• Tidak ada hasil yang ditemukan

3_modul etap& powerplot

N/A
N/A
Protected

Academic year: 2021

Membagikan "3_modul etap& powerplot"

Copied!
100
0
0

Teks penuh

(1)

SURABAYA, JANUARI 2008

Integrasi Sistem Kelistrikan

PT. KDM – PT. PKT Bontang

PELATIHAN ETAP DAN POWERPLOT

: : : Nomor Departemen Nama

(2)

Daftar Isi

E T A P (Electrical Transient Analysis Program) PowerStation

Pendahuluan 1

Memulai ETAP PowerStation 3

Mempersiapkan Plant 3

Membuat Proyek Baru 13

Menggambar Single Line Diagram 14

Editing Data Peralatan 15

Melakukan Studi/Analisa 15

Menyimpan File Project (Save Project) 15

Membuka File Project (Open Project) 16

Mengcopy / Menyalin File Project 16

Simulasi Load Flow Analysis ETAP PowerStation 17

Studi Aliran Daya (Load Flow Study) 17

Load Flow Analysis 17

Set Up Data Untuk Simulasi 20

Data Untuk Analisa Aliran Daya 20

ToolBar Load Flow Analysis 27

Data Hasil Simulasi ETAP PowerStation 28

Simulasi Short Circuit Analysis ETAP PowerStation 31

Study Case Editor 31

Data Untuk Short Circuit Analysis 37

Memberi Gangguan Pada Bus 43

ToolBar Short circuit Analysis 43

Data Hasil Simulasi ETAP PowerStation 45

Simulasi Transient Stability Analysis ETAP PowerStation 47

Transient Stability Toolbar 47

Transient Stability Study Case Editor 50

Display Options 61

Transient Stability Plots 63

Methode Perhitungan Stabilitas Transient 65

Data Yang Dibutuhkan 69

Transient Stability Output Reports 69

Transient Stability Time-Slider 76

Penggunaan Komputer (Power Plot) Dalam Setting Relay Pengaman 77

Manajemen Power Plot Project 77

Manajemen TCC (Time Current Curve) 80

Menyisipkan Text dan Gambar Dan Tanda Panah Arus Gangguan 82

Memasukkan Data Peralatan 84

Menggunakan Fungsi Penting 87

Lampiran

Lampiran 1 : Hasil Loadflow Report Lampiran 2 : Hasil Short Circuit Report

(3)

1

E T A P

(Electrical Transient Analysis Program)

PowerStation

Pendahuluan

PowerStation adalah software untuk power system yang bekerja berdasarkan plant (project). Setiap plant harus menyediakan modelling peralatan dan alat - alat pendukung yang berhubungan dengan analisa yang akan dilakukan. Misalnya generator, data motor, data kabel dll. Sebuah plant terdiri dari sub-sistem kelistrikan yang membutuhkan sekumpulan komponen elektris yang khusus dan saling berhubungan. Dalam PowerStation, setiap plant harus menyediakan data base untuk keperluan itu.

ETAP PowerStation dapat melakukan penggambaran single line diagram secara grafis dan mengadakan beberapa analisa/studi yakni Load Flow (aliran daya), Short Circuit (hubung singkat), motor starting, harmonisa, transient stability, protective device coordination, dan cable derating.

Catatan

Pada Pembahasan ini hanya akan dibahas mengenai studi aliran daya (Load Flow Analysis) dan studi hubung singkat (Short Circuit Analysis)

ETAP PowerStation juga menyediakan fasilitas Library yang akan mempermudah desain suatu sistem kelistrikan. Library ini dapat diedit atau dapat ditambahkan dengan informasi peralatan bila perlu.

Beberapa hal yang perlu diperhatikan dalam bekerja dengan ETAP PowerStation adalah : • One Line Diagram, menunjukkan hubungan antar komponen/peralatan listrik

sehingga membentuk suatu sistem kelistrikan.

• Library, informasi mengenai semua peralatan yang akan dipakai dalam sistem kelistrikan. Data elektris maupun mekanis dari peralatan yang detail/lengkap dapaty mempermudah dan memperbaiki hasil simulasi/analisa.

• Standar yang dipakai, biasanya mengacu pada standar IEC atau ANSII, frekuensi sistem dan metode – metode yang dipakai.

(4)

2

• Study Case, berisikan parameter – parameter yang berhubungan dengan metode studi yang akan dilakukan dan format hasil analisa.

Catatan

Kelengkapan data dari setiap elemen/komponen/peralatan listrik pada sistem yang akan dianalisa akan sangat membantu hasil simulasi/analisa dapat mendekati keadaan operasional sebenarnya.

(5)

3

Memulai ETAP PowerStation

1. Mempersiapkan Plant

Persiapan yang perlu dilakukan dalam analisa / desain dengan bantuan ETAP PowerStation adalah :

a. Single Line Diagram

b. Data peralatan baik elektris maupun mekanis c. Library untuk mempermudah editing data

Misalkan akan dibuat plant dengan single line diagram sebagai berikut (lihat print out one line diagram Sistem Tenaga Listrik PT. X :

Gambar 1. Single Line Diagram Sistem Tenaga Listrik PT. X

Single Line Diagram tersebut membutuhkan data peralatan sesuai dengan data peralatan baik elektris maupun mekanis sebagai berikut :

a. Power Grid

Adalah suplai yang diambil oleh system sebagai sumber tegangan dalam hal ini adalah PLN dengan inputan data sebagai berikut (lihat gambar 2) :

(6)

4

• Nominal kV

• Kapasitas Daya dalam MVA • Nilai X/R

• Mode Swing sebagai referensi

Gambar 2. Power Grid Editor

b. Generator

Adalah suplai yang diambil oleh system sebagai sumber tegangan yang tersedia sebagai back up jika ada gangguan dari PLN dengan inputan data sebagai berikut (lihat gambar 3) :

• Kapasitas Daya dalam MVA • Nominal kV

• % Power Factor

• Nilai Xd’, Xd”, Xo dan X/R • Nilai X2 untuk studi harmonisa • Hubungan grounding pada generator • Mode Voltage Control

(7)

5

Gambar 3. Synchronous Generator Editor

c. Bus • ID Bus

berupa nomor atau nama bus dari sistem • Nominal kV

adalah tegangan nominal pada bus

(8)

6

d. Transformator

Data yang diperlukan meliputi :

• ID yaitu identitas transformator • Rating kVA/MVA , max kVA/MVA • Rating kV primer serta kV sekunder • % Z, dan X/R

• Hubungan belitan

Gambar 5. 2- Winding Transformer Editor

e. Circuit Breaker

Data yang diperlukan meliputi :

• ID yaitu identitas circuit breaker

• Standard yang digunakan ANSI atau IEC • Nilai dari CB dari Library

• Rating kVA/MVA , max kVA/MVA sesuai library atau diberi nilai sendiri

(9)

7

Gambar 6. High /voltage Circuit Breaker Editor

f. Disconect Switch

Data yang diperlukan meliputi :

• ID yaitu identitas disconect switch

Gambar 7. DS Editor

g. Lumped Load

Adalah motor atau beban yang terlumped, data yang diperlukan meliputi : • ID yaitu identitas lumped load

• Rating kVA dan kV • Power faktor

(10)

8

Gambar 8. Lumped Load Editor

h. Motor Sinkron

Data yang diperlukan meliputi :

• ID yaitu identitas motor sinkron • Rating kW/HP dan kV

• Power faktor dan efisiensi pada pembebanan 100%, 75% dan 50 % • % loading yaitu persen pembebanan pada motor

• Data kabel motor jika ada

• Data impedansi untuk studi short circuit meliputi Xd”, X/R dan Xo

• Data impedansi untuk studi harmonisa meliputi X2

(11)

9

Gambar 9. Synchronous Motor Editor

i. Motor Induksi

Data yang diperlukan meliputi : • ID yaitu identitas motor induksi • Rating kW/HP dan kV

• Power faktor dan efisiensi pada pembebanan 100%, 75% dan 50 % • % loading yaitu persen pembebanan pada motor

• Data kabel motor jika ada

• Data impedansi meliputi X, X2, Xo dan X/R • Hubungan belitan untuk grounding dari motor

(12)

10

Gambar 10. Induction Machine Editor

j. High Filter

Data yang diperlukan meliputi : • ID yaitu identitas filter

• Type filter antara lain Filter By Pass, High Filter (dumped dan undumped) dan single tuned

• Nilai Capacitor meliputi kVAR, kV dan maksimum kV

• Nilai Induktor meliputi XL, Q Factor (= XL / RL) dan Max. I (= Maksimum arus yang melalui induktor )

(13)

11

k. Capacitor

Data yang diperlukan meliputi : • ID yaitu identitas Capacitor

• Rating Capacitor meliputi kV, maksimum kV, kVAR, dan jumlah capacitor bank.

• % Load dari capacitor

Gambar 12. Capacitor Editor

l. Over Current Relay

Data yang diperlukan meliputi :

• ID yaitu identitas over current relay

• type relay meliputi Relay, Motor Relay, dan MV Solid State types.

