• Tidak ada hasil yang ditemukan

articol Acta 4. 47KB Jun 04 2011 12:08:22 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "articol Acta 4. 47KB Jun 04 2011 12:08:22 AM"

Copied!
6
0
0

Teks penuh

(1)

THE STARLIKENES PROPERTIES FOR INTEGRAL OPERATORS

by

Daniel Breaz and Nicoleta Breaz

Abstract. In this paper we prove a starlikeness property for the Bernardi operator concerning

( )

α

S -class and two particular properties for Libera and Alexander operators.

INTRODUCTION.

Let U=

{

z:z <1

}

the unit disc in the complex plane and let An the class of

functions f of the form f

( )

z z a z an zn z U

n

n + + ∈

+

= +

+ +

+ 2 2 ...,

1

1 , which are analytic

in the unit disc U and we denote A1 = A.

Let the class of univalent functions S =

{

f:fHn

( ) ( ) ( )

U , f 0 = f′0 −1=0

}

and let

( )

( )

( )

   

 ′ >

=

z U

z f

z f z f

S α :Re α,

the class of starlike functions of the order α,0≤α<1, in U. For α =0, denote

( )

=S

S 0 the class of the starlike functions in U. Consider the following integral operator

( )

= +

z

( )

c− ≥ c

c f tt dt c

z c z F

0

1 , 0

1

, where fAn, where is the Bernardi operator.

For 0γ = obtained the Alexander operator, and for γ =1 is the operator of Libera.

PRELIMINARY RESULTS.

Definition [1] For 0<α ≤2, we define S

( )

α as the class of functions fA, which satisfy the conditions f

( )

z ≠0, for 0< z <1and

( )

z U

z f

z

∈ ≤ ″   

(2)

Theorem A. [1] Let fA,f

( )

z ≠0,for 0< z <1. If

( )

z U

z f

z

∈ ≤ ″   

2, , then f is

univalent in U. Corollary B. [1] Let

( )

A

z b z z

f

n n n

∈ +

=

=1

1 and

( )

= − ≤

2

2 1

n

n

b n

n .

Then f is univalent in U.

Remark [1] All the functions from S

( )

α , 0<α ≤2 which satisfy theorem A is univalent in U.

Theorem C. [1] Let f

( )

z =z+a2z2 +...∈S

( )

α , with 0<α ≤2. Then for any zU we have:

( )

z − ≤ za + z

f z

2

1 2 α ;

( )

≤ +  +  ≤

   

+

z a z

z f

z z

a z

2 1

Re 2

1 2 α 2 α ;

( )

2 2

2

1 z a z

z z

f

α

+ +

≥ .

The equalities exist if:

( )

α

( )

α ,

(

0 2α

)

2

1 2

≤ ≤ ∈

+ ±

= S a

z az

z z

f .

Theorem D. [1] Let fS

( )

α with the following form f

( )

z =z+a3z3+a4z4 +....

a) If 2

5 2

≤α , then f is starlike for

4 5

1 2

⋅ < α

(3)

b) If 3−1≤α ≤2, then Re f

( )

z >0, for

α 1 3−

<

z .

Corollary E. [1] Let fS

( )

α with the following form f

( )

z =z+a3z3 +a4z4 +.... a)If

5 2

0<α ≤ , then f is starlike in U.

b) If 0<α ≤ 3−1, then Ref

( )

z >0, for zU.

Lemma F [2] Let γ >0 and β <1. If fAn satisfy inequality

( )

( )

{

f' zzf" z

}

Re , zU ,

then

( )

{ }

'

(

1

) ( )

{

2 , 1

}

Re f z >β + −β δ n γ − , zU , where

( )

+ =1

01

, γ

ρ ρ γ

δ n

d

n .

MAIN RESULTS.

Theorem 1. Let θ =0,911621907, −1<c≤4,741187 and

( )

{

2

( )

,1 1

}

1 1 , 2 1

1 1 1 , 2 1

3 1

1 2 2

− 

  

  

 

+ −

−    

 

+ <

+ − +

n c

c n tg

c c c

δ δ

δ

θ .

If fAn, satisfies inequality

( )

( )

( )

{

( )

}

  

  −    

 

   

 

+ −

− + +

   

  − + + −

> ′

θ δ

δ

θ

2 2 2

2

3 1 1 1 1 , 1 1 , 1 4 1 2

3 1 1 1 2 1

Re

tg c c

n n

c

tg c c

z

f (1)

then

*

S Fc∈ ,

(4)

Proof. For this proof we need the following result proved by Yong Chan Kim and H.M. Srivastava in [4] and which we are presented below.

