mengindikasikan bahwa nilai kepercayaan untuk taksiran repeatability yang didapat sangat kuat.

Gambar 2 Trubusan pohon bekas tebangan (lingkaran merah) pada tapak mikro 1 dan 2

Repeatability menunjukkan konsistensi dari klon-klon JUN terhadap performa tumbuhnya. Repeatability dianggap sedang jika berkisar antara 0,4−0,6 sedangkan untuk nilai repeatability kurang dari 0,4 dianggap rendah dan lebih dari 0,6 dianggap tinggi. Nilai repeatability yang disajikan pada Tabel 4 menunjukkan nilai yang tinggi yakni 0,86 untuk pertumbuhan diameter serta 0,73

untuk pertumbuhan tinggi. Nilai repeatability berpengaruh pada korelasi genetik antar beberapa sifat, semakin besar nilai repeatability maka nilai korelasi juga akan semakin tinggi. Nilai repeatability juga menunjukkan kemungkinan pertumbuhan pada generasi selanjutnya akan mirip atau tidak dengan indukannya

jika ditanam pada kondisi tempat tumbuh serta perlakuan yang sama.

Nilai repeatability pada setiap tapak mikro disajikan dalam Tabel 5. Nilai

repeatability pada Tabel 5 memperlihatkan nilai rata-rata yang tinggi untuk karakter diameter yaitu 0,770 dan bernilai sedang pada karakter tinggi yaitu

bernilai 0,592. Hasil tersebut mengindikasikan bahwa karakter tinggi memiliki

tingkat sensitif yang lebih tinggi daripada karakter diameter. Nilai repeatability untuk daya sintas menunjukkan nilai yang sangat kecil. Hal ini disebabkan nilai

repeatability pada tapak mikro 1, 2, dan 3 tidak dapat diestimasi karena ragam eror pada saat pengolahan data yang sangat tinggi (Lampiran 2). Hal ini membuat

(30)

Tabel 5 Taksiran nilai repeatability pada setiap tapak mikro

Tabel 5 memperlihatkan hasil yang paling kecil untuk repeatability karakter tinggi pada tapak mikro 2 yaitu sebesar 0,236. Hal ini disebabkan faktor

genetik (klon) pada tapak mikro 2 belum menunjukkan pengaruh yang nyata

terhadap pertumbuhan tinggi JUN (Lampiran 3), sedangkan pada tapak mikro

yang lain, terlihat bahwa faktor genetik (klon) berpengaruh sangat signifikan pada

pertumbuhan JUN. Kecilnya nilai repeatability pada tapak mikro diduga karena serangan hama penggerek pucuk pada tapak mikro 2 paling besar jika

dibandingkan dengan tapak mikro yang lain berdasarkan uji Duncan (Lampiran

3). Serangan hama penggerek pucuk membuat nilai tinggi beberapa klon JUN

yang terserang di lapangan menjadi kecil.

4.2Korelasi antar variabel pertumbuhan

Penelitian klon JUN pada umur 15 bulan juga mengamati korelasi antara 2

sifat dalam pertumbuhan. Dua sifat yang berbeda dari suatu populasi yang diukur

memungkinkan adanya korelasi antara keduanya (White et al. 2009). Tabel 6 menyajikan korelasi antar ketiga variabel yang diukur. Nilai-nilai yang berada di

atas diagonal menunjukkan korelasi genetik dan nilai-nilai yang berada di bawah

diagonal menunjukkan korelasi fenotipik. Korelasi fenotipik merupakan korelasi

yang terjadi pada interaksi faktor genetik dengan lingkungan, sedangkan korelasi

genetik merupakan korelasi yang terjadi pada faktor genetik antara 2 sifat yang

diukur (Isik 2009). Korelasi genetik dalam pendugaan nilai korelasi juga dihitung

karena menurut White et al. (2009) korelasi antar dua sifat yang berbeda mungkin

disebabkan oleh faktor genetik atau lingkungan, sehingga dalam penelitian ini

(31)

17

JUN tersebut memiliki korelasi untuk pertumbuhan 2 sifat yang berbeda. Menurut

Williams et al. (2002) korelasi genetik yang dihitung dapat digunakan untuk memprediksi respon pada saat dilakukannya penjarangan atau seleksi, membantu

prediksi respon suatu sifat yang sulit diukur dengan menggunakan sifat lain yang

mudah diukur, memprediksi respon terhadap seleksi di lokasi satu dengan lokasi

yang lain, dan untuk memaksimalkan keunggulan dari sifat tertentu yang dipilih

pada waktu yang sama melalui indeks seleksi yang dibangun menggunakan

korelasi genetik dan heritabilitas.

