• Tidak ada hasil yang ditemukan

Komplemen A dinyatakan dengan lambang A

N/A
N/A
Protected

Academic year: 2019

Membagikan "Komplemen A dinyatakan dengan lambang A"

Copied!
8
0
0

Teks penuh

(1)

PELUANG

Percobaan dalam statistika menyatakan tiap proses yang menghasilkan data mentah.

Ruang sampel adalah himpunan semua hasil yang mungkin dari suatu percobaan statistika dan dinyatakan dalam lambang T.

Unsur/anggota ruang sampel/titik sampel adalah tiap hasil dalam ruang sampel.

Contoh:

Pandanglah suatu percobaan melantunkan sebuah dadu. Bila yang diselidiki ialah nomor yang muncul disebelah atas, maka ruang sampelnya

T = {1, 2, 3, 4, 5, 6}

Bila yang ingin diselidiki pada pelantunan di atas apakah nomor genap atau ganjil yang muncul, maka ruang sampelnya.

T = {genap, ganjil}

Cara menentukan titik-titik sampel 1. Diagram Pohon

Contoh:

Suatu percobaan terdiri atas lantunan dua buah mata uang logam. Gunakan diagram pohon untuk menentukan semua titik sampel.

Maka T = {GG, GA, AG, AA} 2. Tabel

Suatu percobaan terdiri atas lantunan dua buah mata uang logam. Gunakan diagram pohon untuk menentukan semua titik sampel.

A G

A AA AG

G GA GG

Maka T = {GG, GA, AG, AA}

Untuk titik sampel yang tak hingga banyaknya ruang sampel lebih mudah ditulis dengan pernyataan atau simbol.

Contoh:

T = 𝑥 𝑥 suatu kota yang berpenduduk melebihi satu juta

T = 𝑥,𝑦 𝑥2+𝑦2≤4

Hasil Pertama

Hasil Kedua

Titik Sampel

GG GA

AG AA G

A

A G

(2)

Kejadian adalah himpunan bagian dari ruang sampel, dilambangkan dengan huruf kapital. Contoh:

Kejadian A adalah hasil lantunan suatu dadu dapat dibagi tiga. A = {3, 6}

Komplemen suatu kejadian A terhadap T adalah himpunan suatu unsur T yang tidak termasuk A. Komplemen A dinyatakan dengan lambang Ac.

Ac = {1, 2, 4, 5}

Irisan dua kejadian A dan B, dinyatakan dengan lambang 𝐴 ∩ 𝐵, adalah kejadian yang unsurnya termasuk dalam A dan B.

Contoh:

Misal A = {2, 4, 6} dan B = {4, 5, 6} maka 𝐴 ∩ 𝐵= 4,6

Dua kejadian A dan B dikatakan saling terpisah jika 𝐴 ∩ 𝐵= , yakni jika A dan B tidak memiliki unsur persekutuan.

Gabungan dua kejadian A dan B, dinyatakan dengan 𝐴 ∪ 𝐵, ialah kejadian yang mengandung semua unsur yang termasuk A atau B atau keduanya.

Contoh:

A = {a, b, c} dan B = {b, c, d, e}, maka 𝐴 ∪ 𝐵= 𝑎,𝑏,𝑐,𝑑,𝑒

Hubungan antara kejadian dan ruang sampel padananya dapat digambarkan dengan Diagram Venn.

Menghitung titik sampel 1. Aturan mn

Jika suatu operasi dapat dilakukan dengan m cara, dan jika untuk tiap cara ini operasi kedua dapat dikerjakan dengan n cara, maka kedua operasi itu dapat dikerjakan bersama-sama dengan mn cara. Contoh:

Berapa banyak titik sampel dalam ruang sampel jika sepasang dadu dilantunkan sekali? Jawab:

Dadu pertama dapat menghasilkan salah satu dari m = 6 posisi

Untuk tiap posisi tersebut dadu kedua dapat pula menghasilkan n = 6 posisi. Jadi pasangan dadu itu dapat menghasilkan mn = (6)(6) = 36 posisi.

A B

C 7

4

6

5 2

3 1 S

8

Misal A = {1, 2, 4, 7} B = {1, 2, 3, 6} C = {1, 3, 4, 5}

(3)

2. Permutasi adalah suatu susunan yang dapat dibentuk dari satu kumpulan benda yang diambil sebagian atau seluruhnya.(memperhatikan susunan AB dan BA dua titik sampel yang berbeda). Banyaknya permutasi n benda berlainan bila diambil r sekaligus adalah

𝑛𝑃𝑟= 𝑛!

