• Tidak ada hasil yang ditemukan

RANCANGAN PENGOLAH LIMBAH CAIR KANTIN DENGAN FITOREMEDIASI.

N/A
N/A
Protected

Academic year: 2017

Membagikan "RANCANGAN PENGOLAH LIMBAH CAIR KANTIN DENGAN FITOREMEDIASI."

Copied!
23
0
0

Teks penuh

(1)
(2)
(3)
(4)
(5)

Komda VI BMPTTSSI - Makassar, 7-8 Oktober 2015

Kelompok Peminatan

(6)

Paper ID : TL04 Teknik Lingkungan

923

RANCANGAN PENGOLAH LIMBAH CAIR KANTIN DENGAN FITOREMEDIASI

Yenni Ciawi1, Aliza Hana Oktavia2 dan I Putu Gustave Suryantara3

1Program Studi Teknik Sipil, Universitas Udayana, Kampus Bukit Jimbaran, Bali

email: yenniciawi@yahoo.com

ABSTRAK

Limbah cair kantin banyak mengandung bahan organik dan kuantitasnya relatif kecil sehingga dapat diolah dengan fitoremediasi. Waktu tinggal air limbah ditentukan dengan mengukur COD dan BOD limbah. Dimensi IPAL dan diameter pipa masuk dan keluarnya dihitung berdasar volume harian air limbah. Didapat waktu tinggal limbah 2 hari dengan penurunan kadar COD dari 630,707 mg/l menjadi 65,434 mg/l, yang sudah memenuhi baku mutu air limbah domestik menurut Keputusan Menteri Negara Lingkungan Hidup Nomor 112 Tahun 2003, yaitu 100 mg/l. Debit limbah maksimum adalah 907,2 liter/hari serta debit harian rata-rata limbah sebesar 640,7 liter/hari. Dimensi kolam WWG adalah panjang 3 meter, lebar 1 meter, dan kedalaman 0,6 meter. Diameter pipa masuk dan keluar IPAL adalah 0,5 inci.

Kata kunci: disain, fitoremediasi, air limbah, kantin

1.

PENDAHULUAN

Limbah cair kantin mengandung banyak bahan organik yang dapat mencemari lingkungan jika tidak diolah. Salah satu cara pengolahan limbah cair secara aerob adalah dengan memanfaatkan tanaman atau fitoremediasi (UNEP, tt), yang dilakukan dalam sebuah konstruksi lahan basah (wetland) buatan atau dikenal sebagai waste water garden

(WWG). Berbagai tanaman dapat digunakan untuk kegiatan ini, seperti cattail (Typha domingensis), papirus (Cyperus papyrus), rumput gajah (Pennisetum purpureum) atau tanaman lainnya. Dalam WWG, bahan organik dalam air limbah akan diserap oleh tanaman dan mikroorganisme yang hidup di sekitarnya. Sistem lahan basah dibuat dengan tanaman yang ditata indah sehingga disebut sebagai waste watergarden (WWG) (Irawanto, 2010). Fitoremediasi memiliki beberapa keuntungan (Irawanto, 2010) seperti biaya pembuatan dan operasional yang murah, tidak memerlukan teknologi yang rumit, memanfaatkan sumber daya alam yang ada di sekitar, dapat dibuat dalam berbagai ukuran, menyediakan ekosistem baru, tidak berbau, tidak dapat digunakan sebagai tempat perkembangbiakkan nyamuk, serta memperindah lingkungan. Sistem ini juga memiliki beberapa kekurangan (Widyawati, 2008), seperti kemampuan fitoremediasi hanya terbatas pada permukaan tumbuhan, akar, dan area sekitar akar dalam mengikat polutan sehingga diperlukan tanaman dengan sistem perakaran yang kuat, tanaman memiliki keterbatasan dalam menetralkan polutan tergantung dari tingkat polutan dalam air limbah sehingga waktu pengolahan menjadi tidak tentu, tidak semua tanaman memiliki kemampuan yang sama dalam tumbuh dan berkembang sehingga harus dipilih tanaman-tanaman yang cepat tumbuh untuk sistem ini.