Tabel 6 Korelasi fenotipik (bawah diagonal) dan genotipik (atas diagonal)

Diameter Tinggi Daya Sintas

Diameter *** 0,884 0,056

Tinggi 0,801 *** 0,070

Daya Sintas 0,002 0,005 ***

***=garis diagonal

Tabel 6 menyajikan korelasi genetik antara tinggi dan diameter sebesar

0,884 sedangkan untuk korelasi fenotipik antara tinggi dan diameter sebesar

0,801. Nilai tersebut memperlihatkan korelasi yang kuat antara tinggi dan

diameter. Hal ini berarti semakin besar diameter batang klon JUN, semakin besar

pula nilai tinggi dari klon JUN tersebut. Korelasi antara daya sintas dengan tinggi

maupun dengan diameter menunjukkan angka yang kecil, yang berarti bahwa

pertumbuhan tinggi serta diameter pohon masih belum diimbangi dengan daya

hidup klon JUN di lapangan. Daya sintas suatu tanaman di lapangan dipengaruhi

oleh kemampuan adaptasi tanaman terhadap lingkungan. Selain kemampuan

adaptasi, serangan hama dan penyakit juga sangat berpengaruh kepada daya sintas

tanaman di lapangan. Hasil korelasi pada Tabel 6 nantinya akan digunakan

sebagai patokan dalam kegiatan seleksi (Sofyan et al. 2011). Keputusan untuk melakukan seleksi dilihat dari hasil terbesar yang ditunjukkan pada Tabel 6,

dalam hal ini karakter tinggi bisa menjadi dasar kegiatan seleksi. Kesimpulan ini

didapat dari hasil korelasi antara tinggi dengan daya sintas (0,070) lebih tinggi

daripada korelasi diameter dengan daya sintas (0,056), karena dengan hanya

memprioritaskan karakter tinggi JUN maka akan diikuti perbaikan dari karakter

(32)

dihasilkan belum stabil. Oleh sebab itu perlu adanya kajian mengenai korelasi

genetik pada tahun-tahun berikutnya agar mendapatkan hasil yang maksimal.

Kerangka penyebaran untuk korelasi fenotipik dapat dilihat dalam Gambar 3.

Gambar 3 Kerangka penyebaran korelasi fenotipik

Kekokohan batang yang dihitung merupakan perbandingan antara tinggi

total dengan diameter batang (Jayusman 2005 dalam Hidayah 2011). Kekokohan

batang menunjukkan keseimbangan pertumbuhan antara tinggi dengan diameter.

Semakin tinggi nilai kekokohan batang, maka pertumbuhan JUN di lapangan

semakin tidak seimbang. Korelasi antara kekokohan batang dengan daya sintas

dihitung untuk mengetahui seberapa besar pengaruh ukuran bibit terhadap daya

hidup di lapangan. Gambar 3 menunjukkan kekokohan batang yang optimal untuk

kemampuan hidup JUN di lapangan ialah ±100.

(33)

19

Selain menghitung korelasi antar dua sifat klon JUN, dalam penelitian ini

juga dihitung korelasi genetik antar tapak mikro. Tabel 7 menyajikan korelasi

genetik antar tapak mikro yang diukur.

Tabel 7 Korelasi genetik antar tapak mikro

Korelasi

Korelasi genetik yang dihasilkan antar tapak mikro menunjukkan korelasi

yang lemah (digambarkan dengan nilai korelasi yang rendah). Korelasi genetik

antar tapak mikro ini menunjukkan bahwa kekuatan hubungan keeratan antar

tapak mikro yang diukur sangat lemah. Hal ini berarti bahwa antara tapak mikro

satu dengan yang lainnya belum ada hubungan yang mempengaruhi pertumbuhan

tinggi dan diameter JUN yang diukur.

4.3Implikasi pada pemuliaan pohon

Uji Duncan dilakukan untuk melihat pengaruh tapak mikro atau klon

terhadap pertumbuhan pohon setelah dilihat sidik ragamnya untuk mengetahui

apakah antar tapak mikro atau antar klon berbeda atau tidak dalam hal

pertumbuhan. Tabel 8 menyajikan hasil uji beda Duncan terhadap keempat tapak

mikro.

Tabel 8 Rangking tapak mikro berdasarkan uji Duncan

Diameter (cm) Tinggi (cm) Daya sintas (%)

(34)

Pada Tabel 8 di atas memperlihatkan tapak mikro terbaik adalah tapak

mikro 1 untuk diameter dan tapak mikro 3 untuk tinggi. Tapak mikro 1 dan 3

konsisten pada urutan pertama dan kedua pada variabel tinggi dan diameter. Hal

ini diduga disebabkan pengelolaan lahan oleh petani pada tapak mikro 1 dan 3

sudah baik jika dibandingkan dengan penelitian sebelumnya umur 6 bulan oleh

Yunus (2011). Jika dilihat kondisi lapangan tapak mikro 1 dan 3 mayoritas telah

bersih dari gulma, sedangkan pada tapak mikro 2 dan 4 masih ada lahan yang

belum digarap oleh petani sehingga banyak tumbuh gulma yang bisa mengganggu

pertumbuhan JUN. Gambar 4 menunjukkan lokasi pada keempat tapak mikro.