𝑛 − 𝑟 !

Contoh:

Dari 20 lotere, dua diambil untuk hadiah pertama dan kedua. Hitunglah banyak titik sampel dalam ruang T?

Jawab:

Banyak seluruh titik sampel 𝑃2

20 =

20! 20−2 !=

20! 18!=

20 × 19 × 18 ×…× 1

18 × 17 × 16 ×…× 1= 20 × 19 = 380

 Banyak permutasi n benda yang berlainan n!

 Banyaknya permutasi n benda berlainan yang disusun melingkar adalah (n-1)!

 Banyaknya permutasi yang berlainan dari n benda jika n1 diantaranya berjenis pertama, n2 berjenis kedua, …, nk berjenis ke k adalah 𝑛

! 𝑛1!𝑛2!…𝑛𝑘!

Contoh:

Suatu pohon natal dihias dengan 9 bola lampu yang dirangkai seri. Ada berapa cara menyusun 9 bola lampu itu bila 3 diantaranya berwarna merah, 4 kuning, dan 2 biru?

Jawab: 9!

3!4!2!= 1260 cara

 Banyaknya cara menyekat suatu himpunan n benda dalam r sel, masing-masing berisi n1 unsur

dalam sel pertama, n2dalam sel kedua, dan seterusnya …, adalah

𝑛

𝑛1,𝑛2,…,𝑛𝑘 =

𝑛! 𝑛1!𝑛2!…𝑛𝑘! Dengan 𝑛1+𝑛2+⋯+𝑛𝑘=𝑛

Contoh:

Berapa banyak cara untuk menampung 7 petinju dalam 3 kamar hotel, bila 1 kamar bertempat tidur 3 sedang, 2 lainnya punya 2 tempat tidur?

Jawab:

7 3,2,2 =

7!

3! 2! 2!= 210

3. Kombinasi (tidak memperhatikan urutan, AB dan BA adalah 1 titik sampel yang sama) Banyaknya kombinasi dari n benda yang berlainan bila diambil sebanyak r sekaligus adalah

𝑛𝑟 = 𝑛!

𝑟! 𝑛 − 𝑟 !

Contoh:

Bila ada 4 kimiawan dan 3 fisikawan, carilah banyaknya panitia 3 orang yang dapat dibuat yang beranggotakan 2 kimiawan dan 1 fisikawan.

Jawab:

Banyaknya cara memilih 2 kimiawan dari 4 adalah 4

2 =

4! 2!4−2!= 6

Banyaknya cara memilih 1 fisikawan dari 3 adalah 3

1 =

(4)

Peluang Suatu Kejadian

Peluang suatu kejadian A adalah jumlah bobot semua titik sampel yang termasuk A. Jadi

0≤ 𝑃 𝐴 ≤1,𝑃 ∅ = 0 dan 𝑃 𝑇 = 1

Contoh:

Sebuah mata uang logam dilantunkan dua kali. Berapakah peluangnya bahwa paling sedikit muncul gambar sekali?

Jawab:

Ruang sampel percobaan ini: T = {GG,GA,AA,AG}

Tiap hasil mempunyai kemungkinan muncul yang sama. Karena itu tiap titik sampel diberi b sehingga

4𝑏= 1 atau 𝑏= 1 4. Bila A menyatakan kejadian bahwa paling sedikit satu gambar muncul, maka A = {GG, GA, AG}

Dan 𝑃 𝐴 =1

4+ 1 4+

1 4=

3 4 Contoh:

Sebuah mata uang logam dilantunkan dua kali, mata uang tersebut diberati sehingga peluang muncul gambar 2 kali lebih besar dibanding peluang muncul angka. Bila K menyatakan kejadian munculnya gambar sedikitnya sekali, hitunglah P(K).