Banyak penelitian fitoremediasi yang dilakukan untuk berbagai jenis kontaminan dalam air limbah (Desta et al., 2014; Zhang, 2015) dan dengan berbagai tanaman, contohnya: Echinacea purpurea, Festuca arundinacea Schred,

Fire Phoenix (turunan F. arundinacea), and Medicago sativa L. untuk kontaminasi hidrokarbon poliaromatik (Liu et al., 2015), barley (Hordeum vulgaris), kubis (Brassica juncea), bayam (Spinacea oleracea), sorghum (Sorgum vulgare), kacang (Phaseolus vulgaris), tomat (Solanum lycopersicum), and ricinus (Ricinus communis) untuk kontaminasi nikel (Giordani et al., 2005). Sistem seperti ini juga digunakan untuk mengolah limbah tinja seperti yang dilakukan oleh Mbuligwe (2005), untuk melengkapi IPAL perkotaan (Rossi et al., 2013).

2.

MATERI DAN METODE

Pembuatan

WWG

skala laboratorium

Air limbah yang digunakan dalam penelitian ini adalah air limbah kantin Jurusan Teknik Sipil Universitas Udayana Kampus Bukit Jimbaran, Bali. Kolam WWG menggunakan ember plastik yang berkapasitas 21 liter. Kolam diisi dengan tanah setinggi 15 cm sebagai media tumbuh tanaman air. Untuk skala laboratorium, digunakan cattail

(7)

Komda VI BMPTTSSI - Makassar, 7-8 Oktober 2015

Paper ID : TL04 Teknik Lingkungan

924

organik yang banyak. Sampel limbah diambil setiap hari dari hari ke-0 hingga hari ke-4 untuk diukur kadar BOD dan CODnya.

Tanaman yang digunakan di lapangan

Tanaman yang digunakan adalah, berturut-turut, cattail (Typha domingensis), papirus (Cyperus papyrus), eceng gondok (Eichhornia crassipes), dan rumput gajah (Pennisetum purpureum).

Penentuan waktu tinggal

Volume harian limbah diukur secara langsung dengan menampung air limbah kantin. Waktu tinggal limbah diperkirakan dari percobaan degradasi limbah dalam pot dengan tanaman cattail berdasar harga COD yang diukur setiap hari.

Perhitungan dimensi kolam WWG

Panjang dan lebar kolam WWG ditetapkan sepanjang 3 dan 1 meter, sehingga kedalaman kolam dihitung berdasar rumus berikut ini.

dengan:

Qt = volume total limbah (liter)

= volume rata-rata limbah (liter/hari) p = panjang kolam (m)

l = lebar kolam (m) h = kedalaman kolam (m)

Perhitungan saluran

inlet

Saluran inlet menggunakan pipa PVC. Dengan asumsi saluran terbuka dan tinggi maksimum aliran sebesar 0,8 diameter pipa, kecepatan aliran dihitung dengan rumus Manning sebagai berikut:

V = R

=

A = P =

Q = dengan:

V = kecepatan aliran dalam pipa (m/s)

I = perbandingan beda tinggi saluran dengan panjang saluran A = luas tampang basah (m2)

P = keliling tampang basah (m) D = diameter pipa (m)

Q = debit saluran (m/s3)

Kontrol tegangan tanah

(8)

Paper ID : TL04 Teknik Lingkungan 925 Fa1 Fa2 Ph1 Ph2 h Fa1 Fa2 Ph1 Ph2 h

Gambar 1. Tegangan tanah yang terjadi

dengan:

Ph1 = Tekanan akibat pengaruh beban merata (N/m2)

Ph2 = Tekanan tanah aktif (g/m2)

Ph3 = Tekanan akibat air tanah (dalam keadaan banjir) (g/m2)

Q = Beban merata (N/m2) H = tinggi kolam (m) Ka = Koefisien tanah aktif

Fa1 = Gaya tekan akibat pengaruh beban merata (N)

Fa2 = Gaya tekan akibat pengaruh tanah aktif (N)

Fa3 = Gaya tekan akibat pengaruh air tanah (banjir) (N)

γtanah = Berat jenis tanah (g/cm 3

)

γair = Berat jenis air (g/cm 3

)

Kontrol kuat tekan batako

Berdasarkan SNI 03-0348-1989 (Badan Standarisasi Nasional, 1989) mengenai bata beton pejal, mutu, dan cara uji, klasifikasi bata beton pejal (batako) menurut kuat tekannya adalah sebagai berikut: bata beton pejal mutu B25; kuat tekannya tidak kurang dari 25 kg/cm2, B40 tidak kurang dari 40 kg/cm2, B70 tidak kurang dari 70 kg/cm2, B100 tidak kurang dari 100 kg/cm2. Kontrol dilakukan menggunakan beban tekan yang diakibatkan oleh tekanan tanah per luas bidang dinding kolam dan dibandingkan dengan kuat tekan beton pejal minimum, yakni 25 kg/cm2. Bila kuat tekan beton pejal ternyata lebih besar, maka beton pejal layak digunakan.

