• Tidak ada hasil yang ditemukan

Peningkatan Kinerja Sistem LMDS Menggunakan M-QAM Adaptif Dan Maximal Ratio Combining (MRC) Di Bawah Pengaruh Interferensi Dan Redaman Hujan

N/A
N/A
Protected

Academic year: 2021

Membagikan "Peningkatan Kinerja Sistem LMDS Menggunakan M-QAM Adaptif Dan Maximal Ratio Combining (MRC) Di Bawah Pengaruh Interferensi Dan Redaman Hujan"

Copied!
7
0
0

Teks penuh

(1)

Peningkatan Kinerja Sistem LMDS Menggunakan M-QAM Adaptif Dan

Maximal Ratio Combining (MRC)

Di Bawah Pengaruh Interferensi Dan Redaman Hujan

Dadan Hermansyah – 2206 100 027

Jurusan Teknik Elektro, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember Kampus ITS Sukolilo, Surabaya 60111

Email : dadanhermansyah@yahoo.com

Abstrak

LMDS (Local Multipoint Distribution Service) merupakan sistem komunikasi point to multipoint berbasis cell yang beroperasi pada rentang frekuensi 27 GHz hingga 31 GHz ( Ka-Band) dengan bandwidth sebesar 1 GHz hingga 3 GHz. Sistem komunikasi yang berada pada frekuensi tinggi akan rentan terhadap efek redaman hujan. Indonesia adalah salah satu tempat yang mempunyai curah hujan yang sangat tinggi, sehingga efek dari redaman hujan dalam sistem komunikasi sangat besar. Selain itu adanya interferensi dari sel base station lain juga akan berpengaruh pada kinerja sistem LMDS. Untuk mengurangi efek redaman hujan dan interferensi, dapat dilakukan beberapa metode untuk meningkatkan kinerja sistem LMDS antara lain dengan metode modulasi M-QAM adaptif yang dikombinasikan dengan teknik diversity Maximal Ratio

Combining. Berdasarkan hasil analisis, ditunjukkan bahwa

penggunaan teknik modulasi adaptif dengan teknik MRC

diversity mengakibatkan adanya peningkatan pada nilai link availability dan efisiensi bandwidth. Hal ini terlihat pada nilai link availability yang berhasil dicapai sistem modulasi adaptif pada

jarak 4km untuk pengamatan BER maksimal 10-11 yaitu sebesar

98,004%. Kemudian setelah dikombinasikan dengan teknik

diversity MRC, nilai availability yang dicapai pada level modulasi

yang sama yaitu sebesar 99.923%, telah terjadi peningkatan nilai

availability yaitu sebesar 1,96%. Disamping itu penggunaan

teknik modulasi adaptif dengan teknik MRC diversity memberikan peningkatan pada nilai efisiensi bandwidth. Hal tersebut terlihat pada nilai efisiensi bandwidth untuk link utama

4km pada BER 10-11, untuk sistem dengan teknik MRC diversity

mencapai 5,7538 bps/Hz sedangkan untuk sistem tanpa teknik MRC diversity mencapai 1,5060 bps/Hz. Sehingga secara keseluruhan penggunaan teknik modulasi adaptif yang dikombinasikan dengan teknik MRC diversity menunjukkan peningkatan link availability dan efisiensi bandwidth sistem LMDS.

Kata Kunci : Sistem LMDS, Modulasi Adaptif, Maximal Ratio

Combining diversity dan Redaman Hujan I. PENDAHULUAN

Dengan berkembangnya teknologi telekomunikasi yang semakin maju, mengakibatkan kebutuhan terhadap layanan komunikasi yang semakin meningkat. Namun keterbatasan kapasitas kanal dalam sistem komunikasi nirkabel sangat terbatas, sehingga menuntut terwujudnya suatu sistem komunikasi yang handal agar dapat memenuhi kebutuhan para pengguna jasa telekomunikasi yang selalu bertambah. Dalam beberapa penelitian, Local Multipoint Distribution Services (LMDS) mampu menyediakan kapasitas kanal yang jauh lebih tinggi dibandingkan dengan teknologi sebelumnya.

LMDS merupakan sistem komunikasi gelombang milimeter yang bekerja pada frekuensi 20-40 GHz yang dapat digunakan untuk sistem komunikasi broadband yang mampu menyediakan saluran untuk layanan suara, data, internet, video dan data digital lainnya yang membutuhkan kapasitas kanal yang relatif besar.

