• Tidak ada hasil yang ditemukan

BAB 1 PENDAHULUAN 1.1 APA SEKUEN STRATIGRAFI

N/A
N/A
Protected

Academic year: 2017

Membagikan "BAB 1 PENDAHULUAN 1.1 APA SEKUEN STRATIGRAFI"

Copied!
87
0
0

Teks penuh

(1)

BAB 1

PENDAHULUAN

1.1 APA SEKUEN STRATIGRAFI?

Sekuen stratigrafi secara sederhana dapat diartikan sebagai cabang stratigrafi yang mempelajari paket-paket sedimen yang dibatasi oleh bidang ketidakselarasan atau bidang lain yang korelatif dengan bidang ketidakselarasan tersebut.

Analisis sekuen stratigrafi akan menghasilkan kerangka kronostratigrafi dari endapan yang dianalisa. Kerangka itu selanjutnya dapat dipakai untuk mengkorelasikan dan memetakan fasies-fasies yang ada dalam endapan yang dianalisis.

Sekuen stratigrafi merupakan ancangan stratigrafi modern yang memanfaatkan sejumlah metoda dan konsep yang telah ada sebelumnya, terutama biostratigrafi, seismik stratigrafi, kronostratigrafi, dan sedimentologi. Perlu ditekankan disini bahwa konsep litostratigrafi tidak memberikan sumbangan yang berarti dalam pengembangan konsep dan metoda sekuen stratigrafi. Satuan litostratigrafi ditentukan berdasarkan kesamaan litologi dan biasanya memotong garis waktu. Di lain pihak, satuan sekuen stratigrafi pada hakekatnya merupakan satuan kronostratigrafi yang sejajar dengan garis waktu (gambar 1-1).

1.2 SEJARAH PERKEMBANGAN SEKUEN STRATIGRAFI

Sekuen stratigrafi sering dipandang sebagai ilmu baru yang dikembangkan pada dasawarsa 1970-an dari seismik stratigrafi. Sebenarnya tidak demikian. Konsep sekuen stratigrafi berakar pada kontroversi selama berabad-abad mengenai faktor-faktor yang mengontrol terbentuknya daur sedimen. Pertentangan itu terjadi antara kelompok yang berpendapat bahwa guntara (eustasy) merupakan faktor pengontrol terbentuknya daur sedimen dengan kelompok yang berpendapat bahwa tektonik

merupakan faktor pengontrol terbentuknya daur sedimen. Sejarah perdebatan panjang itu dipaparkan dalam buku yang disunting oleh Dott (1992). Buku lain yang memiliki kaitan penting dengan sejarah perkembangan sekuen stratigrafi adalah AAPG Memoir 26 yang disunting oleh Payton (1977) serta SEPM Special Publication 42 yang disunting oleh Wilgus dkk (1988). Mereka yang ingin mengetahui lebih jauh mengenai sejarah perkembangan konsep ini dapat membaca buku-buku tersebut. Walau demikian, disini akan dikemukakan pula ringkasan sejarah perkembangan tersebut.

1.2.1 Teori-Teori Sakral tentang Perubahan Muka Air Laut

Banjir besar jaman Nabi Nuh merupakan salah satu cerita yang memiliki kaitan dengan konsep perubahan muka air laut. Bagi para peneliti jaman dulu, kebenaran adanya banjir itu tidak pernah dipermasalahkan. Hal yang dipermasalahkan adalah asal mula terjadinya banjir. Topik itu tidak hanya menarik perhatian para ilmuwan, namun juga kaum agamawan. Topik yang menarik itu telah melahirkan sejumlah teori, konsep, dan publikasi. Dua publikasi yang termashyur pada waktu dulu adalah Sacred Theory of the Earth karya Burnet (1681) dan Telliamed karya de Maillet (1742).

(2)

1.2.2 Perkembangan pada Abad 18

Banyak analisis stratigrafi mendetil dilakukan pada abad 18. Pada 1788, Hutton untuk pertama kali mengungkapkan arti penting ketidakselarasan sebagai ciri pemisah jenjang erosi, pengangkatan, dan pengendapan. Ketidakselarasan juga di-gunakan oleh para ahli stratigrafi, misalnya Sedgwick dan Murchison, sebagai bukti fisik untuk membagi waktu geologi.

Di lain pihak, pada waktu itu teori atau konsep yang terkait dengan teori neptunisme masih tetap dikembangkan orang. Pada 1823, William Buckland mengajukan teori diluvium. Dalam teori ini produk-produk geologi yang terbentuk sebelum banjir besar Nabi Nuh disebut endapan pra-diluvium, sedangkan produk-produk geologi setelah banjir besar Nabi Nuh disebut endapan pasca-diluvium atau aluvium. Teori ini pernah populer, namun kemudian memudar dengan munculnya banyak bukti geologi yang mengindikasikan bahwa proses geologi jauh lebih kompleks dibanding satu peristiwa banjir yang dramatis.

1.2.3 Perkembangan pada Abad 19

Pada pertengahan abad 19, perdebatan antara pendukung guntara dengan pendukung tektonik sebagai faktor pengontrol perubahan muka air laut mulai menghangat sejalan dengan munculnya teori glasiasi. Lyell dan beberapa ahli lain, termasuk Linneaus dan Celsius, menemukan bukti penurunan muka air laut dalam singkapan-singkapan di pantai Scandinavia. Fakta itu ditafsirkannya sebagai bukti bahwa daratan telah mengalami penurunan secara lambat (Lyell, 1835). Pendapat itu kemudian didukung oleh Bravais pada 1840 setelah dia memperoleh tafsiran yang sama berdasarkan fakta bahwa gisik di sepanjang fjord Scandinavia telah miring. Di lain pihak, pada waktu yang hampir bersamaan, Agassiz (1840) mengembangkan teori glasiasi. Pada 1842, MacLaren mengemukakan pendapat bahwa proses pelelehan es seperti yang diungkapkan dalam teori glasiasi dapat menyebabkan penaikan muka air laut secara global. Sayang sekali, gagasan Agassiz dan MacLaren itu tidak mendapat tanggapan yang memadai selama sekitar dua dasawarsa, sampai Croll (1864) mengajukan konsep glasiasi yang dijelaskannya terjadi akibat proses-proses yang berkaitan dengan pergerakan bumi.

1.2.4 Perkembangan pada Awal Abad 20

Pada akhir abad 19, teori glasiasi dipandang mampu menjelaskan perubahan muka air laut global dan pengangkatan isostatis. Namun, kesahihan teori itu kemudian dipertanyakan lagi pada awal abad 20.

