• Tidak ada hasil yang ditemukan

BAB III. Gambar 3.1 Lokasi Proyek Penggantian Jembatan Sokong A, Kota Tanjung, Lombok Utara, NTB. Sumber: Google Earth

N/A
N/A
Protected

Academic year: 2021

Membagikan "BAB III. Gambar 3.1 Lokasi Proyek Penggantian Jembatan Sokong A, Kota Tanjung, Lombok Utara, NTB. Sumber: Google Earth"

Copied!
12
0
0

Teks penuh

(1)

43

BAB III

METODE PERENCANAAN 3.1 Waktu Pelaksanaan

Waktu pelaksanaan pekerjaan proyek penggantian Jembatan Sokong A Cs, Kecamatan Tanjung, Kabupaten Lombok Utara, Provinsi Nusa Tenggara Barat dari pekerjaan persiapan, pekerjaan tanah dan pondasi, pekerjaan struktur sampai finishing hingga total pekerjaan keseluruhan diperkirakan 280 hari.

3.2 Lokasi Perencanaan

Tempat pelaksanaan Praktek Kerja Nyata di Tanjung Kab. Lombok Utara, NTB. Lokasi proyek dapat dilihat pada Gambar 3.1 dibawah ini.

Gambar 3.1 Lokasi Proyek Penggantian Jembatan Sokong – A, Kota Tanjung, Lombok Utara, NTB.

Sumber: Google Earth

3.3 Data Perencanaan

Perencanaan pilar dan abutment pada proyek jembatan sokong-A Cs.

3.3.1 Data Umum Proyek

a) Nama Proyek : Penggantian Jembatan Sokong-A Cs b) Lokasi Proyek : Kecamatan Tanjung Kabupaten Lombok

Utara Provinsi Nusa Tenggara Barat c) Pemilik Proyek : Kementrian Pekerjaan Umum dan

(2)

44

Perumahan Rakyat Satuan Kerja Pelaksanaan Jalan Nasional Wilayah I, Provinsi Nusa Tenggara Barat. d) Konsultan Proyek : PT. Parama Karya Mandiri Kso

PT. Daksinapati Karsa Konsultindo PT. Krida Pratama Adhicipta

3.3.2 Data Teknis Jembatan

Berikut ini merupakan data teknis jembatan Sokong Kecamatan Tanjung sebagai berikut:

Tipe Jembatan : Jembatan untuk semua kendaraan Nama Jembatan : Jembatan Sokong

Kelas Jembatan : Kelas A Jumlah Lalu Lintas : 2 jalur

Jenis Konstruksi Utama : Beton Bertulang

Panjang Jembatan Total : 30,00 m x 2 bentang = 60,00 meter Lebar Lantai Kendaraan : 7,00 meter

Lebar Trotoar : 1,00 meter x 2 sisi = 2,00 meter

Gambar 3.2 Tampak Samping Jembatan 3.4 Prosedur Perencanaan

Prosedur perencanaan disajikan dalam bentuk diagram alir yang tersaji pada Gambar 3.3.

(3)

45

3.4.1 Studi Literatur

Studi literatur ini bertujuan untuuk mengumpulkan dasar-dasar pemahaman tentang ilmu tanah dan struktur bawah jembatan yang bertujuan untuk proses analisa ataupun kendala–kendala yang ada serta memberikan batasan–batasan yang sesuai dengan standar pedoman negara Indonesia.

3.4.2 Pengumpulan Data

Dalam perencanaan pembangunan jembatan Sokong ini memiliki beberapa data sebagai penunjang analisa sebagai berikut:

a) Data struktur atas jembatan (beban struktur). b) Data gempa.

c) Data penyelidikan tanah (Uji Sondir, Uji Laboratorium, Uji SPT, dan Boring Log).

3.4.3 Perhitungan Pembebanan Struktur Atas Jembatan

Perhitungan pembebanan struktur atas jembatan ini bertujuan untuk mengetahui berapa berat beban struktur atas yang nantinya akan diterima oleh pilar, abutment dan pondasi. Untuk mengetahui berapa kapasitas daya dukung dan agar pilar, abutment dan pondasi bisa menahan beban struktur yang akan diterimanya. Dalam perencanaan ini menggunakan aplikasi bantuan yaitu Staad-Pro V8i untuk perhitungan struktur beban atas tanpa menghilangkan standar yang berlaku di Indonesia.