Salah satu permasalahan propagasi pada sistem komunikasi gelombang milimeter adalah redaman yang disebabkan oleh hujan yang memberikan pengaruh besar dan mengganggu keandalan sistem komunikasi. Sedangkan Indonesia merupakan negara tropis dengan curah hujan tinggi maka redaman hujan akan sangat berpengaruh pada kinerja sistem LMDS, karena frekuensi di atas 10 GHz sangat rentan terhadap hujan. Selain itu adanya interferensi dari sel base

station lain juga akan berpengaruh pada kinerja sistem

LMDS.

Untuk mengurangi pengaruh redaman hujan dan interferensi dari sel base station lain, dapat dilakukan beberapa metode untuk mengoptimalkan kinerja sistem antara lain pengunaan daya pancar adaptif, modulasi adaptif, pengkodean adaptif dan teknik diversiti. Melalui penelitian ini akan menganalisis salah satu metode untuk meningkatkan kinerja LMDS yaitu menggunakan modulasi M-QAM adaptif dan teknik diversiti Maximal Ratio Combining (MRC). Dengan pengamatan pada BER maksimal 10-6, 10-11 untuk semua panjang lintasan sehingga dapat diketahui nilai

availability dan efisiensi bandwidth dari metode ini, yang

diharapkan dapat meningkatkan kinerja dari sistem LMDS.

II. METODOLOGI

A. Model Sistem

Model sistem yang digunakan dalam tugas akhir ini dimodelkan seperti gambar 1. Yaitu model sistem transmisi dengan menggunakan modulasi adaptif pada kanal yang dipengaruhi redaman hujan. Selain redaman hujan, juga ditambahkan noise AWGN, dan interferensi antar sel pada kanal.Blok sistem terdiri atas pemancar, kanal dan penerima. Pada bagian pemancar menggunakan modulasi MQAM adaptif. Modulasi yang dipergunakan pada tiap subcarier yaitu 4QAM, 16QAM atau 64QAM. Pada bagian penerima ditambahkan teknik diversiti Maximal Ratio Combining.

Pertama-tama Bit informasi akan dibangkitkan dan di proses untuk membentuk sinyal informasi. Tahap selanjutnya adalah mengirimkan sinyal informasi melalui kanal yang tidak stabil yang disebabkan oleh inteferensi dari sel BS lain, noise AWGN n[k] dan redaman hujan A[k] sepanjang link. Setelah melalui kanal dengan pengaruh redaman hujan A[k], interferensi antar sel dan noise AWGN n[k], sinyal informasi

(2)

Modulasi MQAM Adaptif

]

[k

n

Maximal-Ratio Combining Demoduasi dan decoding Estimasi kanal input output Penerima Rx kanal Pemancar Modulasi MQAM Adaptif Int[k Int[k

]

[k

n

delay

− = −

×

=

1 0 n j j b j m m

aR

L

A

kemudian akan dikirimkan pada receiver dan masuk pada sistem maximal-ratio combining diversity, dimana output dari

diversity ini adalah sinyal dengan penjumlahan SINR, yang

kemudian akan diproses sebagai dasar estimasi kanal. Estimasi kanal ini bersifat ideal dan delay feedback sangat kecil sehingga dapat diabaikan. Selanjutnya SINR output hasil estimasi dikirimkan kembali pada pemancar sebagai referensi untuk penentuan level modulasi yang akan dikirim berikutnya. Penggunaan modulasi adaptif akan disesuaikan dengan kondisi kanal. Jika nilai SINR yang diterima melebihi

threshold yang ditetapkan untuk suatu level modulasi M,

maka informasi ini diumpan-balikkan ke penerima untuk dinaikkan level modulasinya pada level M. Begitu pula sebaliknya, pada suatu kondisi kanal yang lebih buruk sehingga SINR kurang dari threshold sebelumnya, maka level modulasi diturunkan pada level M yang bersesuaian. Hal ini dilakukan untuk menjaga agar didapatkan sistem dengan nilai BER yang diinginkan.

B. Pengukuran Curah Hujan dan Estimasi Redaman Hujan

Dari data intensitas curah hujan yang sudah diperoleh dari hasil pengukuran, selanjutnya akan dilakukan perhitungan redaman hujan sepanjang lintasan menggunakan metode Statistik Synthetic Storm Technique (SST).

Metode SST mendeskripsikan suatu intensitas curah hujan sebagai fungsi dari panjang lintasan/link (km) . Dimana hujan tersebut bergerak sepanjang lintasan karena adanya pergerakan angin dengan kecepatan tertentu. Berdasarkan besarnya kecepatan dan arah angin maka diperoleh kecepatan angin dalam lintasan (vr). Alat ukur yang digunakan untuk mengukur intensitas curah hujan (R) yaitu disdrometer optik dengan waktu sampling (T) 10 detik sepanjang lintasan dengan jarak tertentu. Pembagi lintasan (∆L) dapat diperoleh dengan rumusan sebagai berikut:

Total redaman A (dB) hujan dapat dihitung dengan rumus berikut:

(2)

Gambar 2. Skenario sistem LMDS [2]

dimana n = L/∆L; koefisien a dan b bergantung dari frekuensi gelombang radio, polarisasi gelombang radio, dan canting angle (sudut jatuh) dari hujan. Koefisien tersebut berdasarkan pada ITU-R P.838-3 tahun 2005. Dalam penelitian ini frekuensi yang digunakan sebesar 30 GHz dengan polarisasi horizontal sehingga koefisien yang digunakan yaitu a = 0.2403 dan b = 0.9485 [1].

C. Konfigurasi Sistem LMDS

Penelitian ini menggunakan konfigurasi sistem multilink dengan skenario sistem LMDS ditunjukkan pada gambar 2. Terminal Station (TS) berada pada posisi kiri bawah pada sektor suatu sel yang menerima sinyal (ditunjukkan dengan panah berwarna biru muda) dari BS1 dan ada delapan interferensi dari BS2, BS3, BS4, BS5, BS6, BS7, BS8, dan BS9. Berdasarkan gambar tersebut maka analisis pada penelitian ini menitikberatkan pada perbedaan waktu terjadinya redaman hujan antara link satu dengan yang lain dimana perbedaan tersebut bergantung pada arah angin datangnya curah hujan dan panjang masing-masing lintasan. Sebagai contoh, untuk arah angin dari timur maka link BS3, BS4 dan link BS9 akan terkena redaman terlebih dahulu kemudian link BS1, link BS2, link BS7, selanjutnya link BS6, link BS8, link BS5. Dengan metode Synthetic Storm

Technique (SST) seperti yang telah dijelaskan sebelumnya,

maka akan diperolah redaman hujan (A[k]) sepanjang lintasan

T

v

L

=

r

×

(km) (1)

(3)

]

[k

A

SNR

SNR

k

=

cs

tot SIR SNR SINR 1 1 1 + =               − −       = N S M B T erf M M M Pb ) 1 ( 2 3 1 1 log 2 0 2 1 2 M Detektor Output Co-phase dan penjumlahan Antena m γ 2 γ 1 γ M γ G1 G2 Gm Kontrol Adaptif

untuk link BS1, link BS2, link BS3, link BS4, link BS5, link BS6, link BS7, link BS8, dan link BS9.

D. Perhitungan Signal-to-Noise Ratio (SNRk) dan Signal-to- Interference Noise Ratio (SINRk) Sistem

Proses perhitungan link budget pada kondisi tanpa hujan (clear-sky) pada tugas akhir ini menggunakan hasil penelitian Chu Y.C. seperti yang terdapat pada Tabel 1. Berdasarkan data parameter sistem LMDS yang diproduksi oleh New

Bridge Corporation Canada tersebut, selanjutnya didapatkan

nilai S/N yang berupa S/N clear sky (S/N)CS tiap-tiap link

yang diperoleh dari hasil perhitungan link budget. Selanjtnya nilai SNRk diperoleh dari mengurangkan nilai SNRcs dengan

redaman hujan tiap link seperti yang ditunjukkan pada persamaan berikut :

(3) Sedangkan nilai SINRk sistem diperoleh dengan persamaan :

(4)

dimana SIR (Signal-to-Interference Ratio) merupakan perbandingan antara daya sinyal yang diterima dari base

stasiun utama dengan daya penginterferen-nya (daya yang

diterima dari BS2, BS3, BS4, BS5, BS6, BS7, BS8 dan BS9).