Gambar 4 Penampakan lokasi pada: A) tapak mikro 1, B) tapak mikro 2, C) tapak mikro 3, D) tapak mikro 4

Pada penelitian sebelumnya oleh Yunus (2011) rangking tapak mikro

terbaik adalah tapak mikro 2. Tapak mikro 2 merupakan tapak mikro dengan

perlakuan pemberian pupuk dasar sebesar 5 kg per lubang tanam. Diduga

pengaruh pupuk dasar ini hanya untuk pertumbuhan awal tanaman jati pada tapak

mikro, sehingga pada penelitian JUN pada umur 6 bulan pengaruh pupuk dasar

tersebut masih terlihat. Penelitian pada umur 15 bulan ini lebih berpengaruh

kepada pemeliharaan lahan oleh petani serta respon klon terhadap lingkungannya.

Selain rangking tapak mikro, rangking klon juga dihitung untuk

mengetahui klon yang memiliki performa paling baik hingga umur 15 bulan. Klon

bernomor 1 sampai 42 dibuat untuk menandai nama-nama klon yang diteliti.

Sepuluh besar klon terbaik disajikan pada Tabel 9.

(A) (B)

(35)

21

Estimasi perolehan genetik dan pendugaan respon pertumbuhan klon JUN

berumur 15 bulan disajikan pada Tabel 10. Perolehan genetik merupakan respon

dari adanya seleksi, sedangkan proses seleksi didasarkan pada prinsip bahwa nilai

genetik dari rata-rata individu terseleksi lebih baik daripada nilai genetik rata-rata

seluruh individu dalam populasi (Leksono et al. 2007).

Tabel 10 Rata-rata pertumbuhan dan Estimasi perolehan genetik (%)

Kriteria

Nilai perolehan genetik ditulis dalam tanda kurung; D=diameter; T=tinggi; DS=daya sintas

Estimasi perolehan genetik merupakan nilai kuantitatif dari respon sebuah

populasi terhadap seleksi yang dilakukan pada populasi tersebut. Perolehan

(36)

Hasil pada Tabel 10 menunjukkan kemungkinan jika dilakukan seleksi

berdasarkan diameter maka respon yang dihasilkan terhadap tinggi berkisar

8,22−14,96%. Hasil yang didapatkan jika dilakukan seleksi berdasarkan tinggi

maka respon terhadap diameter berkisar 15,98−17,40%. Pernyataan ini

memperkuat argumen sebelumnya bahwa karakter tinggi bisa menjadi dasar

(37)

V. KESIMPULAN 5.1Kesimpulan

Kinerja dari 41 klon JUN berumur 15 bulan cukup beragam. Ada beberapa

klon yang menunjukkan pertumbuhan yang baik serta juga masih ada klon yang

belum menunjukkan pertumbuhan yang baik. Repeatability dari ketiga karakter yang diukur cukup tinggi yaitu 2=0,85 untuk karakter diameter batang dan

2=0,73 untuk karakter tinggi pohon, namun repeatability pada karakter daya sintas masih sangat rendah yaitu 2=0,04. Korelasi genetik antar karakter

diameter dengan tinggi menunjukkan korelasi yang sangat kuat yaitu bernilai

0,88. Namun nilai korelasi antara tinggi dan daya sintas sangat lemah yaitu 0,07

kemudian korelasi antara diameter dan daya sintas yaitu 0,06.

Pengaruh tapak mikro pada penelitian JUN berumur 15 bulan ini

menunjukkan pengaruh yang nyata terhadap karakter tinggi dan daya sintas,

namun tidak menunjukkan pengaruh yang nyata terhadap karakter diameter. Jarak

tanam yang diaplikasikan juga belum menunjukkan hasil yang konsisten jika

dibandingkan dengan penelitian sebelumnya.

5.2Saran

Jika akan dilakukan seleksi awal, karakter tinggi dapat dijadikan acuan untuk

mendapat perolehan genetik yang lebih besar. Selain itu perlu referensi lain untuk

cara skoring dalam penghitungan daya sintas agar nilai ragam eror pada saat

(38)

VI. DAFTAR PUSTAKA

Bio Teak. 2011. Potensi pasar [terhubung berkala]. Http://www.jatibioteak.com [10 Jul 2012].

Carvalho CGP, Cruz CD. 2003. Repeatability of traits evaluated in a split plot or factorial experiment. J Crop Breeding and Applied Biotechnology 3:1-10.

Becker WA. 1992. Manual of Quantitative Genetics. USA: Academic Enterprises.

DEPHUT. 2008. Jati [terhubung berkala]. http://sim-rlps.dephut.go.id [10 Jul 2012].

Falconer RE. 1981. Introduction to Quantitative Genetics. London: Longman.

Finkeldey R. 2005. Pengantar Genetika Hutan Tropis. Djamhuri E, Siregar IZ, Siregar UJ, Kertadikara AW, penerjemah. Gottingen: Institute of Forest Genetics and Forest Tree Breeding. Terjemahan dari: An Introduction to Tropical Forest Genetic.

Hidayah N. 2011. Daya sintas dan laju pertumbuhan rasamala (altingia excelsa noronha), puspa (Schima wallichii (dc.) Korth.), dan jamuju (Dacrycarpus imbricatus (blume) de laub.) pada lahan terdegradasi di hulu das cisadane. [tesis]. Bogor: Sekolah Pasca Sarjana, Institut Pertanian Bogor.