(14)

12

m. Variable Frequency Drive (VFD) Data yang diperlukan meliputi :

• ID yaitu identitas over current relay

• Rating VFD meliputi HP/kW, kV dan % Effisiensi

* rata – rata kapasitas VFD adalah 10 % dari motor yang didrive

Gambar 14. Variable Frequency Drive Editor

n. Charger

Data yang diperlukan meliputi : • ID yaitu identitas charger

• Rating AC meliputi kVA, kV, % Eff dan % power factor

(15)

13

Gambar 14. DC Charger Editor

2. Membuat Proyek Baru

a. Klik tombol New atau klik menu File lalu akan muncul kotak dialog sebagai berikut :

Gambar 15. Create New Project File

b. Lalu ketik nama file project . Misalnya : Pelatihan. Lalu klik Ok atau tekan Enter. c. Akan muncul kotak dialog User Information yang berisi data pengguna software.

(16)

14

Gambar 16. User Information

d. Anda telah membuat file proyek baru dan siap untuk menggambar one-line diagram di layar. Lalu buat One-line diagram seperti pada gambar dibawah dan isikan data peralatan.

3. Menggambar Single Line Diagram

Menggambar single line diagram dilakukan dengan cara memilih simbol peralatan listrik pada menu bar disebelah kanan layar. Klik pada simbol, kemudian arahkan kursor pada media gambar. Untuk menempatkan peralatan pada media gambar, klik kursor pada media gambar.

Untuk mempercepat proses penyusunan single line diagram, semua komponen

dapat secara langsung diletakkan pada media gambar. Untuk mengetahui kontinuitas antar komponen dapat di-cek dengan Continuity Check pada menu bar utama.

Pemakaian Continuity Check dapat diketahui hasilnya dengan melihat warna komponen/branch. Warna hitam berarti telah terhubung, warna abu-abu berarti belum terhubung.

Catatan

Agar Continuity Check dapat bekerja, pasang satu sumber generator atau pensuplai daya sebagai swing agar dalam sistem terdapat satu referensi.

(17)

15

4. Editing Data Peralatan • Bus

• Generator • Cable

• Two Winding Transformator • Induction Machine

• Static Load • Circuit Breaker • Fuse

Catatan

Keterangan yang lebih detail mengenai parameter peralatan kebutuhan editing data pada PowerStation dapat dilihat pada modul editor, One Line Diagram.

Data Peralatan yang diperlukan oleh PowerStation untuk analisa sangat detail sehingga kadang membuat beberapa pengguna kesulitan dalam memperoleh data tersebut. Untuk mempermudah memasukkan data, maka harus diidentifikasikan terlebih dahulu keperluan data. Sebagai contoh, analisa hubung singkat membutuhkan data yang lebih kompleks daripada analisa aliran daya. Jadi tidak perlu memasukkan semua parameter yang diminta pada menu editor komponen oleh ETAP PowerStation.

5. Melakukan Studi/Analisa

Dengan ETAP PowerStation dapat dilakukan beberapa analisa pada sistem kelistrikan yang telah digambarkan dalam single line diagram. Studi-studi tersebut adalah :

1. Load Flow Analysis (LF) 2. Short Circuit Analysis (SC) 3. Motor Starting Analysis (MS) 4. Transient Stability Analysis (TS)

5. Cable Ampacity Derating Analysis (CD) 6. Power Plot Interface.

6. Menyimpan File Project (Save Project)

(18)

16

7. Membuka File Project (Open Project)

a. Masuk menu bar File, pilih Open File lalu tentukan direktori tempat menyimpan filenya (browse) atau click toolbar

b. Pilih file yang dituju kemudian click open

Gambar 17. Membuka File Project

8. Mengcopy / Menyalin File Project

a. Masuk menu bar File, pilih Copy Project To lalu tentukan direktori tempat menyimpan filenya (browse)

b. Beri nama File Project yang dicopy kemudian click Save

Gambar 18. Mengcopy / Menyalin File Project

9. Menutup Project (Close Project)

Klik menu File lalu klik Close Project atau kill toolbar Close . 10. Keluar dari Program (Exit Program)

(19)

17

Simulasi Load Flow Analysis

ETAP PowerStation

Analisa aliran daya (Load Flow Analysis) dilakukan untuk mengetahui besarnya tegangan bus, faktor daya dari cabang, arus dan aliran daya yang terjadi pada saluran dalam sistem. ETAP PowerStation Load Flow Analysis adalah program simulasi untuk tujuan analisa aliran daya. Sistem yang dapat dianalisa adalah sistem radial maupun loop.

Studi Aliran Daya (Load Flow Study)

Studi aliran daya adalah studi yang memberikan analsis aliran daya pada suatu sistem tenaga listrik yang bertujuan untuk :

1. Memeriksa tegangan dan pengaturan tegangan

2. Memeriksa semua peralatan (transformator dan saluran distribusi) apakah mampu untuk mengalirkan daya yang diinginkan.

3. Memperoleh kondisi awal (eksisting) untuk memperoleh studi – studi : operasi ekonomis, hubung singkat, stabilitas dan perencanaan pengembangan sistem.

Load Flow Analysis

Untuk memulai load flow analysis maka single line diagram (SLD) sistem tenaga listrik digambarkan terlebih dahulu dengan memperhatikan komponen AC dan DC serta peralatan yang digunakan. SLD biasa digambarkan pada lembar edit (lihat gambar. 1)

(20)

18

Study Case Editor

Load Flow Study Case Editor berisi variabel – variabel kontrol untuk penyelesaian analisa aliran daya dan beberapa pilihan format laporan atau hasil output software (lihat gambar 2), untuk menampilkannya maka pada Window pilih guest (Project Editor) setelah itu pilih studi cases, load flow dan LF–Default.

Adapun variabel – variabel yang terdapat dalam load flow study case antara lain : 2 Study Case ID

Nama study case terdapat pada isian ini yang dapat diubah – ubah dengan panjang maksimal karakter penamaan sebanyak 12 karakter

2 Method

Terdapat beberapa metode yang digunakan dalam analisa aliran daya yaitu Newton-Raphson, Fast-decoupled, atau Accelerated Gauss-Seidel.

2 Maximum Iteration

Jumlah iterasi disarankan 2000 untuk metode Gauss-Seidel dan 5 untuk Newton-Raphson dan Fast-decoupled.

2 Precision

Menunjukkan ketelitian tiap iterasi dalam satuan p.u. Pada metode Gauss-Seidel ketelitian tegangan 0.000001 p.u volts, dan 0.001 daya untuk Newton-Raphson dan Fast-decoupled.

2 Acceleration Factor

Faktor percepatan ini digunakan pada metode Accelerated Gauss-Seidel. Nilai yang biasa di pakai adalah 1.2 s/d 1.7

2 Loading

Dalam bagian pembebanan load flow study case editor, dapat ditentukan pembebanan operasi dengan pemilihan kategori pembebanan dan faktor perbedaan pembebanan.

(21)

19

2 Category

Kategori pembebanan mempunyai sepuluh pilihan. Dengan memilih sebarang kategori, powerstation menggunakan prosentase pembebanan dari motor dan beban statis seperti telah ditentukan.

2 Normal

Pilih normal untuk persen pembebanan untuk setiap beban seperti yang telah dimasukkan untuk loading category yang dipilih

2 Maximum

Jika ini dipilih, maka semua motor dan beban statis yang secara langsung terhubung akan dikalikan dengan faktor diversity maksimum tiap bus.

2 Minimum

Jika ini dipilih, maka semua motor dan beban statis yang secara langsung terhubung akan dikalikan dengan faktor diversity mainimum tiap bus.

2 Diversity Factor

Menunjukkan besarnya pembebanan untuk semua motor dan beban statis

2 Initial Condition

Ada dua keadaan yang bisa dipilih yaitu : a. Use Bus Voltage

Menggunakan tegangan bus yang telah ditentukan sebelumnya untuk harga awal iterasi. Dengan pilihan ini dapat dilakukan analisa aliran daya dengan harga awal berbeda untuk tegangan tiap bus.

b. Use Fixed Value

Menggunakan harga awal tegangan bus yang sama untuk semua bus. Dinyatakan dalam persen dari tegangan bus nominal dan sudut tegangan dalam derajat.

(22)

20

Gambar 20. Load Flow Study Case Editor

Setelah studi case editor terisi maka lanjutkan dengan menggambar SLD ke dalam lembar kerja ETAP sesuai komponen dan peralatan yang ada dalam sistem.