E.. Maximal-Ratio Combining Diversity

Metoda MRC pertama kali diusulkan oleh Kahn, tidak seperti halnya dengan SC dan SSC yang output SINR kombinernya relatif sama dengan nilai SINR di tiap lintasan link. Pada MRC, output SINR kombinernya merupakan hasil penjumlahan keseluruhan nilai SINR di tiap link sinyal dari semua cabang di-co-phase dan masing-masing diberi bobot untuk menyediakan SINR yang optimal pada sisi output.

Gambar 3. Maximal Ratio Combining [4]

Gambar 3. menunjukkan blok diagram dari metode ini, dimana ada M cabang yang masuk ke rangakain dan setiap cabang memiliki gain tertentu.

Adapun untuk menghitung SINR kombinernya dapat menggunakan persamaan berikut [5]:

PMRC=10log10(10P1/10+10P2/10) (5)

Dengan demikian SINR output pada diversity combiner adalah jumlah dari SINR pada tiap cabangnya.

F. Skenario Modulasi M-QAM Adaptif

Untuk dapat menganalisis kinerja dari sistem modulasi

M-QAM adaptif, maka terlebih dahulu ditentukan nilai

threshold S/N pada masing-masing level modulasi M-QAM

yang akan digunakan. Pada penelitian ini nilai BER yang diinginkan adalah 10-6 dan 10-11. Adapun Perhitungan teoritis dari BER untuk masing-masing skema modulasi dilakukan menggunakan persamaan:

(6)

Parameter Units Formula Value

Transmit Power into

Antenna dBW Ptx : transmit power per carrier 0

Transmit Antenna Gain dBi Gt : Gant 20.15

Frequency GHz f : Transmit frequency 30

Path Length Km d : Hub to Subscriber Station Range 1 Field Margin dB Lfm : Antenna Misalignment -1 Free Space Loss dB FSL = -92.45-20*log(f)-20*log(d) -137.06 Total Path Loss dB Ltot = FSL + Lfm -138.06

Receiver Antenna Gain dBi Gr = Gant 34.96

Effective Bandwidth MHz BRF = Receiver Noise Bandwidth 40 Receiver Noise Figure dB NF : Effective Noise Figure 5 Thermal Noise dBw/MHz 10*log(k*To*B) -143.86

Sistems Loss dB Lsys = Gt+Ltot+Gr -82.95

Received Signal Level dBW RSL = Ptx+Lsys -82.95 Thermal Noise Power

Spectral Density dBW/MHz No = 10*log(k*To*B)+NF -140.51 C/N Clear Sky dB C/N = RSL-No-10*log(BRF)

54.807

Tabel 1. Parameter Sistem LMDS Jarak 1 km [3]

(4)

) ( ) ( log 0 2 i i N i M P M B R

= =

Tabel 2. Skenario Modulasi Adaptif BER maksimum 10-6

Jenis Modulasi Interval S/N (dB)

No Transmisi S/N< 13,54 Fixed 4 QAM 13,54≤S/N≤20,42 Fixed 16 QAM 20,42≤S/N≤26,56 Fixed 64 QAM S/N>26,56

Jenis Modulasi Interval S/N (dB)

No Transmisi S/N< 16,53 Fixed 4 QAM 16,53≤S/N≤23,46 Fixed 16 QAM 23,46≤S/N≤29,65 Fixed 64 QAM S/N>29,65

Dari perhitungan teoritis BER dengan persamaan 6 akan didapatkan rentang SNR untuk masing-masing skema

modulasi, seperti yang ditunjukkan oleh Tabel 2 dan Tabel 3.

G. Efisiensi Bandwidth

Efisiensi bandwidth merupakan hal yang penting pada tugas akhir ini. Semakin besar curah hujan yang terjadi, maka semakin besar redaman hujan yang muncul dan nilai SINR menjadi rendah. Sebaliknya, apabila curah hujan yang terjadi relatif rendah maka nilai redaman hujan yang muncul juga relatif lebih kecil dan nilai SINR menjadi lebih tinggi. Pada sistem modulasi adaptif, dalam menentukan mode transmisi yang digunakan sangat bergantung dengan kondisi SINR tersebut. Semakin besar level modulasi yang digunakan maka proses transmisi akan lebih cepat. Sehingga dapat menghemat penggunaan bandwidth dalam pengiriman data.