Irwanto. 2006. Usaha pengembangan jati [terhubung berkala]. http://www.irwantoshut.com [10 Jul 2012].

Isik F. 2009. FOR 728: Quantitative Forest Genetics Methods. USA: North Carolina State University.

Leksono B, Nirsatmanto A, Setyo RW, Sofyan A. 2007. Uji perolehan genetik kebun benih semai generasi pertama (F-1) jenis Acacia mangium di tiga lokasi. Jurnal Penelitian Hutan Tanaman 4(1):1-67.

Lyngdoh N, Joshi G, Ravikanth G, Shaanker RU, Vasudeva R. 2010. Influence of levels of genetic diversity on fruit quality in teak (Tectona grandis Linn. f). Current Science 99(5):639-644.

Mahfuz, Na’iem M, Sumardi, Hardiyanto EB. 2010. Variasi pertumbuhan pada uji keturunan merbau (Intsia bijuga O.Ktze) di Sobang, Banten. J Pemuliaan Tanaman Hutan 4(3):157-165.

(39)

25

PERHUTANI. 2011. Jati plus perhutani (JPP) [terhubung berkala]. http://www.perumperhutani.com/produk-layanan/benih-dan-bibit/jati-plus-perhutani/ [9 Jul 2012].

PT Setyamitra Bhaktipersada. 2011. Jati Unggul Nusantara (JUN) [terhubung berkala]. http://www.jatijun.com [30 Juni 2012].

Sas Institute Inc. 2004. SAS/STAT® 9.1.3 Help and Documentation. USA: Sas Institute Inc.

Sofyan A, Na’iem M, Sapto I. 2011. Perolehan genetik pada uji klon jati (Tectona grandis L.f) umur 3 tahun di KHDTK Kemampo, Sumatera Selatan. J Penelitian Hutan Tanaman 8(3):179-186

Sumarna. 2003. Budidaya Jati. Jakarta: Penebar Swadaya

Susanto M, Tibertius AP, Fujisawa Y. 2008. Wood genetic variation of acacia auriculiformis at Wonogiri trial in Indonesia. Journal of Forestry Research 5(2):135-145.

White TL, Adam WT, Neale DB. 2009. Forest Genetics. Washington DC: CABI.

Wibowo A. 2005. Sejarah Pemuliaan Jati. Di dalam: Siswamartana S, Rosalina U, Wibowo A, editor. Prosiding Seperempat Abad Pemuliaan Jati Perum Perhutani;[waktu dan tempat tidak diketahui]. Jawa Barat: Pusat Pengembangan Sumber Daya Hutan Perum Perhutani. hlm 9-14.

Williams ER, Matheson AC, Harwood CE. 2002. Experimental Design and Analysis for Tree Improvement Second Edition. Australia: CSIRO Publishing.

Yunus EP. 2011. Respon pertumbuhan awal klon Jati Unggul Nusantara (JUN) di Kabupaten Purwakarta, Jawa Barat [skripsi]. Bogor: Fakultas Kehutanan, Institut Pertanian Bogor.

Yu Q, Pulkkinen P. 2003. Genotype-environment interaction and stability in growth of aspen hybrid clones. Forest Ecology and Management 173:25-35.

(40)
(41)

26

(42)
(43)

28

Lampiran 2 Sidik ragam daya sintas pada empat tapak mikro

(44)

Lampiran 3 Rangking serangan hama dan tabel ANOVA serangan hama

Rangking Mean N Tapak Mikro

1 1.175A 251 2

2 1.149AB 141 1 3 1.086BC 105 3 4 1.054C 258 4

Source DF Type III SS Mean Square F Value Pr > F

TM 3 1.499 0.500 4.91 0.0022

Klon 41 2.807 0.068 0.67 0.9417

TM*klon 108 10.654 0.099 0.97 0.5682

(45)

I. PENDAHULUAN 1.1Latar Belakang

Jati merupakan jenis kayu yang paling bernilai serta termasuk ke dalam kayu

premium pada perdagangan kayu dunia (Lyngdoh et al. 2010). Corak kayu serta sifat awet kelas 1 membuat kayu jati banyak digunakan sebagai bahan mebel,

bahan bangunan, serta kerajinan yang bernilai ekonomi tinggi. Harga kayu jati

diperkirakan akan terus meningkat setiap tahun. Berdasarkan data selama 25

tahun diperkirakan harga kayu jati akan terus meningkat sepanjang tahun sampai

2 kali lipat per lima tahun (Bio Teak 2011).

Pertumbuhan jati yang cenderung lama sehingga baru dapat dipanen setelah

60 tahun, membuat pasokan kayu jati Indonesia semakin menurun seiring dengan

permintaan yang terus melonjak. Seiring permintaan konsumen yang tinggi

terhadap kayu jati, maka perlu dilakukannya rekayasa teknologi dalam pemuliaan

jati sehingga pohon jati dapat dipanen dalam waktu yang singkat. Salah satu hasil

dari program pemuliaan jati adalah Jati Plus Perhutani (JPP) (Perhutani 2011).