Set Up Data Untuk Simulasi

Adapun data – data yang perlu diisikan ke software untuk keperluan simulasi load flow adalah :

1. Single line diagram sistem tenaga listrik 2. Data motor

3. Data impedansi kabel 4. Data Transformator Data Untuk Analisa Aliran Daya

Data – data yang harus dimasukkan untuk studi aliran daya yang disesuaikan dengan sistem tenaga listrik yang dianalisa antara lain :

2 Data Bus

Data yang dibutuhkan untuk perhitungan aliran daya meliputi : • ID Bus

berupa nomor atau nama bus dari sistem • Nominal kV

adalah tegangan nominal pada bus • %V dan sudut (angle)

(23)

21

Gambar 21. Bus Editor

2 Data Branch

Data branch (saluran) dimasukkan ke dalam branch editor, yaitu transformator, transmision line, kabel, reaktor, dan impedansi editor. Data yang dibutuhkan dalam aliran daya meliputi :

• Nilai dan besaran, toleransi, temperature dari branch Z, R, X atau X/R • Panjang dan satuan dari kabel transmisi.

• Base kV, Impedansi dan base kVA/MVA

Gambar 22. (kiri) Info page cable – (kanan) Impedansi cable

2 Data Synchronous Generator

Data Synchronous Generator (generator sinkron) yang dibutuhkan dalam aliran daya meliputi :

(24)

22

• Mode Operasi (Swing, Voltage Control atau Mvar Control) • kV nominal

• %V dan sudut untuk mode swing

• %V, MW loading, dan limit Mvar (Qmax dan Qmin) untuk operasi mode voltage control

• Pembebanan MW dan Mvar untuk mode Mvar control.

Gambar 23. (kiri) Info page generator – (kanan) rating page generator

2 Data Motor Induksi dan Motor Sinkron

Data yang diperlukan untuk analisa aliran daya meliputi : • Rating kW/HP dan kV

• Power faktor dan efisiensi pada pembebanan 100%, 75% dan 50 % • % loading yaitu persen pembebanan pada motor

• Data kabel peralatan

(25)

23

2 Data Beban Statis

Data yang diperlukan untuk analisa aliran daya meliputi : • Identifikasi beban yaitu identitas nama beban

• Rating kVA/MVA dan kV • Power faktor

• % Loading

• Data kabel peralatan

Gambar 25. (kiri atas ) Info page static load – (kanan atas) loading page static load (bawah)Cable page static load

2 Data Transformator

Data yang diperlukan untuk analisa aliran daya meliputi : • Identifikasi yaitu identitas transformator

• Rating kVA/MVA , max kVA/MVA • Rating kV primer serta kV sekunder • % Z, dan X/R

(26)

24

• Hubungan belitan • Hubungan belitan

Gambar 26. (kiri atas ) info page transformator – (kanan atas) rating page transformator (bawah)Tap transformator page

2 Data – Data Lain

Terdapat beberapa data yang berkaitan dengan studi kasus yang juga harus dimasukkan. Data – data ini diedit pada load flow study case editor. Hal ini meliputi : • Metode (Newton-Raphson, Fast-decoupled, atau Accelerated Gauss-Seidel) • Maksimum Iterasi

• Ketelitian

• Faktor percepatan untuk metode Accelerated Gauss-Seidel. • Loading Category

• Report (format laporan)

• Update (untuk tegangan bus dan load tap changer tranformator yang menggunakan hasil aliran daya)

(27)

25

Untuk data atau parameter yang diperlukan tetapi tidak tercantum dalam data peralatan, dapat memasukkan parameter dalam software yang diambil data yang disediakan dalam library ETAP PowerStation kemudian data tersebut disesuaikan dengan data peralatan sebenarnya.

Contoh input dari data – data peralatan dan komponen guna simulasi load flow adalah sebagai berikut :

1. Single Line Diagram (SLD) sistem tenaga listrik

Disesuaikan dengan SLD yang akan dianalisa, dicontohkan adalah sebagai berikut:

Gambar 27. Single Line Diagram sistem tenaga listrik

Contoh input data – data yang diperlukan dalam simulasi sesuai dengan SLD diatas adalah sebagai berikut :

(28)

26

Dari gambar 28 diatas terlihat bahwa motor termasuk motor sinkron yang diberi identitas Finish Mill C dengan kapasitas daya 3200 HP. Motor bertegangan 2,4 kV dengan power faktor 0.99 leading pada pembebanan 100%, 75 % dan 50% serta mempunyai load factor 78 %.

Gambar 29. Contoh input data impedansi kabel dari library ETAP PowerStation

Dari gambar 29. diatas terlihat bahwa impedansi menggunakan kabel dengan data pada library ETAP PowerStation. Jenis kabel adalah tembaga (Cu) dengan kapasitas tegangan 5 kV berukuran 750 MCM.

Gambar 30. Contoh input data impedansi kabel

Dari gambar 30. diatas terlihat bahwa impedansi menggunakan data kabel dimana nilai resistansi 0.0215/km dan reaktansi 0.029/km. Jenis kabel adalah tembaga (Cu) dengan kapasitas tegangan 5 kV berukuran 500 MCM

(29)

27

Gambar 31. Contoh input data transformator

Dari gambar 31. diatas terlihat bahwa Tansformator mempunyai tegangan pada sisi primer 70 kV dan pada sisi sekunder 20 kV. Kapasitas tansformator adalah 20 MVA dengan %Z sebesar 9%. Transformator beridentitas 71-PDT-03 TAKAOKA. Tansformator mempunyai hubungan belitan Y - ∆ yang dapat dilihat pada gambar 32.

Gambar 32. Contoh input data hubungan belitan pada transformator

ToolBar Load Flow Analysis

Adapun toolbar load flow analysis adalah sebagai berikut :

Run Load Flow Studies : untuk menjalankan (running) program setelah SLD dan data seluruh peralatan telah dimasukkan

Update Cable Load Current: untuk merubah kapasitas arus pada kabel sebelum load flow di running

Load Flow Display Options: untuk mengatur hasil load flow yang ditampilkan sesuai dengan peralatan yang operasi.

(30)

28

Data Hasil Simulasi ETAP PowerStation

Hasil dari load flow dapat diketahui melalui Load Flow Report Manager dimana data keluaran yang dapat diketahui meliputi :

Gambar 33. (kiri atas ) complete page LF Report Manager – (kanan atas) Input LF Report Manager (kiri bawah ) result page LF Report Manager – (kanan bawah) summary LF Report Manager

Halt Current Calculation: untuk menghentikan proses running load flow Get Online Data: untuk menyalin data online jika computer interkoneksi dengan menggunakan PSMS (online feature)

Get Archived Data: untuk menyalin data online jika computer terinterkoneksi.

(31)

29

2 Complete

Data yang tersedia berupa keseluruhan data yang dimasukkan ke dalam system dan hasil running program.

2 Input

Data yang tersedia berupa masukkan data kita pada peralatan yang ada dalam sistem tenaga listrik antara lain :

1. Branch

Saluran yang ada dalam sistem tenaga listrik sesuai design yang tergambar beserta impedansinya dan saluran tersebut terhubung dari bus ke bus.

2. Bus

Jumlah bus dengan identitasnya masing – masing, tipe bus dan tegangan nominal bus.

3. Cable

Dapat diketahui nilai resistansi, reaktansi dan library yang telah dimasukkan. 4. Cover

Berisi informasi keseluruhan mengenai system seperti jumlah bus, jumlah kabel, penggunaan metode dalam menganalisa aliran daya.

5. Eqcable

Adalah equipment cable yang diinputkan ke dalam sistem yang menjelaskan jenis dari kabel seperti ukuran, nilai R dan X, panjang kabel juga temperature maksimal dari kabel.

6. XFMR&X

Berisi data transformator lengkap dengan kapasitas, tegangan dan nilai impedansi yang dimasukkan ke dalam system beserta hubungan belitannya.

2 Result

Data yang tersedia sesuai dengan study case yang dipilih yaitu load flow sehingga hasilnya adalah :

• LF report

Berisi aliran daya yang terjadi dalam sistem tenaga listrik yang di desain dan.dapat diketahui pula faktor daya dan arus pada peralatan.

(32)

30

2 Summary

Terdapat data – data sebagai berikut : 1. Loading

Pembebanan yang ditanggung oleh tiap transformator. 2. Losses

Rugi – rugi yang ada pada sistem terlihat di setiap saluran antara bus ke bus dan dapat diketahui total rugi keseluruhan sistem.

3. Summary

Menunjukan data hasil running yang berhubungan dengan kestabilan system dimana akan ditunjukkan hasil sistem yang mengalami drop tegangan dan tegangan lebih pada bus

4. UnderOver

Output sistem yang mengalami drop tegangan dan tegangan lebih pada bus jika terjadi kelebihan beban.

(33)

31

Simulasi Short Circuit Analysis ETAP PowerStation

Short-Circuit Analysis pada Etap PowerStation menganalisa gangguan hubung singkat tiga phasa, satu phasa ke tanah, antar phasa dan dua phasa ke tanah pada sistem tenaga listrik. Program Short-Circuit Analysis Etap PowerStation menghitung arus total hubung singkat yang terjadi. Etap PowerStation versi 3.0.2 menggunakan standar ANSI/IEEE (seri C37) dan IEC (IEC 909 dan lainnya) dalam menganalisa gangguan hubung singkat yang bisa dipilih sesuai dengan keperluan.