Jembatan harus direncanakan agar memiliki kemungkinan kecil untuk runtuh namun dapat mengalami kerusakan yang signifikan dan gangguan terhadap pelayanan akibat gempa. Beban gempa diambil sebagai gaya horizontal yang ditentukan berdasarkan perkalian antara koefisien respons elastik (Csm) dengan berat struktur ekuivalen yang kemudian dimodifikasi dengan faktor modifikasi respons (Rd) dengan formulasi sebagai berikut:

EQ = 𝑪𝒔𝒎

𝑹𝒅 × 𝑾𝒕 ……….……. (3.1)

Keterangan:

EQ = Gaya gempa horizontal statis (kN) Csm = Koefisien respons gempa elastis Rd = Faktor modifikasi respons

(4)

46

Wt = Berat total seluruh struktur terdiri dari beban mati dan beban hidup yang sesuai (kN)

Koefisien respons elastik Csm diperoleh dari peta percepatan batuan dasar dan spektra percepatan sesuai dengan daerah gempa dan periode ulang gempa rencana. Koefisien percepatan yang diperoleh berdasarkan peta gempa dikalikan dengan suatu faktor amplifikasi sesuai dengan keadaan tanah sampai kedalaman 30 m dibawah struktur jembatan.

Selain beban gempa, terdapat beban akibat aliran air yang harus dipertimbangkan dalam merencanakan pembebanan struktur atas jembatan. Gaya seret nominal ultimit dan daya layan pada pilar akibat aliran air tergantung pada kecepatan air rata-rata sesuai dengan Persamaan (2.7).

TEF = 0,5 x CD x Vs2 x Ad

……….…

(3.2) Keterangan:

TEF : Gaya seret akibat aliran air (kN) CD : Koefisien seret

Vs : Kecepatan air rata-rata berdasarkan pengukuran di lapangan (m/s) Ad : Luas proyeksi pilar tegak lurus arah aliran (m2)

Berikut hirarki pembebanan pada abutmen dan pilar seperti yang tertera pada Gambar 3.4 dan Gambar 3.5.

(5)

47

(6)

48

HIERARKI PEMBEBANAN JEMBATAN PADA ABUTMENT

BEBAN PERMANEN

Berat Sendiri (MS)

Beban struktur atas: 1. Girder 2. Diafragma 3. Trotoar 4. Lantai Kendaraan 5. Deckslab Beban struktur bawah: 1. Abutment 2. Pile cap 3. Timbunan tanah Beban Mati Tambahan/Utilitas (MA) 1. Aspal Overlay 2. Railing, lampu, dll 3. Instalasi ME 4. Air Hujan

Beban Akibat Tekanan

Tanah (TA) Beban Lalu Lintas Aksi Lingkungan Aksi Lainnya

1. Beban Angin (EW) 2. Beban empa (EQ) 3. Temperatur (ET) Gesekan pada Perletakan Beban Lajur D 1. Beban Terbagi Rata (BTR) 2. Beban Garis Terpusat (BGT) Beban Truk T (TT) Gaya Rem (TB)

Beban Pejalan Kaki (TP)

(7)

49

HIERARKI PEMBEBANAN JEMBATAN PADA PILAR

BEBAN PERMANEN

Berat Sendiri (MS)

Beban struktur atas: 1. Girder 2. Diafragma 3. Trotoar 4. Lantai Kendaraan 5. Deckslab Beban struktur bawah: 1. Pilar 2. Pile cap 3. Timbunan tanah Beban Mati Tambahan/Utilitas (MA) 1. Aspal Overlay 2. Railing, lampu, dll 3. Instalasi ME 4. Air Hujan

Beban Akibat Tekanan

Tanah (TA) Beban Lalu Lintas Aksi Lingkungan

1. Beban Angin (EW) 2. Beban empa (EQ) 3. Temperatur (ET) 4. Aliran Air, Benda Hanyutan, dan Tumbukan Beban Lajur D 1. Beban Terbagi Rata (BTR) 2. Beban Garis Terpusat (BGT) Beban Truk T (TT) Gaya Rem (TB)

Beban Pejalan Kaki (TP) Gambar 3.4 Hierarki Pembebanan pada Pilar

(8)

50

3.4.4 Perencanaan Struktur Pilar dan Abutment

Perencanaan struktur pilar dan abutment direncanakan dengan gaya luar yang bekerja pada kepala tiang tidak boleh melebihi daya dukung yang diijinkan. Gaya dukung ijin pilar dan abutment yang diijinkan seperti gaya dukung tanah, tegangan, stabilitas yang diijinkan. Setelah analisa pembebanan dikerjakan dapat direncanakan perencanaan dimensi pilar dan abutment seperti yang berlaku dalam standar SNI.