Pada 1906, Edward Suess memperkenalkan istilah guntara untuk menamakan proses penurunan dan penaikan muka air laut yang terjadi secara global di seluruh permukaan bumi. Suess menafsirkan bahwa penurunan muka air laut global itu terjadi akibat penurunan dasar laut, sedangkan penaikannya terjadi akibat sedimentasi di laut dalam. Walau demikian, sebagian ahli geologi yang hidup pada awal abad 20 masih tetap berpegang pada teori Lyell yang menyatakan bahwa faktor utama yang menyebabkan terjadinya perubahan muka air laut adalah perubahan-perubahan tektonik di daratan.

Pada waktu itu, sebagian ahli geologi Amerika mulai mengembangkan berbagai konsep yang menjelaskan faktor-faktor yang menyebabkan terbentuknya ketidakselarasan global. Salah seorang pemuka kelompok ini adalah Chamberlin yang pada 1898 dan 1909 menerbitkan teorinya mengenai ―faktor-faktor diastrofisme terhadap stratigrafi sebagai akibat perubahan muka air laut global‖. Tiga diagram yang ditampilkan oleh Chamberlin dalam makalah tahun 1898 diperlihatkan pada gambar 1-3. Ketiga diagram itu dewasa ini dipandang oleh para ahli sebagai bentuk awal dari konsep-konsep sekuen stratigrafi modern.

Gagasan-gagasan Chamberlin kemudian dikembangkan oleh beberapa ahli geologi Amerika pada beberapa dekade berikutnya. Sebagian diantara ahli itu adalah Ulrich, Schuchert, dan Grabau. Sebuah gagasan penting dari ―kelompok guntara‖ ini adalah teori pulsasi yang diformulasikan oleh Grabau. Pada dasarnya teori itu menyatakan bahwa perselingan endapan transgresi dan regresi dalam rekaman stratigrafi terjadi karena perubahan aliran panas dari dalam bumi. Menurut Grabau, dalam The Rhythm of the Ages (terbit tahun 1940), ―irama‖ denyut bumi memiliki periodisitas sekitar 30 juta tahun dan menyebabkan

(3)

Sebelum The Rhythm of the Age diterbitkan, ahli-ahli geologi Eropa, khususnya Stille (1924), mengembangkan gagasan mengenai ketidakselarasan global yang disebabkan oleh tektonik global. Dia juga menyatakan bahwa tektonik global itu juga menimbulkan perubahan muka air laut global.

Pada awal abad 20 itu, sebagian ahli mulai menemukan adanya gejala pendauran berskala kecil (hingga beberapa meter) dalam sedimen pengandung batubara yang berumur Karbon di Illinois dan Kansas. Pada 1935, setelah melakukan penelitian terhadap perubahan-perubahan glacio-eustatic Plistosen, Wanles dan Shepard berpendapat bahwa siklotem pada strata Karbon terbentuk akibat akumulasi dan pelelehan gletser Gondwana. Pendapat ini mengangkat kembali konsep kontrol glacio-eustatic yang dicetuskan oleh Croll beberapa dekade sebelumnya.

Sejak itu, konsep daur sedimen pada berbagai skala mulai meruak ke permukaan. Namun, pada 1949 Gilully mengemuka-kan bahwa orogenesis bumengemuka-kan merupamengemuka-kan proses episodik seperti yang dipahami para ahli geologi masa itu, melainmengemuka-kan proses yang menerus. Pendapat Gilully, seorang ahli geologi terpandang waktu itu, banyak mempengaruhi pandangan para ahli geologi lain. Akibatnya, siklotem kemudian ditafsirkan ulang sebagai produk autosiklis, yaitu sebagai hasil perpindahan lobus delta dari waktu ke waktu. Inilah yang kemudian menyebabkan sedimentologi naik daun pada tahun 1960-an karena orang memandang betapa pentingnya proses sedimentologi dalam menghasilkan daur sedimen. Menarik sekali apa yang dikemukakan oleh Dott (1992) bahwa pada waktu itu banyak ahli stratigrafi lebih menyukai menyebut dirinya sebagai ahli sedimentologi.

1.2.5 Pertengahan hingga Menjelang Akhir Abad 20

Pada 1949, Sloss, Krumbein, dan Dapples untuk pertama kalinya mengajukan konsep sekuen stratigrafi dalam sebuah pertemuan dimana Gilully justru mengajukan pendapat seperti yang telah dikemukakan di atas. Waktu itu ketiga ahli stratigrafi tersebut mendefinisikan sekuen sebagai ―kumpulan strata dan formasi‖ yang dibatasi oleh ketidakselarasan inter-regional. Meskipun konsep sekuen tidak mendapat tanggapan yang menggembirakan, Sloss (1963) memperlihatkan contoh penerapan konsep itu dengan menyajikan sejumlah sekuen pada Kraton Amerika Utara. Konsep tersebut kemudian dikembangkan lagi oleh murid-murid Sloss di Northwestern University. Peter Vail, yang dewasa ini dipandang sebagai pencetus konsep sekuen stratigrafi modern, adalah salah seorang diantara murid Sloss.

Salah satu karya tulis terpenting pada waktu itu adalah buah tangan Wheeler (1958) mengenai konsep kronostratigrafi. Isi makalah itu masih tetap digunakan hingga saat ini dan merupakan salah satu kunci dari konsep sekuen stratigrafi modern.

1.2.6 Seismik Stratigrafi

Terobosan penting dalam bidang stratigrafi terjadi pada dasawarsa 1960-an dan 1970-an, sejalan dengan keberhasilan teknologi perekaman dan pengolahan data seismik.

Pada 1977, dalam AAPG Memoir 26, Vail dkk mengemukakan konsep-konsep sekuen dan perubahan muka air laut global sebagai faktor utama yang mengontrol pembentukan sekuen. Tahun itu juga menandai pergantian tongkat kepemimpinan pengembangan konsep stratigrafi modern dari kalangan akademisi ke kalangan industri. Pada tahun-tahun berikutnya konsep sekuen dikembangkan lebih jauh sehingga tidak hanya diterapkan pada data seismik, namun juga pada data bor dan singkapan (Vail dkk, 1984). Pada 1985, dalam AAPG Memoir 39, Hubbard dkk mengajukan konsep megasekuen dan mengemukakan bahwa paket-paket endapan seperti itu terbentuk akibat proses-proses tektonik. Dengan demikian, perdebatan antara para pendukung tektonik dan guntara sebagai faktor pengontrol pembentukan sekuen kembali menghangat.

(4)

dan subsidensi telah dimasukkan atau tidak. Selain itu, keakuratan penentuan umur ketakselarasan seperti yang diimplikasikan oleh diagram itu juga banyak dipertanyakan (a.l. Miall, 1991).

1.2.7 Sekuen Stratigrafi

Dalam SEPM Special Publication 42, ―kelompok Exxon‖ mengajukan sejumlah konsep baru seperti ruang akomodasi (accomodation space) dan parasekuen (parasequence). Publikasi ini menandai perluasan komunitas peminat sekuen stratigrafi,

dari para penafsir seismik ke komunitas geologi secara keseluruhan.