We consider δ

( )

n,γ defined as Lemma F and we have the following conditions satisfied :

911621907 ,

0

=

θ , 17418γ ≥0,

( )

( )

( )

{

1 ,

} ( )

{

2 ,1 1

}

1 , 2 3 1 2 2 − − − < − − n n n tg δ γ δ δ γ θ γγ γ .

If fAn satisfies inequality:

( )

( )

{

}

( )

( )

{

}

{

( )

} ( )

 − −  +     − + − > + θ γγ γ δ δ γ θ γγ γ γ 2 2 2 2 2 2 3 1 1 , 1 1 , 1 4 2 3 1 1 2 1 " ' Re tg n n tg z f z

f , zU, (2)

then fS*.

We go back to our proof. One easily observe that

( )

( )

z F

( )

z c

z F z

f cc

+ + ′ = 1 1 ' .

It is known the fact that fAn then FcAn.

Concerning the relation (1) and (2) above and consider

1 1

+ =

c

γ we obtain:

( )

( )

( )

>

      ″ + + ′

= z F z

c z F z

f c c

1 1 Re ' Re

( )

( )

{

( )

}

31 0

1 1 1 , 1 1 , 1 4 1 2 3 1 1 1 2 1 2 2 2 2 >       −            + − − + +       − + + − > θ δ δ θ tg c c n n c tg c c .

Concerning the result proved by Yong Chan Kim and H.M. Srivastava, this last inequality implies the fact that FcS*.

(5)

( )

(

)

31 0,02531...,

1 2 ln 1 8 4

3 1 5 1

Re

2 2

2

− ≈    

  − −

+

− −

> ′

θ θ

tg tg z

f zU ,

then

( )

( )

*

0 1

2

S dt t f z z F

z

=

,

where F1 is the operator of Libera.

Proof. This corollary is obtained from theorem 1, for c=n=1. So we obtain

( )

( )

( )

(

)

31 0,02531...,

1 2 ln 1 8 4

3 1 5 1

2 1 Re

Re

2 2

2

1

1 ≈−

   

  − −

+

− −

>    

 ′ +

= ′

θ θ

tg tg z

F z z F z

f

condition which implies the starlikenes of Libera’s operator.

Corollary 3. Let θ =0,911621907. If fA1 satisfy the inequality

( )

0,417352...

2 ln 4 2 ln 4 6

2 ln 4 2 ln 4 3 Re

2 2

≈ +

− +

− > ′ z f

then

( )

( )

*

0

0 dt S

t t f f F

z

=

,

where F0 is Alexander’s operator.

Proof. We considerc=0,n=1 in theorem 1. So we obtain δ

( )

1,1 =ln2and

( )

{

( )

( )

}

0,417352...

2 ln 4 2 ln 4 6

2 ln 4 2 ln 4 3 Re

Re 2

2 0

0 ≈

+ −

+ − > ″ ⋅ + ′ =

z F z z F z

f ,

condition which implies the starlikenes of Alexander’s operator.

REFERENCES

(6)

[2] Nunokava M., Obradovic M., Owa S.- One criterion for univalency, Proc. Amer. Math. Soc. 106(1989), no.4. 1035-1037.

[3] Nunokava M. - On the theory of multivalent functions, Tsukuba J. Math. 11(1987), no.2, 273-286.

[4] Kim Y.C., Srivastava H.M.-Some applications of a differential subordination, Internat. J. Math.&Math. Sci. Vol. 22. No. 3.(1999), 649-654.

Authors:

Referensi

Dokumen terkait

We also introduce the notion of the first difference of a binary sequence and characterize first differences of our class of Thue-Morse type sequences.. Finally, we define the

Stanley, Enumerative Combinatorics, Volume 1, Cambridge Studies in Advanced Mathematics 49 , Cambridge University Press, Cambridge, 1997. 2000 Mathematics Subject Classification

A simple method to draw a DAG by applying upward planarization consists of using Sugiyama’s coordinate assignment phase for drawing the upward planar rep- resentation, where we use

[2] Pascu, N.N., An improvement of Becker’s univalence criterion, Proceed- ings of the Commemorative Session Simion Stoilow, Brasov, (1987), 43-48. [3] Singh, V., On class of

Rus, An abstract point of view for some integral equations from applied mathematics, Proceedings of the International Conference, University of the West, Timi¸soara, 1997, 256-270.

Parallel and simulated tempering [ 4; 13; 5 ] are Markov chain simulation algorithms commonly used in statistics, statistical physics, and computer science for sampling from

Department of Mathematics, Faculty and Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan..

In this paper we derive several subordination results for certain class of analytic functions defined by an extended multiplier transformation.. 2000 Mathematics Subject