Untuk memulai Short-Circuit Analysis maka single line diagram (SLD) sistem tenaga listrik digambarkan terlebih dahulu dengan memperhatikan komponen AC dan DC serta peralatan yang digunakan. SLD biasa digambarkan pada lembar edit (lihat gbr. 34)

Gambar 34. Lembar kerja ETAP PowerStations

Study Case Editor

Short-Circuit Analysis Study Case Editor berisi variabel – variabel kontrol untuk penyelesaian analisa hubung singkat dan beberapa pilihan format laporan atau hasil output software (lihat gambar 2), untuk menampilkannya maka pada Window pilih guest (Project Editor) setelah itu pilih studi cases, short circuit dan SC - Default

(34)

32

Adapun variabel – variabel yang terdapat dalam Short-Circuit Analysis study case editor antara lain :

2 Study Case ID

Nama study case terdapat pada isian ini yang dapat diubah – ubah dengan panjang maksimal karakter penamaan sebanyak 12 karakter

2 Standard

Standar ANSI dan IEC dapat dilakukan untuk studi hubung singkat. Kedua standar mempunyai variable yang berbeda.

2 XFMR Tap

Terdapat tiga metode yang disediakan untuk model seting tap off-nominal transformator.

2 Adjust Base kV

Tegangan – tegangan bus dihitung mengguankan perbandingan belitan yang meliputi rating kV trafo.

2 Adjust XFMR Z

Impedansi transformator disesuaikan untuk seting tap off-nominal untuk mengikuti perubahan transformator begitu juga dengan setting pada tap.

2 Use Nominal Tap

Rating kV transformator digunakan sebagai perbandingan belitan untuk perhitungan tegangan base dari bus – bus, yakni semua seting tap off-nominal diabaikan dan impedansi transformator tidak disesuaikan.

(35)

33 2 Report

Beberapa pilihan untuk laporan output dari studi hubung singkat adalah : a. Contribution Level

Dapat dipilih sampai sejauh mana arus kontribusi dari setiap bus individual ke masing-masing bus yang terganggu dengan menyatakan jumlah level bus dalam bagian tersebut.

b. Marginal Device Limit

PowerStation akan menandai semua peralatan pengaman yang mempunyai momentary duty dan interrupting duty melebihi kemampuannya dengan tanda berwarna merah. Dalam laporan outputnya peralatan ini akan ditandai untuk membedakan dengan peralatan yang masih dalam batas kemampuannya.

c. Individual LV Motor Contribution

Pilihan ini menyediakan studi aliran daya yang lebih detail pada sistem tergantung rendah. Dengan memilih hal ini, kontribusi setiap motor tegangan rendah akan dicetak pada laporan output.

d. Bus Selection

PowerStation mempunyai kemampuan untuk melakukan perhitungan gangguan pada satu bus atau semua bus sekaligus (tetapi tidak simultan). Tergantung pada tipe gangguan yang diinginkan, program akan menerapkan gangguan tiga fasa, line to line, line to ground dan line to line to ground pada setiap bus yang ditentukan untuk studi hubung singkat.

e. Cable/OL Heater

Dengan pilihan ini, program akan memasukkan impedansi kabel peralatan dan pemanasan karena overload dalam studi hubung singkat.

f. Prefault Voltage ANSI Standard

Dengan pilihan ini dapat dimasukkan keadaan awal hubung singkat untuk semua bus.

(36)

34

g. Fixed Prefault Voltage

Menentukan besarnya tegangan sebelum gangguan dalam persen tegangan bus nominal atau base kV bus

h. Variabel Prefault Voltage

Program juga dapat menentukan nilai tegangan sebelum gangguan untuk setiap bus, sehingga dapat dilakukan studi hubung singkat dengan harga tegangan bus sebelum gangguan yang berbeda

i. Machine X/R – ANSI Standard

Pilihan X/R mesin yang tetap dan variabel tersedia dalam perhitungan hubung singkat. Untuk catatan, pemilihan X/R mesin tetap atau variabel hanya berpengaruh pada perhitungan interrupting (1½ - 4 cycle) duty dari circuit breaker tegangan tinggi.

j. Fixed X/R

PowerStation menggunakan rasio X/R mesin (=X”/Ra) yang ditentukan untuk ½ cycle dan 1½ - 4 cycle. Titik berat pilihan ini adalah untuk memberikan keleluasan bahwa standar ANSI tidak mempertimbangkan rasio X/R mesin yang variable.

Contoh perhitungan Ra jika X/R fixed :

½ Cycle Network 1½ - 4 Cycle Network

Input Xsc 15 25

Input X/R 10 10

(37)

35

k. Variabel X/R

PowerStation menggunakan rasio X/R mesin yang ditentukan dan reaktansi subtransient (X”) untuk menghitung resistansi jangkar (Ra). Resistansi ini selanjutnya digunakan untuk ½ cycle network dan 1½ - 4 cycle network.

Contoh perhitungan Ra dan X/R jika X/R variable dipertimbangkan :

½ Cycle Network 1½ - 4 Cycle Network

Given Xsc 15 25

Given X/R 10 --

Terhitung Ra 1.5 1.5

Final X/R 10 16.7

l. Prefault Voltage – IEC Standard

Faktor C digunakan sebagai Cmax yang ditentukan dalam standa IEC 909. Ekivalen sumber tegangan yang digunakan dalam perhitungan hubung singkat IEC akan default C factor untuk tegangan Standar IEC 909 :

230 V & 400 V C Factor = 1.0

< 1001 V C Factor = 1.05

sampai dengan 35000 V C Factor = 1.1

> 35000 V C Factor = 1.1

m. Calculation Method – IEC Standard Peak X/R Method

• Method A – menggunakan rasio X/R yang seragam dalam perhitungan arus puncak

• Method B – menggunakan rasio X/R pada lokasi hubung singkat dalam perhitungan arus puncak

(38)

36

n. Breaking kA

Breaking duty dari CB dan fuse dihitung berdasarkan dua metode :

• No Mtr Decay – Penurunan motor induksi tidak dimasukkan dalam perhitungan • With Mtr Decay – Penurunan motor induksi dimasukkan dalam perhitungan o. Steady State kA

Arus hubung singkat steady state adalah dalam harga rms yang tersisa dari penurunan pada fenomena transient.

• Max Value : Faktor-faktor yang digunakan untuk arus hubung singkat steady state yang mencerminkan nilai maksimum ketidakakuratan pemodelan. Nilai ini digunakan untuk menentukan rating minimum peralatan.

• Min Value : Faktor-faktor yang digunakan untuk arus hubung singkat steady state yang mencerminkan nilai minimum ketidakakuratan pemodelan. Nilai ini digunakan untuk tujuan koordinasi relay.

p. Motor Contribution Based On

Pilihan yang berhubungan dengan berbagai macam motor yang mendukung dalam analisa short-circuit.

i. Motor Status

Analisa akan dilakukan berdasarkan data motor yang diinputkan. ii. Loading Category

Pembebanan akan diikutsertakan dalam analisa hubung singkat dengan pemilihan jenis beban.

iii. Both

* Untuk keadaan default maka pilih motor status

q. Bus Selection

adalah lembar yang berisi daftar bus yang yang mengalami gangguan.

* Untuk keadaan default maka kosongkan, dan ganguan pada bus bisa dilakukan dengan cara klik kanan pada mouse dan pilih option fault

(39)

37

Info Page Short-Circuit Analysis Study Case Editor

2 Standard

Ada dua pilihan standar yang diberikan oleh Etap PowerStation yaitu ANSI dan IEC standards tergantung dengan short circuit analysis yang dilakukan.

* Untuk keadaan default maka pilih standar yang diinginkan ANSI/IEEE atau IEC tanpa melakukan perubahan pada option yang lain (prefault voltage)

2 Line to Ground Fault

adalah option dimana bisa menginputkan nilai impedansi tanah jika terjadi gangguan pada sistem ke tanah.

Gambar 35. (kiri) info page – (kanan) standard page SC-Study Case Editor

Data Untuk Short Circuit Analysis

Data – data yang harus diperlukan untuk analisa hubung singkat antara lain :

2 Data Bus

Data yang dibutuhkan untuk perhitungan hubung singkat meliputi : • ID Bus

berupa nomor atau nama bus dari sistem • Nominal kV

(40)

38

• %V dan sudut (angle)

jika initial codition di set pada use bus voltage

Gambar 36. Bus Editor

2 Data Branch

Data branch (saluran) dimasukkan ke dalam branch editor, yaitu transformator, transmision line, kabel, reaktor, dan impedansi editor. Data yang dibutuhkan dalam hubung singkat meliputi :

• Nilai dan besaran, toleransi, temperature dari branch Z, R, X atau X/R • Panjang dan satuan dari kabel transmisi.