Sejak akhir dekade 1980-an hingga pertengahan dekade 1990-an ini, banyak diterbitkan makalah mengenai sekuen stratigrafi. Sebagian diantara makalah itu menerapkan teknik sekuen stratigrafi secara langsung, tanpa mengkajinya lebih dulu. Padahal, banyak ahli seperti Miall (1991) dan Schlager (1992), masih mempertanyakan kesahihan korelasi antar cekungan yang menjadi dasar penyusunan ―kurva Vail‖ (1987) dan model-model yang ditampilkan dalam SEPM Special Publication 42. Pada 1989, Galloway mengajukan sebuah model alternatif berupa sekuen yang tidak dibatasi oleh bidang ketidakselarasan, melain-kan oleh bidang banjir maksimum (marine flooding surface). Pitman (1978) jauh-jauh hari telah menunjukkan bahwa asal-usul sekuen dan pola onlap dapat dijelaskan sebagai produk subsidensi tepian cekungan. Cloething (1988) serta Kooi & Cloething (1991) menunjukkan bahwa perubahan muka air laut dan sekuen yang berskala jutaan tahun tidak hanya dapat dijelaskan sebagai produk perubahan muka air laut global, melainkan juga sebagai produk tegasan-tegasan dalam lempeng litosfir.

Perkembangan mutakhir dalam sekuen stratigrafi muncul dalam bentuk yang disebut sebagai sekuen stratigrafi resolusi-tinggi (high-resolution sequence stratigraphy), yaitu penerapan konsep sekuen stratigrafi pada skala subseismik, serta dalam pemodelan cekungan sedimen. Van Wagoner dkk (1990) memelopori studi ini. Studi sekuen stratigrafi resolusi-tinggi juga dilakukan hingga daur-daur sedimen berukuran beberapa meter, khususnya pada endapan karbonat dan endapan campuran karbonat-silisiklastik (Hardie dkk, 1986; Goldhammer dkk, 1991). Teori milankovitch digunakan oleh para ahli sekuen stratigrafi untuk menjelaskan proses pembentukan siklus-siklus berskala subsekuen. Pemodelan komputer juga digunakan untuk meng-analisis dan mereplikasi proses pengisian cekungan sedimen, mulai dari skala beberapa meter hingga skala cekungan. Perangkat lunak yang menampilkan model-model pengisian cekungan banyak bermunculan, misalnya program yang dibuat oleh Royal Dutch/Shell, Aigner dkk (1990), dan program SEDPAK yang dibuat oleh University of South Caroline. Program komputer yang memperlihatkan model-model pembentukan daur sedimen pada skala sub-cekungan juga banyak dibuat, misalnya program Mr Sediment (Goldhammer dkk, 1989) serta program yang dirancang oleh Bosence & Waltham (1990).

1.2.8 Perkembangan di Masa Datang

Arah perkembangan sekuen stratigrafi di masa mendatang masih sukar untuk diprakirakan. Namun, paling tidak untuk jangka pendek, sistem karbonat perlu dipelajari lebih lanjut untuk membuktikan faktor yang mempengaruhinya. Selain itu, sebagaimana ditekankan oleh Posamentier & Weimer (1993), penelitian masa datang juga hendaknya diarahkan pada penerapan konsep sekuen stratigrafi terhadap endapan non-bahari dan endapan laut-dalam serta pada usaha-usaha untuk meningkatkan kesahihan atau menggantikan kurva perubahan muka air laut yang ada sekarang ini berdasarkan hasil penelitian terhadap singkapan dan data bawah permukaan. Schlager (1992) dan beberapa ahli lain menyarankan agar pendekatan sedimentologi lebih ditingkatkan sehingga kita dapat mengetahui dengan jelas sejauh mana pengaruh autosiklisitas dalam kerangka sekuen secara keseluruhan.

(5)

BAB 2

KONSEP DAN PRINSIP SEKUEN STRATIGRAFI

2.1 PENDAHULUAN

Rekaman stratigrafi dan pola strata batuan sedimen merupakan produk interaksi antara tektonik, guntara, sedimentasi, dan iklim. Interaksi tektonik dengan guntara mengontrol volume akomodasi (ruang yang tersedia untuk pengendapan sedimen). Interaksi tektonik, guntara, dan iklim mengontrol volume sedimen yang akan diendapkan dalam akomodasi sehingga secara tidak langsung menentukan volume akomodasi yang akan terisi oleh sedimen. Proses-proses sedimentasi autosiklis mengontrol arsitektur sedimen pengisi cekungan.

Tulisan ini disusun untuk memperkenalkan prinsip-prinsip pembentukan, pengisian, dan penghancuran akomodasi. Setelah itu, akan ditunjukkan bagaimana prinsip-prinsip itu digunakan untuk membagi rekaman stratigrafi ke dalam sejumlah sekuen dan systems tract yang melukiskan penyebaran batuan dalam ruang dan waktu. Penjelasan disini ditujukan pada sistem silisiklastik.

Sistem karbonat akan dijelaskan pada Bab 10 karena sistem tersebut memiliki karakter yang berbeda dengan sistem silisiklastik.

2.1.1 Pembentukan Cekungan

Tektonik merupakan faktor utama yang mengontrol pembentukan dan penghancuran akomodasi. Tanpa subsidensi tektonik, tidak akan ada cekungan sedimen. Tektonik juga mempengaruhi laju pemasokan sedimen ke dalam cekungan.

Subsidensi tektonik terjadi melalui dua mekanisme utama: ekstensi dan pembebanan fleksur (flexural loading). Gambar 2-1 melukiskan kurva-kurva laju subsidensi teoritis dalam extensional, foreland, dan strike-slip basins. Laju subsidensi itu menentu-kan volume sedimen yang terakumulasi dalam cekungan, setelah dimodifikasi oleh efek pembebanan, kompaksi dan guntara.