Jawab:

Ruang sampel untuk satu koin 𝑇= 𝐺,𝐴 . Misalkan bobot angka b maka bobot gambar adalah 2b. Karena jumlah semua bobot 1 maka 2𝑏+𝑏= 1 atau 3𝑏= 1↔ 𝑏=1

3. Jadi angka berbobot

1 3

sedangkan gambar genap berbobot. 2 3. Ruang sampel untuk pelantunan koin dua kali 𝑇=

𝐴𝐴,𝐴𝐺,𝐺𝐴,𝐺𝐺 . Jadi

𝐾= 𝐴𝐺,𝐺𝐴,𝐺𝐺

Dan

𝑃 𝐺𝐺 =𝑃 𝐺 𝑃 𝐺 = 2 3

2

3 =

4 9

𝑃 𝐴𝐺 =𝑃 𝐴 𝑃 𝐺 = 1 3

2

3 =

2 9

𝑃 𝐺𝐴 =𝑃 𝐺 𝑃 𝐴 = 2 3

1

3 =

2 9

Maka 𝑃 𝐾 =𝑃 𝐺𝐺 +𝑃 𝐴𝐺 +𝑃 𝐺𝐴 =4

9+ 2 9+

2 9=

8 9

Jika suatu percobaan dapat menghasilkan N macam hasil yang berkemungkinan sama, dan jika tepat sebanyak n dari hasil berkaitan dengan kejadian A, maka peluang kejadian A adalah 𝑃 𝐴 =𝑛

𝑁

Contoh:

Sekantung permen berisi 6 rasa jeruk , 4 rasa kopi, dan 2 rasa coklat. Jika seseorang mengambil satu permen secara acak, carilah peluangnya mendapat:

a. 1 rasa jeruk

b. 1 rasa kopi atau coklat Jawab:

a. N = 13 dan n(J) = 6 𝑃 𝐽 = 6

13

b. N = 13 dan 𝑛 𝐾 ∪ 𝐶 = 7

𝑃 𝐾 ∪ 𝐶 = 7

(5)

Contoh:

Dalam setangan pemain poker terdapat 5 kartu, hitunglah peluang mendapat 2 As dan 3 jack. Jawab:

Banyak cara mendapat 2 As dari 4 As adalah

4

2 =

4!

2! 4−2 != 6

Dengan banyaknya cara mendapatkan 3 dari 4 jack adalah

4

3 =

4!

3! 4−3 != 4

Banyak titik sampel untuk kejadian 2 As dan 3 Jack = m.n = (6)(4) = 24

Banyak tangan kartu poker masing-masing berisi 5 kartu 52, semuanya kemungkinan sama, adalah 𝑁= 52

5 =

52!

5! 52−5!= 2.598.960

Jadi peluang kejadian C mendapat 2 As dan 3 Jack 𝑃 𝐶 = 24

2598960 = 0,9 × 10 −5

Penentuan bobot:

1. Frekuensi relatif/nisbi : cara penentuan bobot dengan mengurangi percobaan tak hingga banyaknya. 2. Subjektif : penentuan bobot begantung intuisi atau keyakinan seseorang.

Dalam pembahasan peluang selajutnya penentuan bobot yang akan digunakan frekuensi relatif, lebih tepat lagi: limit dari frekuensi relatif.

Aturan Peluang

 Bila A dan B dua kejadian sebarang, maka

𝑃 𝐴 ∪ 𝐵 =𝑃 𝐴 +𝑃 𝐵 − 𝑃 𝐴 ∩ 𝐵

Contoh:

Suatu dadu dilantunkan sekali. Bila K menyatakan kejadian munculnya suatu angka yang habis dibagi 3 dan L menyatakan kejadian munculnya suatu angka ganjil, hitunglah 𝑃 𝐾 ∪ 𝐿 .

Jawab:

Ruang sampel 𝑇= 1,2,3,4,5,6 . Bobot untuk setiap titik sampel sama. K = {3,6} sehingga 𝑃 𝐾 =2

6 ; L = {1,3,5} sehingga 𝑃 𝐿 = 3

6 ; dan 𝐾 ∩ 𝐿= 3 sehingga 𝑃 𝐾 ∩ 𝐿 = 1

6. Maka

𝑃 𝐾 ∪ 𝐿 =2 6+

3 6−

1 6=

4 6

 Bila A dan B dua kejadian saling terpisah, maka

𝑃 𝐴 ∪ 𝐵 =𝑃 𝐴 +𝑃 𝐵

Contoh

Suatu dadu dilantunkan sekali. Bila L menyatakan kejadian munculnya suatu angka ganjil dan M menyatakan kejadian munculnya angka genap kurang dari 5, hitung 𝑃 𝐿 ∪ 𝑀 .

Jawab:

Ruang sampel 𝑇= 1,2,3,4,5,6 . Bobot untuk setiap titik sampel sama. 𝐿= 1,3,5 sehingga 𝑃 𝐿 =3

6 dan 𝑀= 2,4 sehingga 𝑃 𝐿 𝑐 =2

6 dan kita ketahui bahwa 𝐿 ∩ 𝐿𝑐= , maka L dan Lc

adalah dua kejadian saling terpisah, maka 𝑃 𝐿 ∪ 𝐿𝑐 =3

6+ 2 6=

5 6

 Bila A1, A2, A3, …, An, saling terpisah, maka

(6)

 Bila A, B, dan C kejadian sebarang, maka

𝑃 𝐴 ∪ 𝐵 ∪ 𝐶 =𝑃 𝐴 +𝑃 𝐵 +𝑃 𝐶 − 𝑃 𝐴 ∩ 𝐵 − 𝑃 𝐴 ∩ 𝐶 − 𝑃 𝐵 ∩ 𝐶 +𝑃 𝐴 ∩ 𝐵 ∩ 𝐶

Contoh:

P(lulus matematika) = 2

3 dan P(lulus biologi) = 4

9, jika P(keduanya) = 1 4. Berapa peluang lulus paling sedikit satu mata kuliah?

Jawab:

𝑃 𝑀 ∪ 𝐵 =𝑃 𝑀 +𝑃 𝐵 − 𝑃 𝑀 ∩ 𝐵 =2 3+

4 9−

1 4=

31 36

 Bila A dan Ac kejadian yang saling berkomplementer, maka 𝑃 𝐴 +𝑃 𝐴𝑐 = 1

Contoh

Suatu dadu dilantunkan sekali. Bila L menyatakan kejadian munculnya suatu angka ganjil dan Lc adalah komplemen dari L, hitunglah 𝑃 𝐿 +𝑃 𝐿𝑐 .

Jawab:

Ruang sampel 𝑇= 1,2,3,4,5,6 . Bobot untuk setiap titik sampel sama. 𝐿= 1,3,5 sehingga 𝑃 𝐿 =3

6 dan 𝐿

𝑐= 2,4,6 sehingga 𝑃 𝐿𝑐 =3

6, maka 𝑃 𝐿 +𝑃 𝐿𝑐 =3

6+ 3 6= 1

Peluang Bersyarat

Peluang bersyarat B bila A diketahui, dinyatakan dengan 𝑃 𝐵 𝐴 ditentukan oleh 𝑃 𝐵 𝐴 =𝑃 𝐴∩𝐵

𝑃 𝐴 , bila 𝑃 𝐴 > 0 Contoh:

Misalkan ruang sampel menyatakan populasi orang dewasa yang telah tamat SMA di suatu kota kecil. Mereka dikelompokkan menurut jenis kelamin dan status pekerjaan berikut.

Bekerja Tidak bekerja Jumlah L

W

460 140

40 260

500 400

Σ 600 300 900

Daerah tersebut akan dijadikan daerah pariwisata dan seseorang akan dipilih secara acak untuk mempropagandakannya ke seluruh negeri. Kita ingin meneliti kejadian berikut:

M = lelaki yang terpilih

E = orang yang terpilih dalam status bekerja. Jawab:

𝑃 𝐸 ∩ 𝑀 dan P(E) diperoleh dari ruang sampel T.

𝑃 𝐸 ∩ 𝑀 =460 900=

23 45

𝑃 𝐸 =600 900=

2 3

Jadi

𝑃 𝑀 𝐸 =23 45

2 3 =

23 30

(7)

𝑃 𝐵 𝐴 =𝑃 𝐵

Dan

𝑃 𝐴 𝐵 =𝑃 𝐴

Jika A dan B kejadian saling bebas maka 𝑃 𝐴 ∩ 𝐵 =𝑃 𝐴 𝑃 𝐵 . Contoh:

Suatu kota kecil mempunyai satu mobil pemdan kebakaran dan satu ambulans untuk keadaan darurat. Peluang mobil pemadam kebakaran siap waktu diperlukan 0.98 peluang ambulans siap waktu dipanggil 0.92. Dalam kejadian ada kecelakaan karena kebakaran gedung, cari peluang keduanya siap.

Jawab:

Misalkan A dan B menyatakan masing-masing kejadian mobil pemadan kebakaran dan ambulans siap. Maka

𝑃 𝐴 ∩ 𝐵 =𝑃 𝐴 𝑃 𝐵 = 0.98 0.92 = 0.9016

Ekspektasi

Misalkan k adalah sejumlah peristiwa yang dapat terjadi dalam suatu eksperimen. Sedangkan probabilitas terjadinya setiap peristiwa masing-masing adalah 𝑝1,𝑝2,𝑝3,…,𝑝𝑘 untuk setiap peristiwa dengan probabilitas tersebut terdapat satuan-satuan 𝑑1,𝑑2,𝑑3,…,𝑑𝑘yang harganya dapat berupa nol, dapat positif atau negatif. Sedemikian rupa sehingga 𝑝1+𝑝2+⋯+𝑝𝑘 = 1. Maka ekspektasinya didefinisikan sebagai : 𝜉=𝑝1𝑑1+𝑝2𝑑2+⋯+𝑝𝑘𝑑𝑘 = 𝑘𝑖=1𝑝𝑖𝑑𝑖

Contoh:

A dan B bertaruh jika uang logam yang muncul gambar A akan memberi B 500, jika yang muncul angka B akan memberi A 500. Dari permainan ini, maka untuk A menang 500, probabilitas 1 2, kalah 500 dengan probabilitas 1 2, sehingga ekspektasi untuk A adalah:

𝜉 untuk A =𝑝1𝑑1+𝑝2𝑑2= 1

2 500 + 1

2 −500 = 0

Berarti, untuk jangka panjang dalam permainan ini, A dan B masing-masing menang nol rupiah. Contoh:

Bila dua uang logam dilantunkan 16 kali dan X menyatakan banyaknya muncul gambar per lantunan maka X dapat berharga 0, 1, dan 2. Misalkan percobaan itu menghasilkan tidak ada gambar, satu gambar, dan dua gambar, masing-masing, sebanyak 4, 7, dan 5 kali. Berapa ekspetasi muncul gambar? Jawab:

Ruang sampelnya 𝑇= 𝐴𝐺,𝐺𝐴,𝐺𝐺,𝐴𝐴 . Karena ke 4 titik sampel berpeluang sama maka 𝑃 𝑋= 0 =𝑃 𝐴𝐴 =1

4

𝑃 𝑋= 1 =𝑃 𝐺𝐴 +𝑃 𝐴𝐺 =1

4+ 1 4=

1 2 𝑃 𝑋= 2 =𝑃 𝐺𝐺 =1

4 Maka 𝜉 𝑋 = 0 1

4 + 1 1

2 + 2 1 4 = 1

Ini berarti bahwa bila seseorang melantunkan dua uang logam berulang-ulang maka, rata-ratanya, dia mendapat satu gambar per lantunan

Daftar Pustaka

(8)

Panggabean, Luhut. 2000. Statistika Dasar. Bandung: UPI Sudjana. 2005. Metode Statistika. Bandung: Tarsito

Referensi

Dokumen terkait

bahwa berdasarkan pertimbangan sebagaimana dimaksud dalam huruf a dan huruf b, perlu menetapkan Peraturan Walikota tentang Pembentukan, Kedudukan, Susunan Organisasi

plantarum sebagai agensia probiotik untuk pembuatan okara probiotik drink (b) kemampuan kedua kultur tersebut dalam mengasimilasi kolesterol pada produk yang dihasilkan

Gabungan dua kejadian A dan B, dinyatakan dengan A ∪ B,  merupakan kejadian yang mengandung semua elemen yang  termasuk A atau B atau keduanya.

 Ruang sampel adalah himpunan semua hasil yang mungkin dari suatu percobaan randomb. Ruang sampel biasa dinotasikan dengan

Kegiatan pelatihan dan pengabdian diikuti 40 peserta dari guru MGMP Matematika SMP Kota Pekalongan. Kegiatan ini merupakan kelanjutan dari kerjasama yang dilakukan antara

Berdasarkan diagram tersebut dapat diperoleh informasi bahwa sejumlah 58.82% menyatakan bahwa atribut ketahanan produk berpengaruh dan 12.94% sangat berpengaruh terhadap keputusan

Berdasarkan Hukum Lotka, kepengarangan tunggal dosen UIN Jakarta pada jurnal terindeks Scopus hanya menghasilkan 0,034 (3%) dari keseluruhan hasil publikasi Dengan demikian

Berdasarkan hasil uji-t diperoleh ketiga variabel pengaruh secara parsial berpengaruh positif dan signifikan terhadap pendapatan pengusaha jual beli motor bekas di Manna