3.

HASIL DAN PEMBAHASAN

Pemilihan tanaman

Pada awal penelitian, tanaman yang direncanakan adalah cattail, yang dapat tumbuh dengan baik dalam skala laboratorium dan mudah diperoleh di Denpasar. Tanaman ini termasuk dalam keluarga tanaman padi-padian yang bisa mencapai ketinggian hingga 2 meter. Tanaman ini memiliki sistem akar serabut serta mudah tumbuh di tempat lembab atau basah. Namun, setelah sebulan dalam WWG skala lapangan, cattail ternyata tidak dapat berkembang dan mati perlahan-lahan, diduga karena kadar lemak yang sangat tinggi dalam air limbah. Berturut-turut tanaman diganti dengan papirus, eceng gondok, dan rumput gajah. Yang terakhir yang berhasil tumbuh dengan subur.

Waktu tinggal

Nilai BOD dan COD air limbah awal dan baku mutu air limbah domestik menurut Keputusan Menteri Negara Lingkungan Hidup Nomor 112 Tahun 2003 ditampilkan dalam Tabel 1.

Tabel 1. Nilai BOD dan COD

Parameter Konsentrasi (mg/l) Baku mutu (mg/l) BOD 4,64 100

(9)

Komda VI BMPTTSSI - Makassar, 7-8 Oktober 2015

Paper ID : TL04 Teknik Lingkungan

926

Harga BOD air limbah kantin sudah memenuhi baku mutu air limbah domestik, sedangkan nilai COD cukup tinggi, yang diduga karena kadar lemaknya sangat tinggi. Selanjutnya, nilai BOD tidak diukur lagi. Dalam skala laboratorium, dengan menggunakan tanaman cattail, nilai BOD air limbah dalam WWG diukur dan hasilnya ditampilkan pada Tabel 2.

Tabel 2. Kandungan COD akhir Hari ke- Kadar COD (mg/l)

0 630,707 1 121,779 2 65,434 3 54,528 4 38,17

Kadar COD air limbah sudah memenuhi baku mutu air limbah domestik pada hari ke-2 percobaan sehingga ditetapkan waktu tinggal limbah adalah 2 hari untuk menentukan dimensi kolam WWG.

Perhitungan dimensi kolam

WWG

Volume limbah harian diukur selama 5 hari berturut-turut dan dirata-ratakan dan didapat nilai 640,7 liter per hari ( ). Volume kolam (Qt) diperoleh diperoleh 1.28 m3 . Berdasarkan luas lahan yang tersedia, ditentukan luas kolam 2

x 1 m2 , diperoleh kedalaman 0,65 m dan ditambah 20 cm sebagai tinggi jagaan untuk mengantisipasi apabila terjadi fluktuasi volume air limbah sehingga kedalaman kolam adalah 0,85 m.

Perhitungan saluran

inlet

Gambar 2. Tampak Belakang Kantin

Gambar 3. Rencana saluran pipa Data-data perencanaan saluran antara lain:

Diameter pipa sal. 1 = 0,5 inci = 0,0127 m Diameter pipa sal. 2 = 0,5 inci = 0,0127 m Diameter pipa sal. 3 = 1 inci = 0,0254 m Koefisien roughness (n) = 0,011

Elevasi awal pipa 1 = 0,9 meter Elevasi awal pipa 2 = 0,3 meter Elevasi akhir = 0 meter

Jarak antar saluran outlet kantin 1 dan 2 = 3,25 m

(10)

Paper ID : TL04 Teknik Lingkungan

927

Tabel 3. Hasil kontrol kapasitas pipa Sal. 1 Sal. 2 Sal.3 A (m2) 1,087.10-4 1,087.10-4 1,087.10-4

P (m) 2,812.10-2 2,812.10-2 2,812.10-2 R 3,866.10-3 3,866.10-3 3,866.10-3 I 0,26 0,291 0,0499 V (m/hari) 99970 104400 43219 Q (m3/hari) 10,867 11,348 4,698

Q limbah

0,1715 0,4692 0,6407 (m3/hari)

Kontrol OK OK OK

Kontrol tegangan tanah

Data-data perhitungan:

γtanah (γs) = 2,625 ton/m3

γair = 1 t/m 3

Sudut geser tanah(ɸ) = 350

σijin tanah = 5 kg/cm2 (PPIUG 1983)

Faktor kohesi tanah (c) = 0 Tinggi bak kontrol (h) = 0,3 meter Tinggi bak pengolahan = 0,6 meter Hasil perhitungan disajikan dalam Tabel 4.