Perbanyakan vegetatif dari sejumlah klon JPP kini yang disebut dengan Jati

Unggul Nusantara (JUN).

JUN memiliki beberapa keunggulan jika dibandingkan dengan jati

konvensional, menurut PT Setyamitra Bhaktipersada (2011), beberapa

keunggulan JUN ialah memiliki perakaran tunjang yang majemuk, cepat tumbuh,

kokoh, kayu berkualitas, dan dapat dipanen mulai umur 5 tahun. Berdasarkan

kemampuan serta keunggulan JUN, pembangunan hutan jati dengan

menggunakan bibit JUN merupakan salah satu jawaban atas semakin menurunnya

pasokan jati. Akan tetapi untuk mendapatkan hasil yang maksimal, keragaan

beberapa klon JUN masih perlu diverifikasi melalui penelitian uji klon. Penelitian

uji klon merupakan kegiatan lanjutan untuk mengetahui keragaan klon-klon JUN.

1.2Tujuan

Tujuan dari penelitian ini ialah untuk mengetahui kinerja/keragaan 41 klon

JUN berumur 15 bulan hasil pembiakan vegetatif. Adapun tujuan khususnya ialah

i) menduga parameter genetik hasil uji klon berumur 15 bulan, mencakup

(46)

tapak mikro (microsite) terhadap kinerja pertumbuhan masing-masing klon terkait

jarak tanam dan dosis pupuk dasar yang diaplikasikan.

1.3Manfaat

Hasil dari penelitian ini diharapkan dapat memberi manfaat berupa:

1. Rekomendasi klon-klon JUN terbaik untuk penanaman dengan skala

besar pada kondisi tapak yang sama.

2. Informasi mengenai perlakuan pemeliharaan JUN untuk pertumbuhan

(47)

II. TINJAUAN PUSTAKA 2.1Jati

Jati merupakan pohon penghasil kayu dengan mutu yang tinggi. Jati termasuk

ke dalam komoditas kayu mewah dengan nilai jual yang tinggi karena sifat

keawetannya termasuk ke dalam kelas awet 2. Menurut Heyne (1987) dalam

Wibowo (2005) jati juga dikenal sebagai teak (Inggris), kyan (Myanmar), sagwan

(India), maisak (Thailand), teca (Brazil), java teak (Jerman). Secara ilmiah,

taksonomi jati digolongkan ke dalam (Sumarna 2003):

Divisi : Spermatophyta

Jati bukan merupakan vegetasi asli Indonesia. Jati tumbuh alami di Negara India,

Burma, Muangthai, dan Vietnam (Wibowo 2005). Jati merupakan spesies yang

menggugurkan daun saat musim kemarau sebagai respon untuk mengurangi

transpirasi akibat suhu yang tinggi.

2.1.1 Morfologi

Menurut Dephut (2008) habitus jati adalah berupa pohon besar dengan batang

yang bulat lurus, tinggi total mencapai 40 m. Batang bebas cabang dapat

mencapai 18−20 m. Kulit batang coklat kuning keabu-abuan, terpecah-pecah

dangkal dalam alur memanjang mengikuti batang.

Daun umumnya besar, bulat telur terbalik, berhadapan, dengan tangkai yang

sangat pendek. Daun pada anakan pohon berukuran besar, sekitar 60−70 cm × 80−100 cm; sedangkan pada pohon tua menyusut menjadi sekitar 15 × 20 cm. Berbulu halus dan mempunyai rambut kelenjar di permukaan bawahnya. Daun

yang muda berwarna kemerahan dan mengeluarkan getah berwarna merah darah

apabila diremas. Ranting yang muda berpenampang segi empat, dan berbonggol

(48)

Bunga majemuk terletak dalam malai besar, 40 cm × 40 cm atau lebih besar,

berisi ratusan kuntum bunga tersusun dalam anak payung menggarpu dan terletak

di ujung ranting; jauh di puncak tajuk pohon. Taju mahkota 6−7 buah,

keputih-putihan, 8 mm. Berumah satu.

Buah berbentuk bulat agak gepeng berukuran 0.5–2.5 cm berambut kasar dengan inti tebal, berbiji 2−4, tetapi umumnya hanya satu kecambah yang tumbuh dalam kegiatan penyemaian. Buah tersungkup oleh perbesaran kelopak bunga

yang melembung menyerupai balon kecil.

2.1.2 Tempat Tumbuh

Jati tumbuh subur pada daerah beriklim tropis yang panas serta lembab dengan curah hujan 1200−2500 mm/tahun (Sastrosumarto dan Suhaendi 1985 dalam Wibowo 2005). Jati akan tumbuh lebih baik pada tekstur tanah dengan fraksi lempung, lempung berpasir, atau pada lahan liat berpasir. Habitus jati

merupakan pohon dengan diameter dan tinggi yang cukup besar, oleh karena itu

tanaman ini membutuhkan solum tanah yang dalam untuk pertumbuhan akarnya

dengan sifat keasaman tanah (pH) optimum pada 6. Toleransi jati terhadap pH

tanah termasuk tinggi karena jati masih bisa tumbuh dengan baik pada pH 4−5.

