• Tidak ada hasil yang ditemukan

Dynamic Characterization Of Two Dimensional Flexible Plate Structure Using Neural Network.

N/A
N/A
Protected

Academic year: 2017

Membagikan "Dynamic Characterization Of Two Dimensional Flexible Plate Structure Using Neural Network."

Copied!
24
0
0

Teks penuh

(1)
(2)
(3)
(4)
(5)
(6)

v

ABSTRACT

An investigation into the dynamic characterisation of a two dimensional (20 ) flexible plate structure is presented. A thin aluminum, flat plate, with all edges clamped, is considered. A simulation algorithm characterising the dynamics behavior of the plate is developed through a descretisation of the governing partial differential equation formulation of the plate dynamics using finite different methods. The algorithm is implemented within the Matlab environment, and it allows application and sensing of a disturbance signal at any mesh point on the plate. The validation of the algorithm is presented in both the time and frequency domains. Investigations reveal that the measured parameters associated with the first five resonance modes of the system compare favorably with previously reported results. Multi-Layer Perceptron Neural Network (MLP-NN) is applied to the simulation algorithm and the frrst three modes of frequency is comparing with the theoretical value that developed earlier for the validation and acceptable level of the future work.

(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)

Referensi

Dokumen terkait

Researchers have also studied micro-hydro using PI controller based on NN- perceptron [1], however, there is no research on PID control system is based Neural

Penelitian ini menggunakan pendekatan Multi-Layer Perceptron (MLP) dengan Back- Propagation Learning Algorithm untuk mendeteksi penyakit jantung dengan mengurangi

MATLAB Simulink will be used to simulate the shunt active power filter (SAPF) control algorithm based on neural network.. 2 Multi-layer

Penelitian sebelumnya prediksi menggunakan generalized regression neural network dan multi-layer perceptron untuk memprediksi kecepatan angin di daerah bagian barat

The pre-trained multilayer perception MLP NN is implemented in each router and works in the router’s strategy layer to dynamically predict the overload probability based on the received

In this research, nine supervised learning models which are Support Vector Machine SVM, multinomial naïve Bayes MNB, multi-layer perceptron MLP, k-nearest neighbours k-NN, stochastic

Metode Penelitian Penelitian ini menggunakan algoritma Support Vector Machine dan Neural Network berjenis Multi Layer Perceptron untuk pembuatan model klasifikasi penyakit hati

Klasifikasi Convolutional Neural Network CNN adalah salah satu algoritma dari Deep Learning yang merupakan pengembangan dari Multi Layer Perceptron MLP yang dirancang untuk mengolah