Extensional basin dapat terbentuk pada berbagai tatanan tektonik lempeng, namun umumnya terbentuk pada tepi lempeng

konstruktif. Dalam extensional basin, laju perubahan subsidensi tektonik berlangsung secara sistematis dari waktu ke waktu. Subsidensi pada cekungan ini diawali oleh perioda subsidensi awal yang berlangsung cepat akibat peneraan isostatis, kemudian diikuti oleh perioda subsidensi termal yang berlangsung lambat dan berangsur (60-100 juta tahun) akibat pendinginan astenosfir. Perubahan yang sistematis dari laju subsidensi tektonik sangat mempengaruhi geometri endapan pengisi cekungan. Hubbard (1988) membagi endapan cekungan ini ke dalam 3 paket: (1) megasekuen yang terbentuk sebelum terjadinya retakan (pre-rift megasequence); (2) megasekuen yang terbentuk selama berlangsungnya retakan (syn-rift megasequence); dan (3)

mega-sekuen yang terbentuk setelah terjadinya retakan (post-rift megasequence). Pada model syn-rift megasequence sederhana, sedimen diendapkan dalam deposenter-deposenter yang keberadaannya dikontrol oleh sesar-sesar aktif dalam cekungan itu. Subsidensi diferensial di sepanjang sesar-sesar ekstensi mengontrol penyebaran fasies dalam deposenter-deposenter tersebut. Dalam post-rift megasequence, setiap topografi yang terbentuk selama syn-rift phase sedikit demi sedikit akan tertutup oleh sedimen yang diendapkan pada post-rift phase. Sedimen-sedimen itu akan memperlihatkan pola onlap terhadap tepi cekungan sehingga menghasilkan geometri “streers head” (McKenzie, 1978). Syn-rift megasequence dan post-rift megasequence dalam cekungan bahari mengandung sekuen-sekuen yang pembentukannya dikontrol oleh perubahan muka air laut frekuensi tinggi.

Foreland basin terbentuk sebagai hasil tanggapan litosfir terhadap beban pada sabuk anjakan. Litosfir akan melengkung dan

(6)

sabuk pegunungan yang sedang tumbuh umumnya besar serta memperoleh pasokan sedimen dalam jumlah dan laju yang tinggi. Penghentian sementara pensesaran naik serta tererosinya sabuk pegunungan menyebabkan berkurangnya beban yang dipikul oleh litosfir dan, pada gilirannya, menyebabkan cekungan terangkat.

Strike-slip basin tidak memiliki pola subsidensi yang khas. Walau demikian, secara umum laju subsidensi dan pengangkatan

pada cekungan itu sangat tinggi.

Gambar 2-2 menunjukkan kurva subsidensi dari dua cekungan nyata—yaitu Llanos Basin (Columbia, AS) dan South Viking Graben—yang diperoleh dari hasil perhitungan. Di Llanos Basin, pasokan sedimen lebih tinggi daripada subsidensi. Karena itu, cekungan tersebut terisi penuh oleh sedimen. Sedimen lain yang masuk ke dalam cekungan tersebut di-bypass menuju laut yang lebih dalam. Kurva subsidensi cekungan itu menunjukkan bahwa subsidensi Jaman Kapur dan Tersier berlangsung lambat dan ditafsirkan sebagai subsidensi termal dalam cekungan belakang busur. Dua kali penambahan laju subsidensi yang terjadi pada Eosen Tengah-Akhir dan Miosen Tengah ditafsirkan terjadi pada dua fasa pembentukan Pegunungan Andes.

Di South Viking Graben, sebuah rift basin, sedimentasi tidak selalu sejalan dengan subsidensi tektonik. Pada Jaman Kapur, cekungan ini kekurangan sedimen sehingga laju subsidensi lebih lambat daripada yang sewajarnya. Pada Jaman Tersier, sewaktu daratan Skotlandia dan North Sea Basin terangkat, sedimen banyak diangkut ke dalam cekungan ini sehingga kembali mengalami subsidensi (Milton dkk, 1990). Bagian-bagian lain dari cekungan ini kemudian terisi oleh sedimen sehingga akhirnya terbentuk laut dangkal seperti keadaannya sekarang. Pemisahan fasa subsidensi syn-rift dan post-rift dalam cekungan ini sukar dilakukan karena adanya perioda kekurangan sedimen yang menjadi perioda transisi dari kedua fasa tersebut (Milton, 1993).

Sewaktu subsidensi berlangsung cepat, batas-batas sekuen yang terbentuk akibat penurunan muka air laut akan terhapus sehingga sukar dikenal. Di lain pihak, batas-batas sekuen yang terbentuk pada waktu subsidensi atau pengangkatan yang lambat akan tampak jelas.

2.1.2 Konsep Tepian Cekungan

Hasil-hasil pengamatan seismik menunjukkan bahwa progradasi pada tepi cekungan sering memperlihatkan geometri yang konsisten (gambar 2-3).

Topset adalah istilah yang digunakan untuk menamakan bagian puncak profil tepi cekungan yang bergradien rendah (< 1o).

Pada penampang seismik, topset tampak datar dan umumnya mengandung sistem pengendapan aluvial, delta, dan laut dangkal. Garis pantai merupakan suatu titik pada topset. Titik itu dapat berimpit dengan offlap break, namun dapat pula terletak ratusan kilometer lebih ke arah darat daripada offlap break. Titik-titik terminasi topset ke arah daratan disebut coastal onlap. Di atas coastal onlap terdapat dataran pantai atau fasies paralik. Klinoform (clinoform) adalah istilah yang dipakai untuk menama-kan bagian profil tepian cekungan yang lebih curam (umumnya > 1o) serta terletak lebih ke arah cekungan dibanding topset.

Klinoform umumnya mengandung sistem pengendapan perairan yang lebih dalam dibanding topset serta bercirikan sistem lereng. Kemiringan klinoform seringkali dapat diketahui dari data seismik. Bottomset adalah istilah yang dipakai untuk menama-kan bagian profil tepi cekungan yang bergradien rendah dan mengandung sistem pengendapan laut dalam.

Titik dimana terjadi perubahan kemiringan pada profil tepi cekungan terletak antara topset dan klinoform. Titik itu disebut offlap break (Vail dkk, 1991). Sebelumnya titik itu disebut shelf edge (Vail dan Todd, 1981; Vail dkk, 1984). Namun, istilah yang

disebut terakhir ini dapat menimbulkan kerancuan dengan istilah shelf break, yaitu tepi cekungan masa kini yang biasanya bukan merupakan gejala pengendapan, melainkan gejala morfologi. Istilah depositional shoreline break (Van Wagoner dkk, 1988) juga pernah digunakan, namun istilah itu mengimplikasikan bahwa titik perubahan kemiringan dalam profil pengendapan berimpit dengan garis pantai. Istilah offlap break dipakai disini mengingat istilah tersebut tidak mengimplikasikan bahwa titik perubahan kemiringan dalam profil pengendapan sama dengan garis pantai.

(7)

topset oleh gelombang dan/atau berbagai sistem arus seperti arus fluvial, arus pasut, arus badai, dsb. Proses pengangkutan

sedimen pada topset ini hanya bekerja efektif pada perairan dangkal, hingga kedalaman beberapa puluh meter. Agar sedimen dapat terangkut menuju perairan yang lebih dalam, diperlukan adanya lereng yang memungkinkan sedimen dikenai oleh gaya gravitasi. Klinoform terbentuk dengan kemiringan yang memenuhi persyaratan tersebut. Besarnya sudut kemiringan klinoform sangat dipengaruhi oleh tipe sedimen penyusunnya. Sedimen kasar akan membentuk klinoform yang lebih curam dibanding sedimen halus (Ketner, 1990). Sedimen karbonat juga menghasilkan klinoform yang lebih curam (hingga 35o) dibanding sedimen

klastika halus (0,5o–3o). Selain oleh material yang kasar, lereng pengendapan sistem klastika yang curam juga dapat terbentuk

jika lereng itu merupakan zona erosi atau zona bypassing sedimen.