Pada sistem modulasi adaptif, efisiensi bandwidth dapat dinyatakan sebagai berikut :

(7) dimana,

B

R = effisiensi bandwidth (bps/Hz),

N

= jumlah data

i

M = level modulasi P(Mi)= prob. kemungkinan

masing-masing modulasi.

III. ANALISIS HASIL SIMULASI

A. Redaman Hujan SST Multi Link

Data curah hujan yang digunakan, diambil antara rentang waktu bulan Januari-Maret 2007 dan Nopember 2007-Februari 2008. Setelah mengetahui data curah hujan, selanjutnya dilakukan perhitungan terhadap redaman. Kurva redaman hujan hasil perhitungan menggunakan metode SST akan direpresentasikan dalam bentuk Complement Cumulative

Distribution Function (CCDF) untuk semua event terjadinya

hujan dalam interval rentang waktu 1 tahun (non-kondisional). Adapun kurva CCDF redaman hujan tersebut ditunjukkan pada gambar 4. Berdasarkan gambar 4, dapat diketahui bahwa semakin panjang link komunikasi maka semakin besar nilai redaman hujan pada link tersebut.

B. Signal-to-Noise Ratio Sesaat (SNRk)

Setelah mendapatkan nilai redaman hujan (A[k]) tiap link, langkah selanjutnya adalah mendaptkan nilai Signal-to-Noise

Ratio Sesaat (SNRk) sesuai dengan persamaan (3). Nilai SNRk

Gambar 4. Redaman Hujan Multilink

dengan Link utama 4 km

Gambar 5. Kurva CDF SNRkMultilink

denganLink utama 4 km

yang terukur dihitung untuk masing-masing link. Grafik SNRk

yang diperoleh akan direpresentasikan dalam bentuk

Cumulative Distribution Function (CDF) untuk semua event

terjadinya hujan dalam interval rentang waktu 1 tahun (non-kondisional) seperti pada gambar 5. Berdasarkan gambar 5 di atas dapat disimpulkan bahwa semakin panjang link komunikasi, maka semakin besar redaman yang terjadi sepanjang link sehingga mengakibatkan rendahnya (S/N)k

yang diperoleh dan sebaliknya.

C. Signal-to-Interference Noise Ratio Sesaat (SINRk) Nilai SINRk sistem diperoleh dengan menggunakan

persamaan (4) kemudian digambarkan dalam bentuk kurva CCDF non kondisional seperti yang ditunjukkan pada gambar 6. Nilai SINRk yang diperoleh dari SNRk dapat digunakan

untuk menganalisis pengaruh interferensi yang berasal dari sel BS lain terhadap terhadap kanal sistem LMDS yang dipengaruhi redaman hujan. Berdasarkan gambar 6 dapat disimpulkan bahwa pengaruh interferensi dari sel BS lain (BS2, BS3, BS4, BS5, BS6, BS7, BS8 dan BS9) terhadap link utama (link BS1-TS) tidak terlalu signifikan karena pengaruh interferensi dari sel BS lain telah diredam oleh hujan. Semakin besar redaman hujan maka pengaruh interferensi semakin kecil, sehingga nilai SINRk akan sama dengan nilai

SNRk sistem.

D. Kinerja Sistem Modulasi M-QAM Adaptif

Pengamatan terhadap kinerja sistem modulasi adaptif dilakukan pada BER maksimal 10-6 dan 10-11. Sistem Modulasi adaptif dikatakan layak jika memenuhi availability

Tabel 3. Skenario Modulasi Adaptif maksimum BER 10-11

(5)

Gambar 6. Kurva CDF SNRk dan SINRk untuk panjang link utama 4 km

99.99%. Tahap ini akan dimulai dengan menghitung nilai probabilitas error (Pb)k pada nilai SINR sesaat. Selanjutnya

dibuat grafik CCDF sehingga didapatkan nilai prosentase probabilitas (Pb)k ≥ absis. Berdasarkan hasil simulasi nilai link

availabity pada sistem modulasi M-QAM adaptif dengan BER

maksimal 10-6 dan 10-11 ditunjukkan seperti pada tabel 4. Berdasarkan tabel 4 dapat diketahui bahwa nilai link availability sistem adaptif akan selalu sama dengan nilai link availability pada sistem 4-QAM non-adaptif. Disamping itu, dapat diketahui bahwa semakin panjang link komunikasi maka semakin menurun nilai link availability. Pada sistem modulasi adaptif diperoleh nilai link availability sistem mencapai 99,99% pada panjang link utama 1 km pada sistem adaptif, sistem 4 QAM adaptif, dan sistem 16 QAM non-adaptif baik pada BER maksimal 10-6 maupun BER maksimal 10-11.