• Base kV, Impedansi dan base kVA/MVA

(41)

39 2 Data Synchronous Generator

Data Synchronous Generator (generator sinkron) yang dibutuhkan dalam hubung singkat meliputi :

• Mode Operasi (Swing, Voltage Control atau Mvar Control) • kV nominal

• %V dan sudut untuk mode swing

• %V, MW loading, dan limit Mvar (Qmax dan Qmin) untuk operasi mode voltage control

• Pembebanan MW dan Mvar untuk mode Mvar control.

Gambar 38. (kiri) info page generator – (kanan) rating page generator

2 Data Motor Induksi dan Motor Sinkron

Data yang diperlukan untuk analisa hubung singkat meliputi : • Rating kW/HP dan kV

• Power faktor dan efisiensi pada pembebanan 100%, 75% dan 50 % • % loading yaitu persen pembebanan pada motor

(42)

40

Gambar 39. (kiri) info page motor – (kanan) name plate page motor

2 Data Beban Statis

Data yang diperlukan untuk analisa hubung singkat meliputi : • Identifikasi beban yaitu identitas nama beban

• Rating kVA/MVA dan kV • Power faktor

• % Loading

• Data kabel peralatan

(43)

41

Gambar 41. Cable page static load

2 Data Transformator

Data yang diperlukan untuk analisa hubung singkat meliputi : • Identifikasi yaitu identitas transformator

• Rating kVA/MVA, max kVA/MVA • Rating kV primer serta kV sekunder • % Z, dan X/R

• Hubungan belitan • Hubungan belitan

(44)

42

Gambar 43. Tap page transformator

2 Data – Data Lain

Terdapat beberapa data yang berkaitan dengan studi kasus yang juga harus dimasukkan. Data-data ini diedit pada short circuit study case editor. Hal ini meliputi :

• Metode (Newton-Raphson, Fast-decoupled, atau Accelerated Gauss-Seidel) • Maksimum Iterasi

• Ketelitian

• Faktor percepatan untuk metode Accelerated Gauss-Seidel. • Loading Category

• Report (format laporan)

• Update (untuk tegangan bus dan load tap changer tranformator yang menggunakan hasil hubung singkat)

Untuk data atau parameter yang diperlukan tetapi tidak tercantum dalam data peralatan, dapat memasukkan parameter dalam software yang diambil data yang disediakan dalam library ETAP PowerStation kemudian data tersebut disesuaikan dengan data peralatan sebenarnya.

(45)

43

Memberi Gangguan Pada Bus

Untuk dapat melakukan analisa hubung singkat ini maka pada bus yang akan dianalisa harus diberi gangguan dengan cara pada bus yang diinginkan ada gangguan di klik kanan setelah itu pilih option fault, jika ingin mengembalikan seperti semula pilih option don’t fault (lihat gambar 44.)

Gambar 44. page gangguan pada bus

ToolBar Short circuit Analysis

Adapun toolbar short circuit analysis ada dua macam sesuai dengan standar yang dipilih.

1. Toolbar ANSI Standard

gangguan

normalisasi

3–Phase Fault Device Duty : untuk menganalisa gangguan 3 phasa sesuai dengan sistem.

3-Phase Faults - 30 Cycle Network : untuk menganalisa gangguan 3 phasa pada system dengan waktu 30 cycle.

LG, LL, LLG, & 3-Phase Faults - ½ Cycle: untuk menganalisa gangguan satu phasa ke tanah , antar phasa, dua phasa ke tanah dan 3 phasa selama ½ cycle

3–Phase Fault Device Duty : untuk menganalisa gangguan 3 phasa sesuai dengan sistem.

LG, LL, LLG, & 3-Phase Faults - 1.5 to 4 Cycle: untuk menganalisa gangguan satu phasa ke tanah , antar phasa, dua phasa ke tanah dan 3 phasa antara 1,5 sampai 4 cycle

(46)

44

2. Toolbar IEC Standard

Short circuit Display Options: untuk mengatur hasil short circuit yang ditampilkan sesuai dengan peralatan yang operasi.

Short circuit Report Manager: untuk menampilkan hasil short circuit Halt Current Calculation: untuk menghentikan proses running short circuit

Get Online Data: untuk menyalin data online jika computer interkoneksi dengan menggunakan PSMS (online feature)

Get Archived Data: untuk menyalin data online jika computer terinterkoneksi.

LG, LL, LLG, & 3-Phase Faults - 30 Cycle: untuk menganalisa gangguan satu phasa ke tanah , antar phasa, dua phasa ke tanah dan 3 phasa selama 30 cycle

Save Fault kA for PowerPlot: untuk studi lebih lanjut dengan program powerplot yang berhubungan dengan koordinasi.

Short circuit Display Options: untuk mengatur hasil short circuit yang ditampilkan sesuai dengan peralatan yang operasi.

Short circuit Report Manager: untuk menampilkan hasil short circuit Halt Current Calculation: untuk menghentikan proses running short circuit

Get Online Data: untuk menyalin data online jika computer interkoneksi dengan menggunakan PSMS (online feature)

Save Fault kA for PowerPlot: untuk studi lebih lanjut dengan program powerplot yang berhubungan dengan koordinasi.

3-Phase Faults - Device Duty (IEC909): untuk menganalisa gangguan 3 phasa sesuai standar IEC 909.

LG, LL, LLG, & 3-Phase Faults (IEC 909) : untuk menganalisa gangguan satu phasa ke tanah , antar phasa, dua phasa ke tanah dan 3 phasa dengan standar IEC 909

3-Phase Faults - Transient Study (IEC 363): untuk menganalisa gangguan satu phasa ke tanah , antar phasa, dua phasa ke tanah dan 3 phasa dengan standar IEC 363

(47)

45

Data Hasil Simulasi ETAP PowerStation

Hasil dari short circuit dapat diketahui melalui Short circuit Report Manager dimana data keluaran yang dapat diketahui meliputi :

Gambar 45. (kiri atas ) Complete page – (kanan atas) Input page

(kiri bawah ) Result page – (kanan bawah) Summary page SC Report Manager

* untuk mengetahui hasil keseluruhan running program maka pilih TextReport

(48)

46

2 Complete

Data yang tersedia berupa keseluruhan data yang dimasukkan ke dalam system dan hasil running program.

2 Input

Data yang tersedia berupa masukkan data kita pada peralatan yang ada dalam sistem tenaga listrik antara lain :

1. Bus 2. Cable 3. Cover 4. Generator 5. Loads 6. Reactor 7. Transformer 8. UPS 9. Utility 2 Result

Data yang tersedia sesuai dengan study case yang dipilih yaitu short circuit sehingga hasilnya adalah :

• SC report

Berisi data hubung singkat yang terjadi dalam sistem tenaga listrik yang di desain dan.dapat diketahui pula power faktor dan arus pada peralatan.

2 Summary

Menunjukan data hasil running yang berhubungan dengan kestabilan system dimana akan ditunjukkan hasil sistem yang mengalami gangguan.

(49)

47

Simulasi Transient Stability Analysis ETAP PowerStation

Program Transient Stability Analysis PowerStation digunakan untuk menyelidiki batas kestabilan sistem tenaga sebelum, selama dan setelah terdapat perubahan sistem atau terdapat gangguan. Program ini memodelkan karakteristik dinamis sistem tenaga, menerapkan events dan tindakan yang diinginkan user, menyelesaikan persamaan sistem dan persamaan turunan mesin untuk mengetahui respon sistem dan mesin dalam daerah waktu. Dari respon ini user dapat menentukan sifat transient sistem, membuat perkiraan kestabilan, men-setting peralatan pengaman dan melakukan perbaikan stabilitas sistem.

1. Transient Stability Toolbar

Transient Stability Toolbar akan tampak dilayar ketika anda didalam mode Studi Transient Stability.

Gambar 62. Transient Stability Analysis ETAP PowerStation

Run Transient Stability Study

Pilih studi kasus dari Study Case Toolbar lalu klik tombol Run Transient Stability. Kotak dialog akan mucul yang menanyakan nama file output.

Transient Stability Display Options

Klik tombol Transient Stability Display Options untuk mengatur pilihan one-line diagram pada mode studi transient stability dan dapat mengatur tampilan hasil perhitungan.

(50)

48

Transient Stability Report Manager

Untuk menampilkan isi dari output report terakhir klik icon Report Manager pada toolbar. Nama file output ditampilkan toolbar Study Case.

Gambar 63. Transient Stability Report Manager

Anda juga dapat melihat output report dengan meng-klik tombol View Output File pada toolbar Study Case Toolbar. Untuk menampilkan daftar output report, klik nama output report dan klik tombol View output File.

Daftar ini berisi semua file output pada folder proyek yang bersangkutan dengan ektensi file yang bersangkutan. Untuk mengubah ekstensi file output, klik tombol List Output Reports didekat kotak daftar Output Report.

(51)

49

Gambar 64. List Output Report

Output report studi transient stability studies memiliki ekstensi .tsr.

Text output report PowerStation dapat diperlihatkan oleh pengolah kata seperti Notepad, Wordpad, dan Microsoft Word. Default-nya, output report ditampilkan di Notepad.