Bentuk struktur dari kepala jembatan yang umum, seperti yang terlihat pada Gambar 3.4 dan hubungan antara macam serta tinggi kepala jembatan yang sebaiknya disesuaikan dengan Gambar 3.5.

Gambar 3.6 Bentuk Umum Kepala Jembatan

Gambar 3.7 Tinggi Pemakaian Kepala Jembatan Untuk Berbagai Bentuk Sumber: Nakazawa, 1994 Hal. 303

Pilar yang direncanakan pada aliran sungai harus direncanakan terhadap bahaya gerusan akibat aliran air turbulens dan benda-benda hanyutan berupa tumbukan, disamping beban seret akibat aliran air. Pilar menyalurkan gaya-gaya vertikal dan horizontal dari bangunan atas pada pondasi. Bentuk umum digambarkan dalam Gambar 3.6.

(9)

51

Gambar 3.8 Jenis-jenis Pilar Sumber: Nakazawa, 1994

Pada pilar dihitung beban gempa, beban angin, dan beban horizontal akibat gaya rem temperatur, hingga beban tumbukan. Tergantung dari perencanaan dan lokasi dimana pilar tersebut didirikan.

Dalam perencanaan Jembatan Sokong, dipilih tipe pilar tembok. Dipilih berdasarkan oleh:

1. Ketinggian rencana yang sudah ditentukan berdasar perhitungan muka air banjir, muka air normal, dan lalu lintas transportasi air dibawahnya.

2. Pilar tembok dipilih karena lebih kecil potensinya terkena gerusan daripada pilar kolom ganda.

(10)

52

3.4.5 Perhitungan Perencanaan Struktur Pilar dan Abutment Jembatan

Perencanaan pilar dan abutment dilakukan dengan pernyataan sebagai berikut:

a. Pilar dan abutment sangat kaku.

b. Mampu menahan beban yang diterima sekaligus menyalurkan ke pondasi.

Penulangan abutment dan pilar;

Batas-batas penulangan pada abutment menggunakan rumus yang sama pada penulangan struktur seperti berikut ini:

ρb = (𝟎,𝟖𝟓 𝒙 𝜷𝟏 𝒙 𝒇′𝒄 𝒇𝒚 ) × ( 𝟔𝟎𝟎 𝟔𝟎𝟎+𝒇𝒚) ……….……. (3.3) ρmax = 0,75 x ρb ……….……. (3.4) ρmin = 𝟏,𝟒 𝒇𝒚 ……….…... (3.5) m = 𝒇𝒚 𝟎,𝟖𝟓 𝒙𝒇′𝒄 ...……….... (3.6) Mn = 𝑴𝒏 ∅ ………..…... (3.7) Rn = 𝑴𝒏 𝒃 . 𝒅𝟐 ………..…….. (3.8) ρperlu = 𝟏 𝒎{𝟏 − √𝟏 − ( 𝟐.𝒎.𝑹𝒏 𝒇𝒚 )} ………... (3.9) Luas tulangan : As = ρmin x b x d ……… (3.10) Tulangan bagi : As bagi = 20% x Aspokok ……… (3.11) • Kontrol tulangan geser

Vc = (𝟏 𝟔√𝒇′𝒄) × 𝒃 × 𝒅 ……… (3.12) ɸ x Vc < Vu < 3 x ɸ x Vc Vsperlu = 𝑽𝒖 − ɸ.𝑽𝒄 ɸ ……… (3.13) Av = 2 x ¼ x π x d2 ……….. (3.14) S = 𝑨𝒗.𝒇𝒚.𝒅 𝑽𝒔 ……….. (3.15)

• Jarak Sengkang maksimum tulangan geser

Smax = 𝒅

𝟐 ……….. (3.16)

Vsada = 𝑨𝒗.𝒇𝒚.𝒅

𝑺 ……….. (3.17)

(11)

53

Sumber: Fajar Santoso, 2009, Tinjauan Bangunan Bawah (Abutment) Jembatan Karang Kecamatan Karangpandan Kabupaten Karanganyar, Hal. 15-16

3.4.6 Kontrol Stabilitas Rencana

Mengontrol kestabilan abutment dan pilar dari segi geser, guling, eksentrisitas, dan juga tegangan dengan mempertimbangkan dua kondisi, yaitu pada kondisi normal dan pada kondisi gempa seperti persamaan dibawah ini:

Stabilitas abutment dan pilar

• Syarat aman terhadap geser SF =Ʃ𝑽.𝒕𝒂𝒏

𝟐 𝟑ɸ° + 𝒄.𝑩

Ʃ𝑯 ……… (3.18)