Arti penting dari offlap break dalam sistem pengendapan akan tampak jelas sewaktu terjadi penurunan muka air laut. Jika penurunan muka air laut menyebabkan tersingkapnya offlap break, sungai akan menoreh sebagian topset untuk membentuk kesetimbangan baru dengan base level baru (hal ini akan dibahas lebih jauh pada sub bab 2.4.3). Tanggapan sistem peng-endapan terhadap penurunan muka air laut ini tergantung pada khuluk tepi cekungannya (gambar 2-4).

Shelf break margin adalah tepi cekungan dimana klinoform berkembang baik. Penorehan oleh sungai selama terjadinya

penurunan muka air laut akan menyebabkan diendapkannya sedimen pada bagian-bagian tertentu dari klinoform. Hancurnya massa sedimen akan menyebabkan terbentuknya arus turbid besar dan endapan kipas bawah laut. Shelf break margin umumnya ditemukan pada tepi benua pasif dan terbentuk pada waktu terjadinya penaikan muka air laut secara lambat, pada saat mana sistem delta dengan mudah berprogradasi menuju tepi paparan.

Ramp margin umumnya berupa perairan dangkal, dimana badai dan arus dapat mempengaruhi daerah yang luas. Sudut

pengendapan disini umumnya < 1o dan seismic clinoform (jika ada) akan miring sekitar 0,5o. Offlap break pada ramp margin

kemungkinan terletak pada garis pantai, di tempat mana terjadi perubahan gradien dari gradien sungai menjadi gradien paparan atau perenggan delta yang sedikit lebih curam daripadanya. Tanggapan ramp margin terhadap perubahan muka air laut berbeda dengan tanggapan yang diberikan oleh shelf break margin. Dalam tatanan ramp margin, turbidit tidak terbentuk pada waktu penurunan muka air laut. Pada waktu itu sedimen diangkut menuju cekungan tanpa melalui proses bypassing. Jadi, turbidit yang ditemukan dalam endapan silisiklastik ramp margin kemungkinan bukan merupakan kipas bawah laut, melainkan endapan perenggan delta (Van Wagoner dkk, 1990). Banyak delta masa kini membentuk ramp margin. Delta-delta itu umumnya merupakan delta paparan yang berprogradasi di atas topset shelf break margin yang terbentuk sebelumnya (gambar 2-4). Frazier (1974) menyatakan bahwa pengendapan di Teluk Meksiko praktis hanya terbatas pada Delta Mississippi yang berprogradasi hingga mencapai perairan dengan kedalaman 100 m. Delta Mississippi masa kini membentuk ramp margin, meskipun sedikit progradasi akan mengubah status delta tersebut menjadi shelf break margin.

Rift margin merupakan ciri khas dari cekungan yang mengalami ekstensi kerak secara aktif. Dalam cekungan seperti itu,

sesar-sesar ekstensi sangat mempengaruhi paleogeografi dan laju influks sedimen. Penyebaran akomodasi dalam rift margin terutama dikontrol oleh tektonik. Laju subsidensi umumnya bertambah ke arah pusat retakan, meskipun setiap individu blok sesar akan memiliki pola akomodasi masing-masing. Subsidensi paling kecil terjadi pada puncak foot-wall, bahkan bagian itu mungkin terangkat dan tererosi. Subsidensi makin tinggi ke arah sesar pengontrol. Sistem pengendapan yang ada tergantung pada tatanan tektonik cekungan; apakah retakan itu terjadi pada tatanan benua atau tatanan samudra. Zona-zona transfer (transfer zones) pada rift margin akan mengontrol titik-titik dimana sedimen memasuki cekungan. Rift margin dicirikan oleh relief

(8)

Foreland-basin margin sangat tergantung pada apakah sedimen masuk melalui sumbu cekungan atau langsung dari sabuk

anjakan (thrust belt). Jika sedimen masuk ke dalam cekungan langsung dari sabuk anjakan, maka laju subsidensi cekungan akan bertambah ke arah sabuk anjakan (ke arah sumber sedimen). Dengan kata lain, akomodasi yang lebih besar tidak berada pada pusat cekungan, melainkan pada tepinya. Mekanisme itu akan mempengaruhi geometri endapan yang terbentuk dan akan menghasilkan endapan aggradatif yang kecil kemungkinan memiliki klinoform berskala seismik (Posamentier & Allen, 1993).

Growth-fault margin dicirikan oleh sesar-sesar ekstensi yang terbentuk bersamaan dengan sedimentasi akibat gaya

gravitasi. Laju subsidensi yang lebih tinggi terjadi pada sisi hanging-wall dari sesar tumbuh sedemikian rupa sehingga menyebabkan penyebaran sedimen menjadi lebih luas. Efek sesar tumbuh terhadap sistem pengendapan tergantung pada apakah sesar-sesar itu memiliki ekspresi topografi di dasar laut atau tidak. Jika hanging-wall memiliki relief topografi yang lebih rendah dibanding foot-wall, diferensiasi fasies akan terjadi di sepanjang sesar dengan sistem klastik laut-dalam akan terletak pada bagian sesar yang turun. Growth-fault margin akan dibahas lebih jauh pada sub bab 9.3.3.

2.2 MUKA AIR LAUT RELATIF, GUNTARA, DAN TEKTONIK 2.2.1 Definisi Muka Air Laut

Untuk memahami faktor-faktor yang mengontrol pembentukan sekuen, pertama-tama kita perlu memahami apa yang dimaksud dengan guntara, muka air laut, dan kedalaman (lihat Gambar 2-5).

2.2.1.1 Guntara

Guntara (eustasy; global eustasy; global sea-level) diukur dari muka air laut hingga suatu datum tetap, biasanya pusat bumi. Guntara dapat berubah dengan berubahnya volume cekungan (misalnya akibat perubahan volume punggungan tengah samudra) atau berubahnya volume air laut (misalnya akibat glasiasi-deglasiasi). Penafsiran perubahan guntara dari rekaman batuan sangat kompleks dan merupakan topik ilmiah yang kontroversial. Untuk sementara ini, hal yang patut dicatat adalah bahwa guntara dapat naik atau turun sedemikian rupa sehingga menyebabkan berubahnya posisi base-level secara global. Base level sendiri didefinisikan sebagai suatu batas di atas mana proses yang terjadi praktis hanya berupa erosi.