Transient Stability Plots

Klik tombol Transient Stability Plots untuk memilih dan mem-plot kurva dari file plot terakhir. Nama file plot ditampilkan pada toolbar Study Case. File plot transient stability memiliki ekstensi .tsp.

Halt Current Calculation

Tanda Stop normalnya tidak aktif. Ketika perhitungan transient stability diaktifkan maka tombol ini menjadi aktif dan menunjukkan tanda merah. Klik tombol ini akan menghentikan perhitungan yang sedang berjalan.

Get Online Data

Jika keylock ETAP dikomputer anda memiliki fasilitas online, anda dapat menyalin data online dari presentasi online ke presentasi bersangkutan.

(52)

50

Get Archived Data

Jika keylock ETAP dikomputer anda memiliki fasilitas online, anda dapat menyalin data archived ke presentasi bersangkutan.

2. Transient Stability Study Case Editor

Transient Stability Study Case Editor berisi solusi variable kontrol, kondisi pembebanan, event dan aksi spesifik untuk output report dan plot. Anda dapat membuat dan menyimpan studi kasus yang tidak terbatas. Ketika pada mode Transient Stability Analysis anda dapat menjalankan Transient Stability Study Case Editor dengan meng-klik tombol study case pada toolbar Transient Stability.

Untuk membuat studi kasus baru, tampilkan Project View, klik kanan pada folder Transient Stability Study Case dan pilih Create New.

Gambar 65. Project Editor

Transient Stability Study Case Editor berisi Info Page, Events Page, Dyn Model Page dan Plot Page.

(53)

51

2.1. Info Page

Gambar 66. Transient Stability Study Case

Study Case ID

ID studi kasus bisa dinamakan sampai 12 karakter.

Initial Load Flow

Anda dapat merubah parameter solusi untuk perhitungan awal aliran daya pada transient stability analysis.

Max Iteration

Nilai yang disarankan dan default adalah 2000.

Solution Precision

Nilai ini menentukan berapa presisi perhitungan anda. Nilai default adalah 0.000001.

Accel. Factor

(54)

52

Solution Parameters

Simulation Time Step

Nilai ini merupakan step waktu dan harus diisikan lebih kecil daripada time constant terendah didalam sistem sehingga anda dapat melihat semua respon exciter dan governor. Nilai yang disarankan adalah 0.001 detik. Jika anda ingin resolusi yang lebih tinggi, kurangi nilai ini.

Plot Time Step

Nilai ini menentukan seberapa sering PowerStation harus merekam hasil simulasi untuk diplot. Nilai default adalah 20 sehingga setiap 20 step waktu simulasi akan diplot. Misalkan bila step waktu simulasi 0.001 maka step waktu plot adalah 0.02 detik. Dengan nilai step waktu yang lebih rendah maka hasil plot akan semakin halus tetapi juga menambah besar file plot di harddisk.

Initial Loading

Pada bagian ini anda dapat menentukan operasi beban awal sistem dengan memilih loading category dan diversity factors.

Category

Dengan memilih berbagai kategori, PowerStation menggunakan persen pembebanan motor dan beban statis seperti pada categori yang terpilih.

Normal

Pilih normal untuk menggunakan persen pembebanan masing-masing beban seperti yang telah dimasukkan pada Loading Category yang terpilih yaitu tidak ada faktor diversity yang dipertimbangkan.

Maximum

Ketika pilihan pembebanan maksimum bus terpilih, pembebanan semua motor dan beban statis akan dikalikan dengan faktor diversity maksimum dari bus yang terhubung ke beban.

(55)

53

Dengan pilihan ini anda dapat mendefinisikan pembebanan awal untuk studi transient stability dimana setiap bus memiliki faktor diversity maksimum.

Minimum

Ketika pembebanan minimum bus terpilih, pembebanan semua motor dan beban statis akan dikalikan dengan faktor diversity minimum dari bus yang terhubung ke beban. Dengan pilihan ini, anda dapat mendefinisikan pembebanan awal untuk studi transient stability dimana setiap bus memiliki faktor diversity minimum yang berbeda.

Pilihan ini dapat digunakan untuk melihat efek tap transformator dan kapasitor (jika ada) pada tegangan sistem pada kondisi pembebanan minimum.

Global Diversity Factor

Ketika terpilih maka PowerStation akan mengalikan semua motor dan beban statis dari kategori pembebanan yang terpilih dengan nilai yang dimasukkan. Dengan pilihan ini anda dapat mendefinisikan pembebanan awal untuk studi transient stability dengan faktor diversity tetap untuk semua beban. Catatan : semua motor akan dikalikan dengan 125% yang menandakan beban motor di semua bus naik 25% diatas nilai yang tercantum pada kaategori pembebanan yang terpilih. Nilai ini bisa lebih kecil atau lebih besar dari 100%.

Operating P & Q

Cek pilihan ini untuk menggunakan P dan Q seperti yang tercantum pada editor komponen.

Charger Loading

Load Category

Pilihan ini digunakan untuk memilih P dan Q seperti yang terdapat pada bagian Loading Category dari Charger Editor untuk charger.

(56)

54

Operating Load

Pilihan ini digunakan untuk memilih P dan Q seperti yang terdapat pada bagian Operating Load dari Charger Editor untuk charger. Jika pilihan ini terpilih maka pertama perlu dijalankan perhitungan aliran daya DC supaya dapat memperkirakan beban charger.

Remarks 2nd Line

Anda dapat memasukkan 120 karakter di kotak keterangan. Informasi yang dimasukkan dilokasi ini akan diprint pada baris kedua daari informasi header pada setiap halaman output report. Keterangan ini dapat berisi informasi mendetail dan kondisi setiap studi kasus.

2.2. Events Page

Bagian ini digunakan untuk mendesain dan menyimpan studi transient stability dengan even yang di skenario.

Gambar 67. Event page Transient Stability Analysis ETAP PowerStation

Events

Daftar ini berisi semua even yang ditampilkan dalam orde watu yang menggambarkan urutan even didalam studi. Even yang aktif ditandai oleh * dan diurutkan dulu lalu diikuti oleh even yang tidak aktif.

(57)

55

Event ID

Maksimum 12 karakter.

Time

Adalah waktu ketika even tersebut terjadi. Satuannya detik.

Add (Event)

Even baru dapat ditambahkan dengan meng-klik pada Add (Event) dan membuka Event Editor.

Gambar 68. Event editor

Active – untuk membuat event aktif. Hanya even yang aktif akan dimasukkan dalam studi.

Edit (Event)

Klik tombol Edit (Event) untuk membuka Event Editor dan mengubah even yang ada. Anda juga dapat men-double klik pada even untuk mengaktifkan Event Editor.

Delete (Event)

Menghapus even yang ada dari daftar.

Actions

Setiap even dapat berisi beberapa aksi (perubahan sistem atau gangguan). Ketika anda memilih even dengan meng-klik nya di daftar Event, aksi even yang bersangkutan akan ditampilkan di daftar Actions.

Device Type

(58)

56

Device ID

ID dari peralatan yang akan diberi aksi. Aksi yang akan dilakukan pada peralatan dan tipe peralatan yang bersangkutan. Berikut ini akan diberikan tipe peralatan dan aksinya.

Device Type Actions

Bus Fault / Clear Fault

Circuit Breaker Open / Close

SPST Switch Open / Close

Fuse Open / Close

Generator Ref. Machine / Delete / Droop / Isoch / Start

Utility Ref. Machine / Delete

Syn. Motor Delete

Ind. Motor Accelerate / Delete

MOV Start

None Load Flow (no action, print load flow at the event time)

Add (Action)

Aksi baru dapat ditambahkan dengan meng-klik tombol Add (Action) dan membuka Action Editor. Pilih tipe peralatan dari list Device Type. Pilih peralatan dari list Device ID lalu pilih aksi dari list Action.

Edit (Action)

Klik tombol Edit (Action) untuk mengedit aksi yang telah ada.

(59)

57

Delete (Action)

Menghapus aksi yang telah ada.

Total Simulation Time

Total waktu simulasi untuk studi transient stability. Satuannya detik.

2.3. Dyn Model Page

Bagian ini digunakan untuk memodelkean motor sinkrun dan induksi secara dinamis didalam sistem.

Gambar 70. Dyn Model pageTransient Stability Study Case

Motor akan dimodelkan dinamis jika anda telah menerapkan model dinamis didalam Motor Editor dan anda memilih mengglobalkan model group motor tersebut di bagian ini. Catatan : semua generator sinkrun dimodelkan secara dinamis.

Machine Type

Syn. Motors, MV

Group mesin terdiri dari semua motor sinkrun yang bertegangan menengah (rating 1 kV dan diatasnya).

Syn. Motors, LV

Group mesin terdiri dari semua motor sinkrun yang bertegangan rendah (rating dibawah 1 kV).

(60)

58

Ind. Machines, MV

Group mesin terdiri dari semua motor induksi dan generator yang bertegangan menengah (rating 1 kV dan diatasnya).