Dengan menggunakan persamaan (7) maka diperoleh nilai efisiensi bandwidth baik pada pengamatan BER maksimum 10-6 dan 10-11 seperti yang ditunjukkan pada tabel 5. Berdasarkan tabel 5 dapat diketahui bahwa nilai efisiensi

bandwidth untuk mode modulasi adaptif adalah lebih besar

bila dibandingkan dengan mode modulasi non adaptif. Dapat diketahui juga bahwa semakin besar panjang link maka nilai efesiensi bandwidth semakin kecil. Selain itu, nilai efisiensi

bandwidth juga akan meningkat seiring dengan peningkatan

nila Panjang Lintasan Probabilitas Outage DIVERSITY GAIN 1KM 0.01% 0.01 2KM 0.01% 0.9335 3KM 0.01% 12.42 4KM 0.01% 32.02

nilai link avalability pada level modulasi yang sama.

E. Analisa Gain Diversity

Nilai redaman hujan yang besar akan mempengaruhi kinerja sistem komunikasi. Oleh karena itu teknik mitigasi diperlukan untuk mengatasi pengaruh redaman hujan tersebut. Salah satu teknik mitigasi adalah cell site diversity, dimana dalam penelitian ini menggunakan teknik Maximal-Ratio

Combining diversity. Sistem kerja dari MRC diversity adalah

dengan menambahkan nilai SINR pada konfigurasi multi link. Perbedaan antara nilai SINR pada konfigurasi multi link

independent (tanpa pengaruh diversity) dengan nilai SINR

yang didapatkan hasil proses teknik diversity disebut gain

diversity. Adapun hasil perhitungan nilai gain diversity

konfigurasi multi link dapat dilihat pada tabel 6.

Berdasarkan tabel 6 dapat disimpulkan bahwa nilai gain diversity semakin meningkat seiring meningkatnya panjang atau jarak suatu link komunikasi dan dengan adanya gain diversity dapat memberikan perbaikan kinerja dari sistem, baik sistem modulasi adaptif maupun sistem modulasi non-adaptif. Dan efek dari gain diversity akan lebih terasa pada pelanggan yang berjarak ≥ 3km dari base station utama (BS1).

F. Kinerja Sistem Modulasi M-QAM adaptif dengan

Maximal-Ratio Combining Diversity

Pada bagian ini akan dilakukan pengolahan data SINR hasil perhitungan teknik diversity ke dalam sistem modulasi M-QAM adaptif pada jarak 1,2,3 dan 4 km. Analisis kinerja ini dilakukan pada BER maksimum 10-6 dan 10-11. Berdasarkan tabel 7 dan tabel 8 dapat disimpulkan bahwa penggunaan MRC diversity dalam sistem modulasi adaptif dapat menjadikan kinerja sistem modulasi adaptif lebih baik

Mode Transmisi

Panjang Link

1 km 2 km 3 km 4 km

10-6 10-11 10-6 10-11 10-6 10-11 10-6 10-11

Modulasi M-QAM Adaptif 99.99867 99.998 99.971 99.966 99.935 98.829 99.889 98.004 Fixed 4 QAM 99.99867 99.998 99.971 99.966 99.935 98.829 99.889 98.004 Fixed 16 QAM 99.99782 99.997 98.380 97.827 97.788 97.497 97.529 97.338 Fixed 64 QAM 98.28875 97,789 97.529 97.333 97.299 97.184 97.185 97.089 Mode Transmisi Panjang Link 1 km 2 km 3 km 4 km 10-6 10-11 10-6 10-11 10-6 10-11 10-6 10-11

Modulasi M-QAM Adaptif 4,98173 4.68493 3.55326 3.1050 3.0441 2.1455 2.7950 1.5060 Fixed 4 QAM 1.9992 1.99911 1.9831 1.9799 1.9616 1.3047 1.9341 0.8150 Fixed 16 QAM 3.9974 3.99601 2.0756 1.4190 1.3726 1.0270 1.0651 0.8388 Fixed 64 QAM 2.9515 2.06343 1.5971 1.2466 1.1886 0.9818 0.9850 0.8149