2.2.1.2 Muka Air Laut Relatif

Muka air laut relatif (relative sea-level) diukur dari muka air laut hingga suatu datum lokal yang dapat berubah-ubah posisinya, misalnya batas atas batuan dasar (basement) atau sebuah bidang di dalam tumpukan sedimen dasar laut (Posamentier dkk, 1988). Subsidensi, pengangkatan batuan dasar, kompaksi sedimen yang melibatkan bidang acuan pengukuran muka air laut relatif, dan perubahan guntara, semuanya dapat menyebabkan berubahnya muka air laut relatif. Muka air laut relatif dapat naik karena subsidensi, kompaksi dan/atau turunnya guntara; muka air laut relatif dapat turun karena adanya pengangkatan dan/atau penaikan guntara. Muka air laut relatif hendaknya tidak terancukan dengan kedalaman.

2.2.1.3 Kedalaman

(9)

2.2.2 Akomodasi

Laju guntara dan subsidensi secara bersama-sama akan mengontrol akomodasi. Akomodasi didefinisikan sebagai ruang yang tersedia untuk pengakumulasian sedimen pada suatu waktu (Jervey, 1988). Akomodasi dikontrol oleh base level karena, untuk dapat terakumulasi, sedimen memerlukan ruang yang terletak di bawah base level. Posisi base level berbeda-beda, tergantung tatanan pengendapannya (gambar 2-6). Dalam lingkungan aluvial, base level dikontrol oleh profil sungai yang secara berangsur berubah mendekati base level laut atau danau, ke tempat mana sungai tersebut bermuara (Mackin, 1948). Dalam sistem delta dan pesisir, base level praktis ekivalen dengan muka air laut. Dalam lingkungan laut dangkal, base level juga praktis berupa muka air laut, meskipun dalam kondisi tertentu alas gelombang (wave base) dapat menyebabkan “graded shelf profile” berperan sebagai base level.

Gambar 2-7 memperlihatkan kaitan antara akomodasi, guntara, dan kedalaman pada sistem pesisir-paparan. Berikut akan dibahas kaitan antara muka air laut relatif dengan akomodasi pada sistem pesisir-paparan. Sistem-sistem pengendapan lain seperti sungai, paralik, kipas bawah laut, dan karbonat akan dibahas pada bab-bab lain.

2.2.3 Akomodasi dari Waktu ke Waktu

Untuk memahami bagaimana keadaan akomodasi dari waku ke waktu, pertama-tama kita perlu memahami terlebih dahulu bagaimana laju subsidensi dan perubahan muka air laut global (dalam hal ini diidealkan bersifat sinusoidal) secara bersama-sama memberikan pengaruh terhadap laju pembentukan dan penghancuran akomodasi. Dengan kata lain, kita akan melihat pengaruh interaksi antara kedua faktor tersebut terhadap penaikan dan penuruman muka air laut relatif.

Pada gambar 2-8, subsidensi digambarkan sebagai garis lurus, dimana gradien pada suatu titik dari garis itu melukiskan laju subsidensi pada titik tersebut. Gradien yang berbeda-beda dapat terjadi untuk bagian-bagian cekungan yang laju subsidensinya berubah dari waktu ke waktu. Pada gambar itu akomodasi sama dengan perubahan muka air laut relatif karena kurvanya dilukiskan dari titik nol. Pada gambar tersebut guntara dilukiskan dengan sebuah kurva yang sama. Perubahan muka air laut relatif dapat diketahui dengan mudah, yaitu dengan cara menjumlahkan kedua kurva tersebut.

Jika subsidensi berlangsung lambat, akomodasi maksimum akan tercapai pada saat guntara mencapai maksimum. Ketika guntara turun hingga mencapai posisi yang sama dengan posisi awalnya, akomodasi turun hingga mencapai harga yang sama dengan harga yang semata-mata dihasilkan akibat subsidensi. Jika subsidensi berlangsung lebih cepat, akomodasi maksimum terjadi pada waktu yang lebih lambat. Akomodasi juga mungkin tidak akan berkurang, walaupun guntara mengalami penurunan, jika laju subsidensi sangat tinggi.

Perhatikan bahwa kurva yang sama secara teoritis dapat diperoleh jika kita menggunakan kurva subsidensi yang berubah-ubah dengan waktu, sedangkan guntara dipandang tetap.

2.2.4 Orde Daur Endapan dan Korelasi Global

Sekuen pengendapan merupakan satu siklus endapan lengkap yang bagian atas dan bawahnya dibatasi oleh bidang ketidakselarasan erosional. Suatu sekuen memiliki umur maksimum yang harganya sama dengan selisih antara umur bidang-bidang keselarasan yang korelatif dengan bidang-bidang ketakselarasan pembatas sekuen tersebut. Dengan demikian, umur sebuah sekuen ditentukan oleh event yang mengontrol pembentukan dan penghancuran akomodasi, yaitu subsidensi tektonik dan guntara.

(10)

penggolongan tersebut memungkinkan kita untuk membagi isi suatu cekungan ke dalam sejumlah daur yang masing-masing mencerminkan siklus subsidensi-guntara tertentu.

Pada gambar 2-9 terlihat adanya empat orde daur stratigrafi. Daur penyusupan (encroachment cycle) terbentuk pada rentang waktu yang lama (> 50 juta tahun) di tepi benua-benua raksasa dan merupakan daur orde pertama. Hingga saat ini, sebagaimana tersirat dari kurva perubahan muka air laut karya Haq dkk (1987), hanya dikenal ada dua daur penyusupan dalam rekaman stratigrafi Paleozoikum. Daur orde-1 diperkirakan dikontrol oleh tectono-eustasy, yaitu perubahan volume cekungan yang berkaitan dengan siklus tektonik lempeng (Pitman, 1978).

Daur orde-2 (3–50 juta tahun) merupakan bagian utama dari daur orde-1. Daur ini mencerminkan jenjang-jenjang tertentu dari evolusi cekungan. Daur ini dapat terbentuk akibat perubahan laju subsidensi tektonik dalam cekungan atau akibat peningkatan laju pengangkatan di daerah sumber sedimen.

Daur orde-3 (0,5–3 juta tahun) merupakan daur dasar dalam sekuen stratigrafi karena daur ini sering terdeteksi dengan baik dalam rekaman seismik. Daur inilah yang disebut "sekuen" oleh para ahli stratigrafi Exxon pada saat mencetuskan konsep-konsep sekuen stratigrafi. Menurut Vail dkk (1991), pembentukan daur ini dikontrol oleh glacio-eustasy. Walau demikian, mekanisme tektonik juga memungkinkan terbentuknya daur orde-3 ini (Cloetingh, 1988).

Sekuen gabungan (composite sequence) adalah istilah yang sering dipakai untuk menyatakan daur orde-2 atau orde-3 yang disusun oleh daur-daur dari orde yang lebih tinggi (Mitchum & Van Wagoner, 1991).

