THE STARLIKENES PROPERTIES FOR INTEGRAL OPERATORS
by
Daniel Breaz and Nicoleta Breaz
Abstract. In this paper we prove a starlikeness property for the Bernardi operator concerning
( )
αS -class and two particular properties for Libera and Alexander operators.
INTRODUCTION.
Let U=
{
z:z <1}
the unit disc in the complex plane and let An the class offunctions f of the form f
( )
z z a z an zn z Un
n + + ∈
+
= +
+ +
+ 2 2 ...,
1
1 , which are analytic
in the unit disc U and we denote A1 = A.
Let the class of univalent functions S =
{
f:f∈Hn( ) ( ) ( )
U , f 0 = f′0 −1=0}
and let( )
( )
( )
′ > ∈
=
∗ z U
z f
z f z f
S α :Re α,
the class of starlike functions of the order α,0≤α<1, in U. For α =0, denote
( )
∗∗ =S
S 0 the class of the starlike functions in U. Consider the following integral operator
( )
= +∫
z( )
c− ≥ cc f tt dt c
z c z F
0
1 , 0
1
, where f ∈An, where is the Bernardi operator.
For 0γ = obtained the Alexander operator, and for γ =1 is the operator of Libera.
PRELIMINARY RESULTS.
Definition [1] For 0<α ≤2, we define S
( )
α as the class of functions f ∈A, which satisfy the conditions f( )
z ≠0, for 0< z <1and( )
z Uz f
z
∈ ≤ ″
Theorem A. [1] Let f∈A,f
( )
z ≠0,for 0< z <1. If( )
z Uz f
z
∈ ≤ ″
2, , then f is
univalent in U. Corollary B. [1] Let
( )
Az b z z
f
n n n
∈ +
=
∑
∞=11 and
( )
∑
∞= − ≤2
2 1
n
n
b n
n .
Then f is univalent in U.
Remark [1] All the functions from S
( )
α , 0<α ≤2 which satisfy theorem A is univalent in U.Theorem C. [1] Let f
( )
z =z+a2z2 +...∈S( )
α , with 0<α ≤2. Then for any z∈U we have:( )
z − ≤ za + zf z
2
1 2 α ;
( )
≤ + + ≤
+
− z a z
z f
z z
a z
2 1
Re 2
1 2 α 2 α ;
( )
2 2
2
1 z a z
z z
f
α
+ +
≥ .
The equalities exist if:
( )
α( )
α ,(
0 2α)
2
1 2
≤ ≤ ∈
+ ±
= S a
z az
z z
f .
Theorem D. [1] Let f∈S
( )
α with the following form f( )
z =z+a3z3+a4z4 +....a) If 2
5 2
≤
≤α , then f is starlike for
4 5
1 2
⋅ < α
b) If 3−1≤α ≤2, then Re f′
( )
z >0, forα 1 3−
<
z .
Corollary E. [1] Let f ∈S
( )
α with the following form f( )
z =z+a3z3 +a4z4 +.... a)If5 2
0<α ≤ , then f is starlike in U.
b) If 0<α ≤ 3−1, then Ref′
( )
z >0, for z∈U.Lemma F [2] Let γ >0 and β <1. If f ∈An satisfy inequality
( )
( )
{
f' z +γzf" z}
>βRe , z∈U ,
then
( )
{ }
'(
1) ( )
{
2 , 1}
Re f z >β + −β δ n γ − , z∈U , where
( )
∫
+ =1
01
, γ
ρ ρ γ
δ n
d
n .
MAIN RESULTS.
Theorem 1. Let θ =0,911621907, −1<c≤4,741187 and
( )
{
2( )
,1 1}
1 1 , 2 1
1 1 1 , 2 1
3 1
1 2 2
−
+ −
−
+ <
+ − +
n c
c n tg
c c c
δ δ
δ
θ .