Ind. Machines, LV

Group mesin terdiri dari semua motor induksi dan generator yang bertegangan rendah (rating dibawah 1 kV).

Dynamic Modeling

Do Not Model

Jika dipilih, group mesin yang bersangkutan tidak akan dimodelkan secara dinamis pada studi transient stability tanpa memperhatikan model dinamis untuk mesin individual.

Model Machines Larger or Equal To

Jika dipilih, mesin-mesin yang terdapat pada group mesin dan yang dirating lebih besar daripada yang disebutkan di bagian HP/kW akan dimodelkan secara dinamis dan mesin dalam satu grup yang dirating kurang dari ukuran yang diberikan tidak akan dimodelkan secara dinamis.

HP/kW

Tetapkan ukuran mesin (dalam HP or kW) untuk grup mesin yang terpilih untuk dimodelkan secara dinamis.

Starting Load for Accelerating Motors

Tetapkan dasar torsi beban vs slip model yang digunakan untuk accelerasi motor. Based on Motor Electrical Rating

Torsi beban vs. kurva slip didefinisikan berdasarkan rating motor listrik yaitu torsi beban vs. kurva slip akan diskala sampai 100% pada kecepatan sinkrun merujuk pada 100% rating motor listrik.

(61)

59

Based on Motor Mechanical Load

Torsi beban vs. kurva slip didefinisikan berdasarkan beban motor mekanis yaitu torsi beban vs kurva slip tidak akan diskala.

Generator Start-Up

Tetapkan model ketergantungan frekuensi untuk melakukan studi Start-up Generator.

Frequency Dependent Models for Network, Motors, & Generators

Jaringan, motor dan generator akan dimodelkan tergantung pada frekuensi. Pilihan ini harus dicek untuk melakukan studi Start-up Generator.

2.4. Plot Page

Bagian ini digunakan untuk memilih peralatan yang akan diplot untuk menampilkan hasil studi transient stability.

Gambar 71. Plot page Transient Stability Study Case

Device Type Pilih tipe peralatan.

Syn. Generators

Group mesin berisi semua generator sinkrun.

Syn. Motors, MV

(62)

60

Syn. Motors, LV

Grup mesin yang terdiri dari semua motor sinkrun dengan rating kurang dari 1 kV.

MV Ind. Machines

Grup mesin yang terdiri dari semua motor induksi dan generator dengan rating 1 kV dan diatasnya.

LV Ind. Machines

Grup mesin yang terdiri dari semua motor induksi dan generator dengan rating kurang dari 1 kV.

Buses

Grup peralatan yang terdiri dari semua bus.

Plot Options

Ketika grup mesin atau peralatan telah terpilih, semua peralatan dalam grup itu akan ditampilkan di daftar Plot Options sehingga dapat dipilih.

Device ID

ID peralatan untuk mesin yang terpilih atau grup peralatan kecuali mesin-mesin yang tidak dimodelkan secara dinamis.

Plot/Tabulation (column)

Anda dapat meng-klik kolom ini untuk memilih atau tidak pilihan plot/tabulation untuk berbagai peralatan. Ketika dipilih, tanda X akan terlihat dikolom disamping peralatan yang dipilih dan informasi peralatan yang terpilih akan ditabulasikan pada akhir output report dari studi transient stability dan disimpan di file plot.

Plot/Tabulation (check box)

Check box ini merupakan cara lain untuk mengeset pilihan plot/tabulation untuk peralatan yang terpilih.

(63)

61

3. Display Options

Pilihan tampilan terdiri atas Results page dan tiga halaman berisi informasi AC, AC-DC dan DC. Perhatikan bahwa warna dan tampilan yang dipilih untuk setiap studi adalah spesifik untuk studi tersebut.

Results Page

Anda dapat menentukan pilihan tampilan untuk hasil perhitungan one-line diagram. Hasil ini dapat ditampilkan untuk setiap plot step waktu. Hasilnya meliputi tegangan bus dan frekuensi, sudut daya mesin sinkrundan frekuensi, kecepatan motor induksi dan aliran daya ke mesin.

Gambar 72. Disply option Transient Stability

Color

Pilih warna untuk hasil transient stability yang akan ditampilkan pada one-line diagram.

Show Units

Pilih checkbox tersebut untuk menampilkan unit dari hasil yang ditampilkan.

Bus

Voltage

(64)

62

Frequency

Pilih Hz atau % untuk frekuensi bus yang ditampilkan pada one-line diagram dari daftar.

Syn. Machines

Power Angle

Pilih Deg atau Rad untuk sudut (rotor) daya mesin sinkrun yang akan ditampilkan pada one-line diagram. Catatan : sudut daya adalah relatif berdasarkan referensi sudut daya mesin yang diset nol.

Frequency

Pilih Hz atau % untuk frekuensi mesin sinkrun yang akan ditampilkan pada one-line diagram dari daftar. Frekuensi mesin sebanding dengan kecepatan mesin.

Ind. Machines

Speed

Pilih RPM atau %Slip untuk tampilan kecepatan mesin induksi pada one-line diagram. Dimana : s M s x Slip % ω ω − ω = 100 Machine Flows Unit

Tentukan satuan aliran daya (kVA atau MVA).

kW + jkvar

Pilih satuan aliran daya P + jQ untuk menampilkan (kW+jkvar atau MW+jMvar)

kVA

(65)

63

Amp

Pilih tombol arus untuk menampilkan aliran arus dalam ampere.

4. Transient Stability Plots

Klik tombol Transient Stability Plots pada Transient Stability Toolbar kemudian akan muncul kotak dialog untuk pilihan Transient Stability Plot seperti yang terlihat dibawah sehingga anda dapat menentukan peralatan dan tipe plot yang akan ditampilkan.

Gambar 73. Transient Stability Plot Selection

Device Type

Pilih tipe peralatan yang akan diplot.

Device ID

Dari daftar, pilih peralatan yang akan diplot (sampai 16 peralatan pada waktu bersamaan). Daftar ini berisi peralatan yang telah dipilih untuk diplot dari Study Case Editor.

Plot Type

(66)

64

Syn. Generators

- Power Angle – sudut daya generator sinkrun dalam derajat. - Frequency – frekuensi generator sinkrun dalam Hz

- MWm – daya mekanis generator sinkrun dalam MW - Mwe – daya pembangkitan generator sinkrun dalam MW - Current – arus terminal generator sinkrun dalam Amp - Efd – tegangan medan generator sinkrun dalam per unit

Syn. Motors, MV (medium voltage motors)

- Power Angle – sudut daya motor sinkrun dalam derajat - Frequency – frekuensi motor sinkrun dalam Hz

- MWm – daya mekanis motor sinkrun dalam MW

- MWe – daya elektris motor sinkrun dalam MW

- Current – arus terminal motor sinkrun dalam Amp

- Voltage – tegangan bus yg terhubung ke motor sinkrun dalam % kV nominal bus

Syn. Motors, LV (low voltage motors)

- Power Angle – susut daya motor sinkrun dalam derajat - Frequency – frekuensi motor sinkrun dalam Hz

- MWm – daya mekanis motor sinkrun dalam MW - Mwe – daya elektris motor sinkrun dalam MW

- Current – synchronous motor terminal current in Amp

- Voltage – tegangan bus yg terhubung ke motor sinkrun dalam % kV nominal bus

Ind. Motors, MV (medium voltage machines) - Slip – slip mesin induksi dalam %

- Accel Torque – daya akselerasi mesin induksi dalam MW

- MWm – daya mekanis mesin induksi dalam MW

- Mwe – daya elektris mesin induksi dalam MW

- Current – arus terminal mesin induksi dalam Amp

(67)

65

Ind. Motors, LV (low voltage machines) - Slip – slip mesin induksi dalam %

- Accel Torque – daya akselerasi mesin induksi dalam MW - MWm – daya mekanis mesin induksi dalam MW

- Mwe – daya elektris mesin induksi dalam MW - Current – arus terminal mesin induksi dalam Amp

- Voltage – tegangan bus yg terhubung ke mesin induksi dalam % kV nominal bus

Buses

- Voltage Angle – sudut tegangan bus dalam degree - Frequency – frekuensi bus dalam % frequency sistem

- MW – daya nyata pembebanan bus dalam MW

- Mvar – daya rektif pembebanan bus dalam Mvar

- Voltage/Hz – bus voltage per Hz in volt/Hz

- Voltage – magnitudo tegangan bus dalam % kV nominal bus

5. Methods Perhitungan Stabilitas Transient

Untuk mengenal studi stabilitas transient dalam sistem tenaga maka dibutuhkan pengetahuan tentang model dinamis mesin, model kontrol mesin (seperti sistem eksitasi dan automatic voltage regulators, governor, dan sistem turbin dan power system stabilizers), perhitungan numerik dan fenomena keseimbangan elektromekanis dari sistem tenaga. Pada bagian ini akan diberikan prinsip dasar studi stabilitas transient dalam sistem tenaga yang akan diaplikasikan pada PowerStation.