Daur orde-4 (0,1–0,5 juga tahun) merupakan paket endapan yang menunjukkan lingkungan pengendapan yang lebih dangkal ke bagian atas serta dibatasi oleh bidang-bidang yang mencerminkan perubahan kedalaman lingkungan pengendapan yang tiba-tiba. Daur yang disebut "parasekuen" dalam konsep sekuen stratigrafi Exxon ini mungkin terbentuk oleh proses-proses allosiklis.

Teori yang mengungkapkan bahwa guntara merupakan faktor utama yang mengontrol pengendapan sedimen mungkin merupakan salah satu konsep stratigrafi terpadu yang banyak menarik perhatian para ahli geologi selama berabad-abad (Dott, 1992). Jika memang benar bahwa jejak guntara terekam dalam semua rekaman stratigrafi, maka kita akan dapat menentukan umur satu paket tertentu berdasarkan pola sekuen dan systems tract yang terlihat pada rekaman stratigrafi serta memprakirakan tatanan stratigrafi suatu daerah perawan berdasarkan pengetahuan mengenai tatanan stratigrafi baku.

Diagram perubahan muka air laut global pertama kali diajukan oleh Vail dkk (1977), kemudian diperbarui oleh Haq dkk (1987), berdasarkan hasil pengukuran-pengukuran yang dilakukan pada berbagai cekungan di dunia ini. Diagram itu dibuat untuk mendukung teori yang menyatakan bahwa pembentukan sebagian besar daur orde-3 dikontrol oleh guntara. Diagram itu mengundang banyak pertanyaan dari kalangan ahli stratigrafi. Sebagian diantaranya kemudian menyimpulkan bahwa diagram itu disusun berdasarkan teori, bukan data. Masalah kontroversi kurva tersebut berada di luar ruang lingkup pembahasan buku ini. Walau demikian, akan dikemukakan beberapa komentar penting yang perlu dikaji bersama-sama.

(11)

2. Mekanisme pembentukan siklus orde-3 masih menjadi masalah untuk beberapa bagian waktu geologi tertentu. Bertambah-nya volume es selama zaman es akan menyebabkan turunBertambah-nya guntara pada akhir Kenozoikum dan akhir Paleozoikum. Namun, mekanisme seperti itu tidak terjadi pada Jaman Kapur dan Jura yang bebas es. Cloetingh (1985) mengajukan gagasan bahwa intraplate stress merupakan mekanisme tektonik yang menyebabkan terbentuknya siklus orde-3.

3. Hingga kini para ahli belum sepakat bahwa jejak-jejak guntara memang terekam dalam semua cekungan. Beberapa ahli, misalnya Hubbard (1988), bahkan berkeyakinan bahwa jejak-jejak itu kemungkinan tertutup oleh jejak-jejak tektonik. Walau demikian, penelitian masih terus dilakukan oleh para ahli. Penelitian dewasa ini antara lain diarahkan untuk menentu-kan umur ketidakselarasan pada tepi-tepi cekungan secara lebih akurat serta mengaitmenentu-kan umur tersebut dengan rekaman isotop oksigen sehingga informasi ini dapat dikaitkan langsung dengan perubahan volume es (a.l. Miller dkk, 1991, 1993). Selain itu, banyak proyek penelitian dilaksanakan untuk menentukan umur dan mengkorelasikan batas-batas sekuen berskala regional di Eropa (a.l. De Graciansky dkk, 1993).

2.3 PASOKAN SEDIMEN

Laju pemasokan sedimen mengontrol volume akomodasi yang terisi serta bagian-bagian mana saja yang akan terisi. Interaksi antara pasokan sedimen dengan subsidensi akan menentukan apakah fasies yang terbentuk dalam akomodasi berprogradasi ke arah cekungan atau beretrogradasi ke arah darat. Kaliber sedimen yang diangkut sangat mempengaruhi tipe fasies yang terbentuk dalam akomodasi. Dalam bagian ini, pertama-tama kita akan membahas prinsip-prinsip yang mengontrol pemasokan sedimen silisiklastik menuju tepian cekungan serta memperlihatkan bagaimana pasokan sedimen berubah dari waktu ke waktu. Setelah itu kita akan membahas bagaimana akomodasi terisi pada saat laju pasokan tinggi, sedang, atau rendah.

2.3.1 Prinsip-Prinsip Pemasokan Sedimen Klastik

Sungai merupakan agen utama yang mengangkut sedimen daratan menuju cekungan pengendapan. Volume sedimen yang terangkut menuju tepi cekungan merupakan fungsi yang kompleks dari fisiografi, tektonik, dan iklim daratan yang menjadi sumber sedimen. Hasil-hasil pemelajaran terhadap sungai masa kini menunjukkan bahwa laju pemasokan sedimen menuju tepi-tepi cekungan yang ada di seluruh dunia sangat bervariasi (gambar 2-10). Sekitar 70% beban sedimen berasal dari 10% bagian daratan yang ada di dunia ini. Selain itu, 20% beban sungai diangkut menuju tepi cekungan oleh tiga sungai besar: Gangga, Brahmaputra, dan Huang He (Sungai Kuning) (Summerfield, 1991).

Jumlah sedimen yang diangkut menuju tepi cekungan merupakan fungsi dari dua faktor utama: (1) luas cekungan pengaliran dan (2) laju denudasi (erosi) mekanis. Tektonik, baik yang berskala lokal maupun regional, mempengaruhi bentuk, ukuran, dan relief cekungan pengaliran, geologi daerah sumber, serta kaliber sedimen yang tererosi. Laju denudasi sungai merupakan fungsi yang kompleks dari relief cekungan pengaliran dan iklim. Iklim tidak hanya mempengaruhi daya erosi sungai, namun juga erodibilitas tanah pada cekungan pengaliran serta menentukan ada tidaknya vegetasi. Menurut hasil penelitian akhir-akhir ini, laju denudasi bervariasi. Sebagai contoh, laju denudasi yang lebih kecil dari 1 mm per 1000 tahun terjadi di cekungan pengaliran Sungai St Lawrence dan 640 mm per 1000 tahun di cekungan pengaliran Sungai Brahmaputra. Cekungan pengaliran Sungai Huang He menunjukkan laju denudasi yang ekstrim, yaitu 19.800 mm per 1000 tahun. Salah satu alasan yang menyebabkan tingginya laju denudasi pada cekungan itu ialah karena cekungan tersebut mencakup daerah seluas 3000 km2 yang ditutupi oleh

loess serta terletak pada daerah semiarid yang jarang vegetasi (Summerfield, 1991).

(12)

dikontrol oleh glacio-eustacy dengan iklim pada cekungan pengaliran sungai (Blum, 1990). Hal ini mengandung pengertian bahwa pemasokan sedimen berubah-ubah pada siklus muka air laut yang berbeda-beda.