Tanaman jati membutuhkan tanah dengan porositas dan drainasi yang baik untuk

pertumbuhannya dalam hal penyerapan hara karena jati termasuk jenis yang

sensitif terhadap rendahnya nilai pertukaran oksigen dalam tanah (Sumarna 2003). Jati juga dikenal dengan julukan “calciolus tree species” karena jati memerlukan unsur kalsium dengan jumlah yang relatif besar untuk pertumbuhan

dan perkembangannya. Hal ini telah dibuktikan dari hasil penelitian dengan

menganalisis abu jati yang kemudian ditemukan unsur-unsur yang paling banyak

terkandung pada kayu jati yaitu Kalsium (CaO) dengan kadar 31,3%, Pospor

(P2O5) dengan kadar 29,7%, dan Silika (SiO2) dengan kadar 25% (Sarjono 1984

dalam Wibowo 2005). Hal ini kemudian diperkuat dengan argumen Sumarna (2003) bahwa unsur hara makro yang penting dalam mendukung pertumbuhan jati

adalah:

1. Kalsium (Ca) yang berperan mendukung pertumbuhan meristem batang dan

(49)

5

memiliki kandungan kalsium rendah (8,18%−9,27%) menunjukkan

pertumbuhan yang kurang baik.

2. Pospor (P) yang dibutuhkan jati berkisar antara 0,022%−0,108% atau setara dengan 19−135 mg/100g di dalam tanah. Jati akan cepat menggugurkan daun jika kekurangan pospor sehingga proses fotosintesis akan terganggu.

3. Kalium (K) dibutuhkan oleh jati pada permukaan atas berkisar antara

0,54%−1,80% (45−625 ppm/100g) dan pada permukaan bawah antara

0,4%−1,13% (113−647 ppm/100g).

4. Nitrogen (N) dengan kadar 0,072%−0,13% pada permukaan tanah dan sekitar 0,0056%−0,05% pada permukaan bawah. Rata-rata nitrogen yang dibutuhkan oleh jati adalah sekitar 0,0039%.

2.1.3 Jati Unggul Nusantara (JUN)

Jati Unggul Nusantara merupakan salah satu merk dagang jati dengan sifat

yang unggul serta memiliki kemampuan tumbuh yang lebih cepat jika

dibandingkan dengan jati lokal yang selama ini dikenal oleh masyarakat luas.

Merk dagang jati unggul yang lain disajikan pada Tabel 1.

Tabel 1 Beberapa merek dagang jati unggul yang telah beredar di pasar (Irwanto 2006)

No Nama Dagang Produsen Materi Asal

1 Jati Plus Perhutani Perum Perhutani Jawa

2 Jati Super PT Monfori Thailand

3 Jati Emas PT Katama Suryabudi Birma

4 Jati Unggul PT Bumindo Jawa

5 Jati Unggul Lamongan KBP Lamongan Thailand 6 Jati Kencana PT Dafa Teknoagro Mandiri Jawa

Perkembangan pengetahuan dan ilmu rekayasa genetik (pemuliaan pohon)

telah menjawab kegelisahan pasar akan semakin berkurangnya pasokan jati akibat

siklus tebang jati yang sangat lama. Hasil dari penelitian serta percobaan dalam

pemuliaan pohon telah menghasilkan beberapa jenis jati unggul yang memiliki

daur pendek, yaitu dapat di panen mulai umur ±15 tahun, serta memiliki batang

silindris yang lurus dengan sedikit cabang. Berbeda dengan jati yang ditanam

masyarakat pada umumnya, yang biasanya dikecambahkan dari biji, jati dengan

kemampuan super ini dibiakkan dengan cara vegetatif (stek pucuk ataupun kultur

(50)

Indukan yang akan diklon untuk menghasilkan jati unggul merupakan jati

terbaik yang sebelumnya telah dilakukan seleksi terhadap beberapa jati pada suatu

tegakan yang memiliki keunggulan dalam hal sifat fisik daripada populasi jati

yang ada. Salah satu hasil dari program pemuliaan Perhutani sejak tahun 1982

adalah diperolehnya klon unggulan yakni JPP (Jati Plus Perhutani), setelah

sebelumnya dilakukan tes di lapangan pada beberapa lokasi dengan menerapkan

sistem silvikultur intensif. JPP dikembangkan melalui stek pucuk, kultur jaringan,

dan dengan menggunakan biji yang berasal dari kebun benih klonal. Jati Unggul

Nusantara (JUN) merupakan hasil dari pembiakan vegetatif dari JPP.

2.2Uji Klon

Perbanyakan yang dilakukan secara vegetatif atau aseksual (stek, kultur

jaringan, dll) merupakan salah satu usaha untuk mempertahankan suatu sifat

anakan yang diinginkan dari induknya. Menurut Finkeldey (2005) perbanyakan

aseksual mempunyai arti khusus untuk mengekalkan sifat genotip, populasi atau

jenis dari bahaya kepunahan.