Tabel 4. Nilai Link Availability (%) Sistem Modulasi M-QAM Adaptif untuk panjang link bervariasi

Tabel 5. Nilai Efisiensi Bandwidth (bps/Hz) Sistem Modulasi M-QAM Adaptif untuk panjang link bervariasi

(6)

dibandingkan dengan sitem modulasi adaptif tanpa menggunakan diversity, hal tersebut dapat terlihat dari hasil perbandingan nilai link availability dan efisiensi bandwidth pada tabel 7 dan 8, pada pelanggan yang berjarak 4km dari BS1 untuk modulasi adaptif pada BER 10-6, terdapat peningkatan nilai link availability dan efisiensi bandwidth berturut-turut yaitu sebesar 0,057% dan 107,8%. Sehingga secara keseluruhan, dapat disimpulkan bahwa kombinasi antara metode modulasi M-QAM adaptif dengan MRC

diversity telah meningkatkan kinerja sistem LMDS.

IV. KESIMPULAN

Sistem Modulasi M-QAM adaptif memiliki nilai link

availability yang paling baik, dimana nilai link

availability-nya sama dengan sistem non adaptif 4QAM. Sehingga ketika kondisi kanal buruk, transmisi data dapat tetap dilakukan. Selain itu, efisiensi bandwidth sistem adaptif memiliki nilai paling besar karena threshold-nya yang rendah memungkinkan adanya transmisi data yang jumlahnya lebih besar. Selain itu, setelah sistem modulasi M-QAM adaptif dikombinasikan dengan teknik diversity MRC, ternyata terdapat peningkatan nilai link availability dan efisiensi

bandwidth baik pada pengamatan BER maksimal 10-6 maupun

10-11. Hal tersebut terutama terlihat pada pelanggan yang berjarak 4km dari BS1 untuk modulasi adaptif pada BER 10

-11 , terdapat peningkatan nilai link availability dan efisiensi bandwidth berturut-turut yaitu sebesar 1,96% dan 282,06%.

Berdasarkan pada peningkatan nilai link availability dan efisiensi bandwidth tersebut, dapat disimpulkan bahwa penggunaan teknik diversity MRC baik digunakan pada pelanggan yang berjarak ≥ 3km dari BS1. Dan secara keseluruhan penggunaan teknik modulasi adaptif yang

dikombinasikan dengan teknik MRC diversity menunjukkan peningkatan link availability dan efisiensi bandwidth sistem.

V. DAFTAR PUSTAKA

[1] Recomendation ITU-R P.837-4, “Specific attenuation

model for rain for use in prediction”, 2005.

[2] Abdo. Z. A. S, “Site-Diversity Against Rain Fading In LMDS Systems”, M. Eng Thesis University Technology Malaysia, 2007.

[3] Chu Y.C, Chen K.S., “Effect of Rain Fading on Efficiency of Ka-Band LMDS System in The Taiwan Area”, IEEE Trans.On Vehicular Technology, Vol. 54, Jan. 2005.

[4] Rappaport T, “Wireless Communication”, second edition, hal.332

[5] Wijayanti A, Mahmudah H, Hendrantoro G. (2007), “Cell-Site Diversity Gain using Various Combining Technique in Dual-Link Millimeter-Wave Communication System Under Impact of Rain Attenuation,” ICICI Bandung pada tanggal 8-9 Agustus 2007.

RIWAYAT PENULIS

Dadan Hermansyah, lahir di

Tasikmalaya tanggal 29 Oktober 1987. Merupakan anak kedua dari pasangan Sodikin (Alm) dan Badriah. Pada tahun 2006 tercatat sebagai salah satu siswa lulusan SMAN 1 Tasikmalaya, kemudian penulis melanjutkan studinya di Jurusan Teknik Elektro Institut Teknologi Sepuluh Nopember Surabaya pada tahun 2006. Selama menjadi mahasiswa, penulis aktif aktif di bidang kegiatan kemahasiswaan, yaitu sebagai staff HIMATEKTRO 2008/2009. Selain itu, penulis juga aktif sebagai asisten Praktikum Dasar Sistem Telekomunikasi. Saat ini penulis sedang mengambil bidang studi telekomunikasi multimedia dan aktif sebagai anggota tim riset milimeter wave

propagation di laboratorium Propagasi dan Antena Jurusan

Teknik Elektro FTI-ITS. Pada bulan Juni 2010 penulis mengikuti seminar dan ujian Tugas Akhir sebagai salah satu syarat untuk memperoleh gelar sarjana SI Teknik Elektro.