Tabel 4. Hasil perhitungan tegangan tanah Bak Kontrol Bak Pengolahan Ka 0,271 0,271 q (t/m2) 1 1 Ph1 (t/m2) 0,271 0,271 Ph2 (t/m2) 0,213 0,427 Fa1 (t) 0,0813 0,1626 Fa2 (t) 0,032 0,1281 Ftotal (t) 0,1133 0,2907

Kontrol kuat tekan batako

-Bak kontrol

Data-data yang tersedia:

Kuat tekan batako = 25 kg/cm2

Gaya tekan akibat tanah (F) = 0,1133 t = 113,3 kg Dimensi bak = 30 x 30 x 30 cm

Gaya tekan akibat tanah akan dibagi dengan luas permukaan dinding bak kontrol. Hasil dari perhitungan harus lebih kecil daripada kuat tekan batako.

-Bak pengolahan

Data-data yang tersedia:

Kuat tekan batako = 25 kg/cm2

(11)

Komda VI BMPTTSSI - Makassar, 7-8 Oktober 2015

Paper ID : TL04 Teknik Lingkungan

928 Dimensi bak = 300 x 100 x 60 cm

Gaya tekan akibat tanah akan dibagi dengan luas permukaan dinding paling kecil pada bak pengolahan. Hasil dari perhitungan harus lebih kecil daripada kuat tekan batako.

4.

SIMPULAN

Rumput gajah ternyata lebih tahan terhadap kandungan air limbah kantin dibandingkan dengan cattail, papirus,dan eceng gondok, walaupun menurut skala laboratorium cattail mampu menurunkan nilai COD dari 600 menjadi 65,4, yang memenuhi baku mutu air limbah domestik menurut Keputusan Menteri Lingkungan Hidup Nomor 112 tahun 2003, yakni sebesar 100 mg/l. Dengan debit harian rata-rata sebesar 640,7 liter/hari, dimensi kolam WWG yang dibutuhkan adalah 3 x 1 x 0,6 m3. Kolam WWG akan dilengkapi dengan 1 bak kontrol sebagai pemisah padatan pada air limbah dengan dimensi 0,3 x 0,3 x 0,3 m3. Saluran inlet dan outlet kolam menggunakan pipa PVC dengan diameter 0,5 inci.

5.

UCAPAN TERIMA KASIH

Terima kasih disampaikan kepada Jurusan Teknik Sipil Universitas Udayana yang telah mendanai penelitian ini.

DAFTAR PUSTAKA

Badan Standarisasi Nasional. (1989). Bata Beton Pejal, Mutu, dan Cara Uji SNI 03-0348-1989. Standar Nasional Indonesia.

Desta, A. F., Assefa, F., Leta, S., Stomeo, F., Wamalwa, M., Njahira, M., & Appolinaire, D. (2014). “Microbial community structure and diversity in an integrated system of anaerobic-aerobic reactors and a constructed wetland for the treatment of tannery wastewater in Modjo, Ethiopia”. PLoS One Vol.9(12).

Direktorat Penyelidikan Masalah Bangunan. (1983). Peraturan pembebanan Indonesia untuk gedung. Edisi 2. Yayasan lembaga Penyelidikan Masalah Bangunan, Bandung.

Giordani, C., Cecchi, S., and Zanchi, C. (2005). “Phytoremediation of soil polluted by nickel using agricultural crops”. Environmental Management Vol.36(5): 675-81.

Irawanto, R. (2010). “Fitoremediasi Lingkungan dalam Taman Bali”. Jurnal LIPI Vol II(4): 29-35. Keputusan Menteri Lingkungan Hidup Nomor 112 (2003). Baku mutu air limbah domestik.

Liu, R., Dai, Y., and Sun, L. (2015). “Effect of rhizosphere enzymes on phytoremediation in PAH-contaminated soil using five plant species”. PLoS One Vol.10 (3).

Mbuligwe, S. E. (2005). “Applicability of a septic tank/engineered wetland coupled system in the treatment and recycling of wastewater from a small community”. Environmental Management Vol.35(1), 99-108.

Rossi, L., Queloz, P., Brovelli, A., Margot, J., & Barry, D. A. (2013). “Enhancement of micropollutant degradation at the outlet of small wastewater treatment plants”. PLoS One Vol.8(3).

UNEP (tt). Phytoremediation: An environmentally sound technology for pollution prevention, control and remediation. An introductory guide to decision-makers. Newsletter and Technical Publications. Freshwater Management Series No. 2.http://www.unep.or.jp/Ietc/Publications/Freshwater/F.

Widyawati, E. (2008). Peranan mikroba tanah pada kegiatan rehabilitasi lahan bekas tambang. Pusat Litbang Hutan dan Konservasi Alam Bogor.

(12)
(13)

yenni ciawi-konteks

by

Yenni Ciawi

FILE

TIME SUBMITTED

04-FEB-2016 04:44PM

SUBMISSION ID

627705264

WORD COUNT

2264

CHARACTER COUNT

12503

(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)

16

%

SIMILARITY INDEX

15

%

INTERNET SOURCES

11

%

PUBLICATIONS

10

%

STUDENT PAPERS

1

2

%

2

2

%

3

2

%

4

2

%

5

1

%

yenni ciawi-konteks

ORIGINALITY REPORT

PRIMARY SOURCES

Giordano, Cesira, Francesco Spennati, Anna

Melone, Giulio Petroni, Franco Verni, Giulio

Munz, Gualtiero Mori, and Claudia Vannini.

"Biological Sulfur-Oxidizing Potential of

Primary and Biological Sludge in a Tannery

Wastewater Treatment Plant", Water Air &

Soil Pollution, 2015.

Publication

eprints.undip.ac.id

Internet Source

journals.plos.org

Internet Source

Zhang, Yue, Lei Wang, Yu Hu, Xuefei Xi,

Yushu Tang, Jinhai Chen, Xiaohua Fu, and

Ying Sun. "Water Organic Pollution and

Eutrophication Influence Soil Microbial

Processes, Increasing Soil Respiration of

Estuarine Wetlands: Site Study in

Jiuduansha Wetland", PLoS ONE, 2015.

Publication

www.ecohyd.org

(22)

1

%

7

1

%

8

1

%

9

1

%

10

<

1

%

11

<

1

%

12

<

1

%

13

<

1

%

14

<

1

%

15

<

1

%

r4d.dfid.gov.uk

Internet Source

Shafiq, Muhammad. "Effect of Composting

on Phytoextraction of Heavy Metals from

Tannery Solid Waste Amended Soil", Journal

of Solid Waste Technology &

Management/10881697, 20100201

Publication

Cesare Giordani. "Phytoremediation of Soil

Polluted by Nickel Using Agricultural Crops",

Environmental Management, 11/2005

Publication

www.pip2bdiy.org

Internet Source

www.pu.go.id

Internet Source

Submitted to iGroup

(23)

16

<

1

%

17

<

1

%

18

<

1

%

19

<

1

%

20

<

1

%

EXCLUDE QUOTES

OFF

EXCLUDE

BIBLIOGRAPHY

ON

EXCLUDE MATCHES

OFF

puslit2.petra.ac.id

Internet Source

stiepena.ac.id

Internet Source

jurnal.sttn-batan.ac.id

Internet Source

xa.yimg.com

Internet Source

gemawan.org

Gambar

Tabel 1. Nilai BOD dan COD
Gambar 2. Tampak Belakang Kantin
Tabel 3. Hasil kontrol kapasitas pipa

Referensi

Dokumen terkait

Hal ini menunjukkan bahwa Kabupaten Majalengka dapat mempertahankan kuantitas dan kontinuitas dalam memproduksi buah mangga, ini merupakan hal yang penting dan

a) Bunga adalah tambahan terhadap uang yang disimpan pada lembaga keuangan atau uang yang dipinjamkan. b) Besarnya bunga yang harus dibayar ditetapkan di muka tanpa

Tabel 2 Hasil Analisis Regresi linear Berganda Pengaruh Modal Kerja dan Luas Lahan Terhadap Produksi Usaha Tani Pisang di Kecamatan Bangun Purba Kabupaten Rokan Hulu.. Model

My blog :

Dosis aman pada pemberian ekstrak air daun katuk Sauropus androgynous yaitu dosis 45 mg/kgBB sampai dengan dosis 60 mg/kgBB tidak menimbulkan efek toksik secara subkronik terhadap

Penelitian dan pengembangan yang dilakukan adalah untuk menghasilkan produk berupa konsep matematika yang sudah diaplikasikan dalam kehidupan sehari-hari siswa

Sumber data yang digunakan dalam penelitian ini adalah sumber data sekunder yang di dapat dari data penagihan pajak dengan surat teguran dan surat paksa yang diterbitkan dan