• Syarat aman terhadap guling SF = Ʃ𝑴𝒙

Ʃ𝑴𝒚 ………...……… (3.19)

• Syarat aman terhadap eksentrisitas

e = 𝑩 𝟐− Ʃ𝑴𝒙− Ʃ𝑴𝒚 Ʃ𝑽 < 𝑩 𝟔 ……….... (3.20) • Kontrol terhadap tegangan

σ = Ʃ𝑽

𝑩 . 𝑳− (𝟏 ± 𝟔 𝒆

𝑩) ………. (3.21)

Jika σmaks = Qall (OK) Jika σmaks ≤ Qall (OK)

Sumber: Fajar Santoso, 2009, Tinjauan Bangunan Bawah (Abutment) Jembatan Karang Kecamatan Karangpandan Kabupaten Karanganyar, Hal. 15-16.

3.4.7 Perencanaan Pondasi

Perencanaan pondasi tiang pancang direncanakan dengan gaya luar yang bekerja pada kepala tiang tidak boleh melebihi daya dukung yang di ijinkan. Gaya dukung ijin tiang pancang yang diijinkan seperti daya dukung tanah, tegangan pada tiang, serta perpindahan kepala tiang yang diijinkan. Setelah analisa pembebanan dikerjakan dapat direncanakan perencanaan dimensi tiang pancang seperti yang berlaku dalam standar SNI dalam hal berikut:

a) Kedalaman pondasi. b) Dimensi pondasi. c) Penulangan pondasi.

(12)

54

3.4.8 Kontrol DDT, Settlement, dan Tegangan

Mengontrol daya dukung tanah, settlement, serta tegangan yang terjadi pada tanah ketika mendapat beban dari struktur jembatan dengan kriteria sesuai dengan aturan/ketentuan yang berlaku.

3.4.9 Gambar Rencana

Gambar rencana merupakan gambaran desain struktur jembatan yang didapat setelah mempertimbangkan perhitungan-perhitungan diatas.

3.4.10 Analisa dan Perhitungan

Perhitungan dan analisa pembebanan beserta pedomannya dalam perencanaan penggantian jembatan sokong adalah sebagai berikut:

a. Perhitungan pembebanan struktur atas menggunakan aplikasi pendukung yaitu aplikasi Staad-Pro V8i.

b. Ukuran pondasi tiang pancang dihitung berdasarkan beban yang akan diterima dan keadaan tanah di lokasi proyek.

3.4.11 Data Tanah Proyek

Gambar

Gambar 3.1 Lokasi Proyek Penggantian Jembatan Sokong – A, Kota Tanjung, Lombok Utara,  NTB
Gambar 3.2 Tampak Samping Jembatan
Gambar 3.3 Diagram Alir Perencanaan
Gambar 3.6 Bentuk Umum Kepala Jembatan
+2

Referensi

Dokumen terkait

(Studi Eksperimen Kuasi pada Siswa Kelas VIII SMP 2 Pangkalanbaru Kabupaten Bangka Tengah, Tahun Pelajaran

Persepsi terhadap Peluang Kerja seba gai Karyawan ..……....26 Tabel 3 : Jumlah Mahasiswa Angkatan 2006 dan 2007 Tiap Fakultas ...31 Tabel 4 : Sebaran Item Skala Motivasi

Berdasarkan uraian yang dipaparkan di atas, maka peneliti ingin mengangkat permasalahan yang mencakup upaya pembentukan karakter peserta didik melalui implementasi

Pembangunan dan peningkatan pelayanan sarana dan prasarana pengolahan air limbah pada kawasan permukiman. (B1) di

PENERAPAN MODEL PROBLEM BASED LEARNING TIPE EXAMPLE NON-EXAMPLES TERHADAP PARTISIPASI PESERTA DIDIK DALAM MENGEMUKAKAN PENDAPAT PADA PEMBELAJARAN IPS.. Universitas Pendidikan

Hal ini menunjukkan bahwa ekstrak etanol 95% kulit kelengkeng memiliki senyawa aktif tertentu yang toksik terhadap larva Artemia salina Leach, namun dengan

Persyaratan dan ketentuan pembukaan Deposito Berjangka rupiah di Bank BTN IAIN Sunan Ampel Surabaya.. Dalam pembukaan Deposito Berjangka Rupiah di Bank BTN IAIN

Surat bersampul adalah surat-surat yang isinya atau beritanya ditulis pada kertas.. lain, kemudian kertas surat tersebut dimasukkan kedalam sampul atau