Mode Transmisi

Panjang Link

3 km 4 km

Tanpa MRC Dengan MRC Tanpa MRC Dengan MRC

10-6 10-11 10-6 10-11 10-6 10-11 10-6 10-11

Modulasi M-QAM Adaptif 99.935 98.829 99.956 99.944 99.889 98.004 99.946 99.923 Fixed 4 QAM 99.935 98.829 99.956 99.944 99.889 98.004 99.946 99.923 Fixed 16 QAM 97.788 97.497 99.914 99.879 97.529 97.338 99.897 99.869 Fixed 64 QAM 97.299 97.184 99.842 99.801 97.185 97.089 99.835 99.794 Mode Transmisi Panjang Link 3 km 4 km

Tanpa MRC Dengan MRC Tanpa MRC Dengan MRC

10-6 10-11 10-6 10-11 10-6 10-11 10-6 10-11

Modulasi M-QAM Adaptif 3.0441 2.1455 5.8287 5.7772 2.7950 1.5060 5.8085 5.7538 Fixed 4 QAM 1.9616 1.3047 1.9737 1.9667 1.9341 0.8150 1.9680 1.9544 Fixed 16 QAM 1.3726 1.0270 3.8976 3.8570 1.0651 0.8388 3.8773 3.8429 Fixed 64 QAM 1.1886 0.9818 5.7185 5.6460 0.9850 0.8149 5.7056 5.6337

Tabel 8. Perbandingan Nilai efisiensi bandwidth (bps/Hz) Sistem Modulasi M-QAM Adaptif dengan dan tanpa MRC diversity Tabel 7. Perbandingan Nilai Link Availability (%) Sistem Modulasi M-QAM Adaptif dengan dan tanpa MRC diversity

(7)

Gambar

Gambar 1. Model Sistem Modulasi adaptif dengan Maximal-Ratio Combining Diversity
Gambar 3. Maximal Ratio Combining [4]
Gambar 4. Redaman Hujan Multilink   dengan Link utama 4 km
Gambar 6.  Kurva  CDF SNR k  dan SINR k  untuk panjang link utama 4 km
+2

Referensi

Dokumen terkait

Sedangkan kecamatan yang memberikan kontribusi pendapatan dari sektor tanaman pangan terkecil adalah kecamatan Tanjung Harapann sebesar Rp 97,656 juta, karena jenis

Pengubahan kulit kopi menjadi senyawa xanthat bertujuan untuk meningkatkan daya serap adsorpsi terhadap pewarna rodhamin B, sehingga kapasitas adsorbsi yang

Dokumen Penjajaran Kurikulum 2.0 – KSSR (Semakan 2017) Bahasa Semai Tahun 3 6 CENEMPET MENULES Standard Kenandug Standard Belajar (SP) Kenandug Asas. (bi bimbing ya cikgu)

(Diharapkan siswa mampu menjawab bahwa luas persegipanjang yang dibangun dari potongan I, II, dan III adalah L = ½ at). g) Melalui diskusi dn pengarahan guru, diharapkan

Hasil penelitian menunjukkan bahwa karakter morfologi tanaman ubi kayu Juray yaitu, warna batang abu-abu, diameter batang besar (3.4 cm), permukaan batang

$ubstansi yang ditemukan dalam darah atau #airan tubuh lain yang tumor atau $ubstansi yang ditemukan dalam darah atau #airan tubuh lain yang tumor atau oleh tubuh dalam.. oleh

Mengiringi kegiatan pengembangan backbone INHERENT ini, Dikti menawarkan hibah kompetisi untuk pengembangan kapasitas institusi perguruan tinggi di Indonesia dalam jaringan

Hasil Penelitian ini memperlihatkan bahwa dinamika perubahan sosial ekonomi di Jakarta sepanjang 1943-1983, membuat Soto Betawi Haji Maruf mengalami proses usaha yang