Pertumbuhan dari suatu tanaman tidak lepas dari pengaruh lingkungan. Oleh

sebab itu interaksi genetik dengan lingkungannya sangat mempengaruhi fenotip

suatu tanaman. Uji coba lapangan dilakukan secara periodik untuk mengetahui

sifat-sifat yang mempengaruhi performa tanaman uji di lapangan. Sifat-sifat yang

diamati biasanya berhubungan dengan karakter pertumbuhan (tinggi dan

diameter) serta daya sintas atau daya hidup.

Data yang didapatkan dari penelitian yang berturut-turut, lama-kelamaan akan

menunjukkan suatu konsistensi pertambahan pertumbuhan. Konsistensi

(51)

III. METODE PENELITIAN

3.1Waktu dan Tempat

Penelitian uji pertumbuhan klon JUN ini dilakukan pada Desember 2011

sampai Juli 2012 dan bertempat di lahan kerjasama antara KPWN dengan

Fakultas Kehutanan IPB di Desa Sukatani, Kecamatan Sukatani, Kabupaten

Purwakarta, Jawa Barat. Penelitian dilakukan pada empat tapak mikro (microsite)

dengan kondisi umum seperti disajikan pada Tabel 1.

Tabel 1 Kondisi umum tapak mikro (microsite)

Microsite Tanaman Sela oleh Petani Penggarap Kesuburan Lahan Jumlah Petani Penggarap 1 Padi Ladang, Cabai, Talas Keadaan lahan pada

lokasi ini cenderung

Penelitian ini dilakukan pada tanaman klon JUN berumur 15 bulan dengan 41

klon JUN dan 1 jati lokal sebagai kontrol (bibit jati dari Purwakarta). Alat dan

bahan yang digunakan dalam pengambilan serta pengolahan data lapangan

disajikan pada Tabel 2.

Tabel 2 Alat dan bahan penelitian

Jenis Pengambilan Data Lapangan Pengolahan Data Alat Kaliper, galah berskala metrik,

kamera, alat tulis

Komputer, Microsoft Excel, dan

software SAS v9.0 portable

Bahan Tally sheet -

3.3Rancangan Penelitian

Rancangan penelitian pada penelitian uji klon ini menggunakan Rancangan

acak lengkap berblok/Randomized Complete Block Design (RCBD). Penelitian ini

terbagi dalam 4 replikasi dan ditanam dalam 4 tapak mikro (microsite) serta

masing-masing 4 bibit JUN dalam setiap baris (4 tree plot). Kondisi 4 tapak mikro

(TM) adalah sebagai berikut:

1. TM#1 : jarak tanam 3x4 m dengan pupuk dasar 3 kg.

2. TM#2 : jarak tanam 3x4 m dengan pupuk dasar 5 kg.

(52)

4. TM#4 : jarak tanam 5x2 m dengan pupuk dasar 5 kg.

Pupuk dasar yang dipakai dalam penelitian ini adalah pupuk kandang. Pupuk

dasar diberikan pada setiap lubang tanam sebelum kegiatan penanaman. Selain itu

diberikan juga kapur pertanian dan dolomit sebanyak 300 g pada setiap lubang

tanam berukuran 30x30x30 cm. Peta lokasi penelitian disajikan pada Gambar 1.

Peta penyebaran pohon tersaji pada Lampiran 1.

Gambar 1 Peta sketsa lokasi penelitian (Yunus 2011)

3.4Pengambilan dan Pengolahan Data

Variabel yang diambil pada penelitian ini adalah berupa tinggi pohon (T),

diameter pohon (D), dan daya sintas (DS) atau daya hidup pohon umur 0 bulan

sampai 15 bulan. Tinggi tanaman diukur dengan galah berskala metrik dari

pangkal batang hingga titik tumbuh apikal. Diameter tanaman diukur 40 cm dari

(53)

9

klon yang hidup dalam setiap tree plot mulai dari umur 0 bulan sampai 15 bulan.

Nilai persen daya sintas dihitung dengan rumus (Yunus 2011):

%DS = ℎ x 100%

Keterangan : DS = Daya sintas Th = Tanaman hidup

Td = Jumlah tanaman total dalam tree plot

Kemudian untuk analisis lebih lanjut dengan analisis ragam, nilai daya sintas

disederhanakan dengan rumus (Yunus 2011):

DS = arcsin %�

Data hasil pengukuran tinggi, diameter, dan daya sintas dianalisis ragamnya

dengan model linear (Zhang et al. 2003; Yu dan Pulkkinen 2003):

Χijkl = µ + Cj + Mk + CjMk + εijkl

Komponen ragam dihitung dengan expected mean square yang dihasilkan dengan

rumus PROC GLM; RANDOM TEST (SAS Institute Inc. 2004).