Tujuan Studi Stabilitas Transient

Keandalan dinamis sangat penting dalam mendesain dan mengoperasikan sistem tenaga. Studi stabilitas transient memberikan sudut daya mesin dan simpangan kecepatan, frekuensi sistem, aliran daya aktif dan reaktif dari mesin, aliran daya saluran dan transformator serta level tegangan dari bus dalam sistem. Kondisi sistem ini menyediakan perkiraan stabilitas sistem. Hasilnya akan ditampilkan pada one-line diagram dan dapat diprint atau diplot. Untuk studi stabilitas transient anda perlu memodelkan berbagai grup mesin dalam sistem yang memiliki pengaruh penting dalam operasi sistem tenaga.

(68)

66

Definisi Stabilitas Sistem Tenaga

Stabilitas sistem tenaga merupakan parameter dalam sistem tenaga yang dapat mempertahankan keseimbangan elektromekanis pada kondisi operasi normal dan abnormal. Karena stabilitas dalam sistem tenaga adalah fenomena electromekanis maka dapat digunakan sebagai indikasi bahwa desain mesin sinkrun dalam sistem tetap sinkrun satu sama lain selama gangguan pada berbagai lokasi dalam sistem. Juga dapat digunakan sebagai indikasi kemampuan motor induksi dalam sistem tetap dibeban selama gangguan ini.

Sudut rotor Mesin Sinkrun

Mesin sinkrun berperan penting dalam stabilitas sistem tenaga karena selama dan setelah gangguan, sudut rotornya akan berosilasi yang dapat mengakibatkan osilasi aliran daya dalam sistem. Berdasarkan level osilasi ini, keseimbangan elektromekanis dalam sistem dapat hilang dan ketidakstabilan dapat terjadi. Sehingga stabilitas sistem tenaga kadang-kadang ditujukan pada kestabilan sudut rotor mesin sinkrun.

Dua persamaan berikut sering dijadikan acuan dalam studi stabilitas transient dalam sistem tenaga.

Torque Equation (Generator Case) δ φ π = p F sin T air r 8 2 Dimana

T = torsi mekanis poros

P = jumlah kutub

fair = fluks di celah udara

Fr = MMF medan rotor

d = sudut daya (rotor)

Persamaan torsi mendefinisikan hubungan antara torsi mekanis poros, tegangan stator, eksitasi sistem dan sudut rotor. Perubahan salah satu darinya akan mengakibatkan sudut rotor berada pada posisi yang baru dengan sendirinya.

(69)

67

Swing Equation (Generator Case)

elec mech P P dt d D dt d M 2δ+ δ = − 2 Dimana M = konstanta inersia D = konstanta damping

Pmech = daya mekanis input

Pelec = daya elektris output

Persamaan ayunan menunjukkan sudut rotor sebagai fungsi dari keseimbangan antara daya mekanis dan daya elektris. Setiap perubahan dalam sistem yang merusak keseimbangan ini akan mengakibatkan sudut rotor menuju posisi baru pada kondisi osilasi. Osilasi ini biasa disebut swing sudut rotor.

Batas Kestabilan

Ada dua tipe batas stabilitas sistem tenaga yaitu batas stabilitas steady-state dan batas stabilitas transient.

Batas Stabilitas Steady-State

Stabilitas Steady-State adalah stabilitas sistem pada kondisi bertahap atau perubahan kecil dalam sistem. Kestabilan ini dapat ditemukan dengan perhitungan aliran daya untuk operasi steady-state atau ditentukan dengan studi stabilitas transient bila ada perubahan sistem atau ada gangguan. Sistem dikatakan stabil steady-state bila selama gangguan kecil atau bertahap, semua mesin sinkrun pada kondisi steady-state identik dengan kondisi operasi sebelum gangguan. Batas stabilitas steady-state untuk semua mesin sinkrun adalah ketika sudut rotor kurang dari 900.

(70)

68

Batas Stabilitas Transient

Stabilitas transient atau dinamis adalah kestabilan sistem selama dan sesudah perubahan mendadak pada beban dan saluran yang terganggu. Sistem dikatakan stabil transient bila selama beberapa gangguan, semua mesin sinkrun beroperasi pada kondisi steady-state tanpa memperpanjang rugi sinkrunisasi atau keluar dengan mesin yang lain.

Penyebab Masalah Ketidakstabilan - Hubung singkat

- Rugi koneksi tie pada sistem utility

- Rugi sebagian plant pada co-generation (penolakkan generator)

- Starting motor yang relatif besar dibandingkan kapasitas pembangkitan sistem - Operasi Switching dari saluran, kapasitor dll

- Dampak pembebanan (motor and beban statis)

- Perubahan besar dan mendadak dari beban atau pembangkitan

Pengaruh Masalah Ketidakstabilan - Pemadaman total pada area yang lebar - Pemutusan beban

- Tegangan rendah

- Kerusakkan pada peralatan

- Tidak berfungsinya relay dan peralatan pengaman

Perbaikan Stabilitas Sistem Tenaga

- Tergantung pada sebab dari ketidakstabilan, beberapa perbaikan dapat dilakukan untuk meningkatkan stabilitas sistem, diantaranya :

- Memperbaiki konfigurasi dan desain sistem - Increase synchronizing power.

- Desain dan pilih mesin-mesin berputar – gunakan motor induksi, naikkan momen

inersia, kurangi reaktansi transient, perbaiki regulator tegangan dan karakteristik exciter.

- Gunakan Power System Stabilizers (PSS)

(71)

69

- Tambahkan load shedding

Tetapi anda anda perlu berhati-hati dalam menerapkan hal-hal diatas dan perlu menjalan studi sistem kembali karena perubahan hal-hal diatas akan merubah aliran daya sistem, hubung singkat dan starting motor.

6. Data Yang Dibutuhkan

Untuk menjalankan studi stabilitas transient maka anda perlu memasukkan data yang dibutuhkan untuk perhitungan aliran daya. Umumnya data yang dibutuhkan sama dengan data untuk studi aliran daya tetapi dengan tambahan perlu memasukkan data model dinamis dari mesin, data model beban dan unit kontrol seperti exciter dan data governor.

7. Transient Stability Output Reports

PowerStation menyediakan hasil yang berbeda untuk berbagai tingkat detail tergantung pada kebutuhan anda. Hasil akan ditampilkan dalam tiga format yang berbeda yaitu text output report, tampilan one-line dan plots.

Transient Stability Report Manager

Klik tombol View Output File pada Transient Stability Toolbar untuk membuka Transient Stability Report Manager. Transient Stability Report Manager menyediakan format yang berbeda baik text dan Crystal Reports dan terdiri empat halaman.

Complete Page

Dibagian ini anda dapat memilih format yang memberikan anda output report secara lengkap. Hanya format TextRept yang tersedia.

(72)

70

Gambar 74. Transient Stability Report Manager

Input Page

Bagian ini menyediakan format untuk berbagai data input. Format pada bagian ini tidak tersedia untuk studi stabilitas transient.

Result Page

Bagian ini menyediakan format untuk hasil perhitungan yang berbeda. Format pada bagian ini tidak tersedia untuk studi stabilitas transient.

Summary Page

Bagian ini menyediakan ringkasan baik data input dan hasil perhitungan. Format pada bagian ini tidak tersedia untuk studi stabilitas transient.

Gambar

Gambar 8. Lumped Load Editor
Gambar 9. Synchronous Motor Editor
Gambar 10. Induction Machine Editor
Gambar 14. Variable Frequency Drive Editor
+7

Referensi

Dokumen terkait

Jika Anda klik menu tersebut, maka akan muncul window download seperti gambar 7.1, lalu klik tombol Open untuk membuka file tersebut, tombol Save untuk menyimpan terlebih dahulu

 Klik shape tool lalu klik objek yang akan di duplikat.  Klik menu Arrange dilanjutkan dengan mengklik Transformation lalu klik Position.  Pastikan yang aktif bagian

Jika sudah sesuai, cara untuk mencetak adalah dengan klik menu File &gt; Print sehingga muncul kotak dialog Print seperti pada Gambar 21. Atur properti atau

Dengan mengklik tombol edit, maka program akan menuju ke file program yang ketiga , yaitu file edit_dat.php dengan membawa tiga variabel, yaitu variabel $id yang berisi data

Setelah mengklik tombol OK akan muncul file sesuai dengan nama yang tertera pada kolom save as.. Untuk melakukan proses publish sebaiknya file diletakan ke dalam

Setelah mengklik tombol “Simpan” maka akan muncul alamat Link File yang dapat kita share (bagikan) ke siapa saja.. Lihat gambar di

untuk mengubah data warga sesuai field yang ingin diubah, lalu klik tombol Save Changes Memilih keluarga dan klik tombol Preview lalu muncul pop-up data warga klik Print untuk mencetak

Selesaikan contoh soal ini dengan mengklik tombol pada toolbar atau dari menu File–Solve, atau dengan menekan tombol F9 pada keyboard maka muncul solusi sebagai berikut: Kesimpulan: