• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:OTHER:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:OTHER:"

Copied!
6
0
0

Teks penuh

(1)

THE INTEGRAL OPERATOR ON THE SP (α, β) CLASS

Daniel Breaz 1

Abstract. In this paper we present a convexity condition for a integral

operator F defined in formula (2) on the class SP(α, β). 2000 Mathematics Subject Classification: 30C45

Keywords and phrases: Univalent functions, integral operator, convex functions.

1.INTRODUCTION

Let U = {z ∈C,|z|<1} be the unit disc of the complex plane and de-note by H(U), the class of the olomorphic functions in U. Consider A =

{f ∈H(U), f(z) = z+a2z2+a3z3+..., z U}be the class of analytic func-tions in U and S ={f ∈A:f is univalent in U}.

Denote with K the class of the olomorphic functions in U with f(0) = f′(0)1 = 0, where is convex functions in U , defined by

K =

f ∈H(U) :f(0) = f′(0)1 = 0,Re

zf′′(z)

f′(z) + 1

>0, z ∈U

and denote forK(µ) the functions convex by the orderµ,µ∈[0,1), defined by

K(µ) =

f ∈H(U) :f(0) =f′(0)−1 = 0,Re

zf′′(z)

f′(z) + 1

> µ, z ∈U

.

(2)

In the paper (3) F. Ronning introduced the class of univalent functions SP (α, β), α > 0, β ∈ [0,1), the class of all functions f ∈S which have the property:

zf′(z)

f(z) −(α+β)

≤Rezf

(z)

f(z) +α−β, (1)

for all z ∈U.

Geometric interpretation: f ∈SP (α, β) if and only ifzf′(z)/f(z), z

U takes all values in the parabolic region

Ωα,β ={ω :|ω−(α+β)| ≤Reω+α−β}=

ω =u+iv :v2 ≤4α(u−β) . We consider the integral operator defined in [2]

F (z) = Z z

0

f1(t) t

α1

·...·

fn(t)

t αn

dt (2)

and we study your properties.

Remark. We observe that for n = 1 and α1 = 1 we obtain the integral operator of Alexander.

2.Main results

Theorem 1.Let αi, i ∈ {1, ..., n} the real numbers with the properties

αi >0 for i∈ {1, ..., n},

n

X

i=1 αi <

1

α−β+ 1 (3)

and (β−α−1)Pn

i=1αi + 1 ∈ (0,1). We suppose that the functions fi ∈

SP (α, β) for i = {1, ..., n} and α > 0, β ∈ [0,1). In this conditions the integral operator defined in (2) is convex by the order(β−α−1)Pn

i=1αi+1.

(3)

F′(z) = f1(z) z α1 ·...· fn(z)

z αn

and

F′′(z) =

n

X

i=1 αi

fi(z)

z

αi−1 zf′

i(z)−fi(z)

zfi(z)

n Y

j=1 j6=i

fj(z)

z αj

F′′(z)

F′(z) =α1

zf′

1(z)−f1(z) zf1(z)

+...+αn

zf′

n(z)−fn(z)

zfn(z)

.

F′′(z)

F′(z) =α1

f′

1(z) f1(z) −

1 z

+...+αn

f′

n(z)

fn(z)

− 1

z

. (4)

Multiply the relation (4) with z we obtain: zF′′(z)

F′(z) =

n X i=1 αi zf′ i(z)

fi(z)

−1 = n X i=1 αi zf′ i (z)

fi(z)

n

X

i=1

αi. (5)

The relation (5) is equivalent with zF′′(z)

F′(z) =

n X i=1 αi zf′ i(z)

fi(z)

+α−β

+ (β−α−1)

n

X

i=1

αi. (6)

and

zF′′(z)

F′(z) + 1 =

n X i=1 αi zf′ i (z)

fi(z)

+α−β

+ (β−α−1)

n

X

i=1

αi+ 1. (7)

We calculate the real part from both terms of the above equality and obtain:

Re

zF′′(z)

F′(z) + 1

=Re ( n X i=1 αi zf′ i(z)

fi(z)

+α−β )

+(β−α−1)

n

X

i=1 αi+1.

(4)

Because fi ∈ SP(α, β) for i = {1, ..., n} we apply in the above relation

the inequality (1) and obtain:

Re

zF′′(z)

F′(z) + 1

n

X

i=1 αi

zf′

i(z)

fi(z)

−(α+β)

+(β−α−1)

n

X

i=1

αi+1. (9)

Because αi

zf′ i(z)

fi(z) −(α+β)

> 0 for all i ∈ {1, ..., n} and the inequality (3) we obtain that

Re

zF′′(z)

F′(z) + 1

≥(β−α−1)

n

X

i=1

αi+ 1>0. (10)

From (10) and because (β−α−1)Pn

i=1αi+1∈(0,1) we obatin that the

integral operator defined in (2) is convex by the order (β−α−1)Pn

i=1αi+1.