Repeatability diestimasi dari manipulasi aljabar dari ragam (Zhang et al. 2003; Yu dan Pulkkinen 2003):

�1 = Koefisien yang berhubungan dengan ragam tapak mikro*klon

(54)

Standar error untuk repeatability diestimasi dengan rumus (Zhang et al. 2003; Yu dan

SW( 2) = Standar error repeatability

2 = Repeatability

�1 = Koefisien yang berhubungan dengan ragam tapak mikro*klon

�2 = Koefisien yang berhubungan dengan ragam klon

N = Jumlah klon

Dengan standar erornya dirumuskan dengan (Zhang et al. 2003):

�= 1− �

� = Standar eror korelasi genetik

�2 = Estimasi korelasi genetik

�( 2) = Repeatability karakter x

�( 2) = Repeatability karakter y

2 = Standar eror repeatability karakter x

2 = Standar eror repeatability karakter y

Korelasi genetik antar microsite antara dua sifat x dan y dapat diestimasi dengan rumus

(55)

11

( 1) = Akar dari repeatability x pada tapak mikro 1

( 2) = Akar dari repeatability y pada tapak mikro 2

Hubungan korelasi fenotipik antara variabel pertumbuhan dihasilkan dari PROC CORR

(Sas Institute Inc. 2004).

Pada penelitian ini, diasumsikan bahwa proporsi seleksi yang akan dilakukan

adalah sebesar 61% yaitu sekitar 25 dari 41 klon yang ada dengan intensitas seleksi

sebesar 0,617 (Becker 1992). Pendugaan perolehan genetik pada sifat y berdasarkan

seleksi klon pada sifat x dihitung dengan rumus (Falconer 1981):

G = � � �

Keterangan:

G = Perolehan genetik � = Intensitas seleksi

(56)

IV. HASIL DAN PEMBAHASAN 4.1Keragaman Sifat Pertumbuhan dan Taksiran Repeatability

Penelitian tentang klon JUN hasil perkembangbiakan vegetatif ini

dilakukan untuk mendapatkan performa pertumbuhan serta menaksir nilai

repeatability dari setiap tapak mikro. Tabel 3 menyajikan nilai koefisien keragaman serta pertumbuhan maksimal dan minimal klon JUN pada 4 tapak

mikro.

Tabel 3 Nilai rata-rata variabel pertumbuhan pada setiap tapak mikro

TM 1 TM 2 TM=tapak mikro; D=diameter; T=tinggi; DS=daya sintas

Tabel 3 menunjukkan pertambahan diameter tertinggi klon JUN pada

umur 15 bulan adalah sebesar 7,64 cm yaitu pada tapak mikro 4. Demikian juga

dengan pertambahan tinggi klon JUN yang mencapai 7,33 meter. Koefisien

keragaman pada setiap tapak mikro menunjukkan angka <50% yang menunjukkan

bahwa keragaman pertumbuhan tinggi dan diameter klon JUN umur 15 bulan ini

rendah. Semakin rendah nilai koefisien keragaman menunjukkan bahwa tinggi

dan diameter klon JUN relatif seragam. Hasil untuk karakter daya sintas, keempat

tapak mikro menunjukkan performa yang baik yang ditunjukkan dengan rataan

daya sintas yang bernilai >90%. Menurut Na’iem (2004) dalam Mahfuz et al. (2010) nilai daya sintas sebesar 90% sudah termasuk indikator yang baik dalam

pertanaman uji, karena faktor lingkungan dianggap sudah sesuai dengan jenis

pohon pertanaman uji.

Hasil dari taksiran repeatability terhadap diameter, tinggi, dan daya sintas

disajikan dalam Tabel 4. Tabel 4 menunjukkan bahwa variabel klon memiliki

Gambar

Tabel 1  Beberapa merek dagang jati unggul yang telah beredar di pasar (Irwanto 2006)
Gambar 1  Peta sketsa lokasi penelitian (Yunus 2011)
Tabel 3  Nilai rata-rata variabel pertumbuhan pada setiap tapak mikro
Tabel 4  Analisis ragam, komponen ragam (%), dan repeatability
+7

Referensi

Dokumen terkait

Kondisi lingkungan pemukiman yang berhubungan dengan kejadian lepto- spirosis antara lain dinding dapur bukan tembok, tidak adanya langit - langit rumah, jenis tempat sampah

68 Tabel 4.13 Tanggapan Pelanggan Terhadap Kegiatan Komersialisasi yang Dilakukan oleh PT Ultrajaya Milk Industry ...69 Tabel 4.14 Tanggapan Pelanggan Mengenai Kemasan

Hasil analisis data dengan menggunakan uji wilcoxon signed rank test didapatkan p-value = 0,014 lebih kecil dari pada α (α = 0,05) maka H0 ditolak artinya ada pengaruh

Dia menunjukkan bahwa ketika tingkat pertumbuhan perusahaan tinggi, atau dengan kata lain perusahaan memerlukan dana untuk kebutuhan investasi, maka perusahaan

Oleh karena itu, tujuan desa binaan ini adalah untuk meningkatkan kesadaran budaya masyarakat dalam merespon kehadiran wisatawan, serta untuk mengeksplorasi model desa

Dalam penelitian ini diuji hubungan yang terbalik antara perolehan dividen (dividend yield) dan spread dengan memasukkan determinan-determinan lain dari spread

Granit yang terdapat di Desa Mekar Pelita, Kecamatan Nanga Sayan termasuk Formasi Granit Sukadana, mempunyai warna putih abu- abu dengan bintik hitam, massif dan kompak,