If f ∈An, satisfies inequality
( )
( )
( )
{
( )
}
−
+ −
− + +
− + + −
> ′
θ δ
δ
θ
2 2 2
2
3 1 1 1 1 , 1 1 , 1 4 1 2
3 1 1 1 2 1
Re
tg c c
n n
c
tg c c
z
f (1)
then
*
S Fc∈ ,
Proof. For this proof we need the following result proved by Yong Chan Kim and H.M. Srivastava in [4] and which we are presented below.
We consider δ
( )
n,γ defined as Lemma F and we have the following conditions satisfied :911621907 ,
0
=
θ , 17418γ ≥0,
( )
( )
( )
{
1 ,} ( )
{
2 ,1 1}
1 , 2 3 1 2 2 − − − < − − n n n tg δ γ δ δ γ θ γγ γ .If f ∈An satisfies inequality:
( )
( )
{
}
( )
( )
{
−}
{
−( )
} ( )
− − + − − + − > + θ γγ γ δ δ γ θ γγ γ γ 2 2 2 2 2 2 3 1 1 , 1 1 , 1 4 2 3 1 1 2 1 " ' Re tg n n tg z f zf , z∈U, (2)
then f ∈S*.
We go back to our proof. One easily observe that
( )
( )
z F( )
z cz F z
f c ⋅ c″
+ + ′ = 1 1 ' .
It is known the fact that f ∈An then Fc∈An.
Concerning the relation (1) and (2) above and consider
1 1
+ =
c
γ we obtain:
( )
( )
( )
> ⋅ ″ + + ′
= z F z
c z F z
f c c
1 1 Re ' Re
( )
( )
{
( )
}
31 01 1 1 , 1 1 , 1 4 1 2 3 1 1 1 2 1 2 2 2 2 > − + − − + + − + + − > θ δ δ θ tg c c n n c tg c c .
Concerning the result proved by Yong Chan Kim and H.M. Srivastava, this last inequality implies the fact that Fc∈S*.
( )
(
)
31 0,02531...,1 2 ln 1 8 4
3 1 5 1
Re
2 2
2
− ≈
− −
+
− −
> ′
θ θ
tg tg z
f z∈U ,
then
( )
( )
*0 1
2
S dt t f z z F
z
∈
=
∫
,where F1 is the operator of Libera.
Proof. This corollary is obtained from theorem 1, for c=n=1. So we obtain
( )
( )
( )
(
)
31 0,02531...,1 2 ln 1 8 4
3 1 5 1
2 1 Re
Re
2 2
2
1
1 ≈−
− −
+
− −
>
′ + ⋅ ″
= ′
θ θ
tg tg z
F z z F z
f
condition which implies the starlikenes of Libera’s operator.
Corollary 3. Let θ =0,911621907. If f ∈A1 satisfy the inequality
( )
0,417352...2 ln 4 2 ln 4 6
2 ln 4 2 ln 4 3 Re
2 2
≈ +
− +
− > ′ z f
then
( )
( )
*0
0 dt S
t t f f F
z
∈
=
∫
,where F0 is Alexander’s operator.
Proof. We considerc=0,n=1 in theorem 1. So we obtain δ
( )
1,1 =ln2and( )
{
( )
( )
}
0,417352...2 ln 4 2 ln 4 6
2 ln 4 2 ln 4 3 Re
Re 2
2 0
0 ≈
+ −
+ − > ″ ⋅ + ′ =
′ z F z z F z
f ,
condition which implies the starlikenes of Alexander’s operator.
REFERENCES
[2] Nunokava M., Obradovic M., Owa S.- One criterion for univalency, Proc. Amer. Math. Soc. 106(1989), no.4. 1035-1037.
[3] Nunokava M. - On the theory of multivalent functions, Tsukuba J. Math. 11(1987), no.2, 273-286.
[4] Kim Y.C., Srivastava H.M.-Some applications of a differential subordination, Internat. J. Math.&Math. Sci. Vol. 22. No. 3.(1999), 649-654.