Corollary 2. Let γ the real numbers with the properties 0< γ < 1

α−β+1. We suppose that the functions f ∈ SP(α, β) and α > 0, β ∈ [0,1). In this conditions the integral operator F(z) = Rz

0 f

(z)

z

γ

dt is convex.

Proof. In the Theorem 1, we consider n = 1, α1 =γ and f1 =f.

For α = β ∈ (0,1) we obtain the class S(α, α) where is caracterized by the next property

zf′(z)

f(z) −2α

≤Rezf

(z)

f(z) . (11)

Corollary 3. Let αi, i ∈ {1, ..., n} the real numbers with the properties

αi >0 for i∈ {1, ..., n} and

1−

n

X

i=1

αi ∈[0,1). (12)

We suppose that the functions fi ∈ SP (α, α) for i ={1, ..., n} and α ∈

(0,1). In this conditions the integral operator defined in (2) is convex by the order 1−Pn

i=1αi.

(5)

zF′′(z)

F′(z) =

n

X

i=1 αi

zf′

i(z)

fi(z)

n

X

i=1

αi, (13)

where is equivalent with

Re

zF′′(z)

F′(z) + 1

=

n

X

i=1 αiRe

zf′

i(z)

fi(z)

n

X

i=1

αi+ 1, (14)

From (11) and (14) obtain that:

Re

zF′′(z)

F′(z) + 1

>

n

X

i=1 αi

zf′

i(z)

fi(z)

−2α

+ 1−

n

X

i=1

αi. (15)

Because Pn

i=1αi

zf′ i(z) fi(z) −2α

> 0 for all i ∈ {1, ..., n}, from (15) we obatin:

Re

zF′′(z)

F′(z) + 1

>1−

n

X

i=1

αi. (16)

Now, from (12) we obtain that the operator defined in (2) is convex by the order 1−Pn

i=1αi.

For α=β = 12 we observe that SP 12,12

=SP. This class is defined by Ronning in the paper [4]. For the class SP we have the next result:

Corollary 4.Let αi, i ∈ {1, ..., n} the real numbers with the properties

αi >0 for i∈ {1, ..., n} and

1−

n

X

i=1

αi ∈[0,1). (17)

We suppose that the functions fi ∈ SP for i ={1, ..., n}. In this

condi-tions the integral operator defined in (2) is convex by the order 1−Pn

(6)

References

[1] M. Acu, Operatorul integral Libera-Pascu si proprietatile acestuia cu privire la functiile uniform stelate, convexe, aproape convexe si α-uniform convexe,Editura Universitatii ”Lucian Blaga” din Sibiu, 2005.

[2] D. Breaz, N. Breaz,Two integral operators, Studia Universitatis Babe¸s -Bolyai, Mathematica, Cluj Napoca, No. 3-2002,pp. 13-21.

[3] F. Ronning, Integral reprezentations of bounded starlike functions, Ann. Polon. Math., LX, 3(1995), 289-297.

[4] F. Ronning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118, 1(1993), 190-196.

Author: Daniel Breaz

Department of Mathematics ”1 Decembrie 1918” University Alba Iulia

Romania

Referensi

Dokumen terkait

Non esistono su C 4 altre serie infinite di ordine due, per cui invece che di somma fra tali serie si pu `o parlare, senza possibilit`a di confusione, di somma fra coppie di punti..

girls, which contradicts the appeal for single-sex schooling.. year levels, the only students who thought they received more. attention were at the single-sex school but the

From the school sample, there are 55 students whose greatest difference between CAT scores was 20 or more; six of these are identified as having specific learning difficulties.. It

Inversement enfin, si l’on part d’une cat´egorie β -normalement accessible A, on cons- truit suivant la m´ethode classique, en agrandissant (A + β ) op , une esquisse E de sorte

Dalam penelitian ini akan membahas makna integral lipat dua atas suatu daerah tetutup D dan aplikasi integral lipat dua dalam menghitung volume bangun ruang di R 3 yang

an inversion scheme in which the finite difference method is used for the forward modeling and the integral equation method for the inverse

In the Mediterranean zone, e ff orts to optimize combinations of supplemental irrigation (SI ), improved varieties, nitrogen (N ) and sowing dates aim to improve and stabilize

Daya adsorpsi Si-DPZIDA terhadap ion Cu(II) dengan kehadiran ko-kation Cr(III) pada sistem binary Cu-Cr Kurva pada Gambar 4 menunjukkan bahwa terjadi penurunan daya