2.3.2 Pengisian Akomodasi

Jumlah sedimen yang diangkut ke dalam cekungan merupakan fungsi dari laju pemasokan sedimen serta posisi titik masuk sedimen ke dalam cekungan. Gambar 2-11 memperlihatkan kaitan antara fasies, muka air laut relatif, dan laju akumulasi sedimen. Pada ketiga gambar itu, kurva perubahan muka air laut relatif dibuat tetap, sedangkan kurva laju sedimentasi berbeda-beda. Dengan demikian, ketiga gambar itu dapat dipandang sebagai lukisan yang memperlihatkan bagian-bagian cekungan yang jaraknya berbeda-beda, relatif terhadap titik sumber. Setiap model dibuat pada waktu dan kedalaman nol yang mengandung pengertian bahwa model itu diawali ketika garis pantai tepat berada pada titik tersebut. Untuk menyederhanakan gambaran tersebut, Jervey (1988) menyatakan adanya dua tipe endapan yang disebutnya "mud prone" (endapan bahari) dan "sand prone" (endapan dataran pantai).

Pada lokasi dimana laju pemasokan sedimen rendah, akomodasi selalu lebih besar dari akumulasi sedimen, garis pantai bermigrasi ke arah daratan, trasgresi terjadi, dan akan membentuk daerah perairan yang relatif dalam. Pada kondisi seperti itu, kemungkinan besar akan terbentuk fasies bahari "mud prone".

Pada lokasi dimana laju pemasokan sedimen sedang, dasar laut dapat beragradasi hingga mencapai muka air laut (alas kikis). Laju peningkatan akomodasi pada mulanya lebih tinggi dari pemasokan sedimen sehingga terjadi trangresi. Pada waktu itu akan diendapkan serpih bahari. Ketika laju penaikan muka air laut berkurang, akan terjadi regresi. Proses ini terus berlangsung sementara fasies bahari mulai beragradasi hingga mencapai muka air laut dan garis pantai kembali terletak pada titik tersebut. Setelah itu, pemasokan sedimen melebihi laju pembentukan akomodasi, namun bidang sedimen masih tetap dipertahankan pada posisi muka air laut masa itu bersamaan dengan diendapkannya fasies dataran pantai "sand prone". Sedimen yang berlebih akan di-bypass menuju bagian cekungan yang lebih dalam. Ketika laju pembentukan akomodasi berkurang (ketika terjadi penurunan muka air laut), sedimen yang telah terbentuk sebelumnya akan tererosi kembali.

Pada lokasi dengan laju pemasokan sedimen tinggi, laju pemasokan sedimen selalu melebihi laju pembentukan akomodasi. Pada waktu itu kemungkinan akan diendapkan sedimen dataran pantai atau sedimen dataran delta. Regresi garis pantai akan terus terjadi selama siklus perubahan muka air laut. Laju akumulasi pada titik ini tergantung pada laju pembentukan akomodasi. Erosi kemungkinan akan terjadi sewaktu terjadinya penurunan muka air laut.

2.3.3 Arsitektur Cekungan

Untuk memahami perubahan topset-clinoform dari waktu ke waktu, pertama-tama kita perlu memahami kaitan antara laju pemasokan sedimen dengan laju pembentukan akomodasi topset . Akomodasi topset (topset accomodation) itu kadang-kadang disebut juga "akomodasi paparan" (“shelf accomodation”). Laju perubahan akomodasi merupakan fungsi dari besaran penaikan muka air laut dikalikan dengan luas topset. Interaksi antara laju pembentukan akomodasi dengan laju pemasokan sedimen akan menghasilkan berbagai geometri endapan seperti terlihat pada gambar 2-12.

Geometri progradasional terbentuk jika laju pemasokan sedimen lebih tinggi dari laju pembentukan akomodasi. Pada waktu itu sabuk-sabuk fasies bermigrasi ke arah cekungan. Pada penampang seismik, progradasi itu terlihat sebagai klinoform dimana offlap break tampak bergeser secara berangsur menuju cekungan. Dalam kaitan dengan geometri ini, istilah regresi dapat

digunakan untuk menyatakan proses perpindahan garis pantai ke arah cekungan.

(13)

Geometri retrogradasi terbentuk jika pemasokan sedimen lebih kecil dari laju pembentukan akomodasi. Sabuk-sabuk fasies bermigrasi ke arah darat dan offlap break yang relatif tua akan tinggal sebagai sisa. Dalam kaitannya dengan hal ini, istilah transgresi dipakai untuk menyatakan proses perpindahan garis pantai ke arah daratan.

Ketiga tipe geometri endapan tersebut di atas (progradasi, agradasi, dan retrogradasi) tidak bersifat menerus, namun terdiri dari satuan-satuan progradasi berskala sub-seismik yang disebut parasekuen. Sejumlah parasekuen bertumpuk sedemikian rupa membentuk parasequence set yang keberadaannya dapat diamati pada penampang seismik.

Tulisan berikutnya akan memperlihatkan bagaimana prinsip-prinsip perubahan akomodasi yang mendaur dan berubah-ubah dari waktu ke waktu dapat digunakan untuk membagi rekaman stratigrafi ke dalam sejumlah paket endapan yang masing-masing diendapkan pada fasa perubahan laut tertentu.

2.4 SEKUEN DAN SYSTEMS TRACT 2.4.1 Sekuen dan Batas Sekuen

Istilah "sekuen" dalam pengertian sekuen stratigrafi pertamakali didefinisikan oleh Mitchum dkk (1977). Menurut mereka, sekuen adalah satuan stratigrafi yang disusun oleh sejumlah stratum yang selaras dan satu sama lain berkaitan secara genetik; sekuen dipisahkan dari sekuen lain oleh bidang ketakselarasan atau bidang keselarasan yang korelatif dengan bidang ketakselarasan tersebut.

Definisi di atas tidak memberikan batasan mengenai ukuran fisik dan rentang waktu yang dicerminkan oleh suatu sekuen serta tidak pula mencerminkan mekanisme penyebab terbentuknya bidang ketakselarasan yang menjadi bidang pembatasnya. Pada mulanya, pemakaian bidang ketakselarasan sebagai pembatas sekuen menimbulkan kerancuan karena hal itu dilakukan oleh sejumlah ahli dalam pengertian yang berbeda-beda. Pada mulanya Mitchum dkk (1977) memasukkan hiatus bahari dan condensed section ke dalam lingkup ketakselarasan. Namun, pengertian itu kemudian dirubah ketika para ahli memandang

perlu adanya pembedaan yang tegas antara ketakselarasan yang disebabkan oleh erosi daratan dengan hiatus yang terbentuk di sekitar pusat cekungan. Perlunya pembedaan tersebut terutama dirasakan ketika para ahli mencoba menyusun model-model pengendapan yang pembentukannya dipengaruhi oleh perubahan muka air laut relatif. Jadi, dalam sekuen stratigrafi, istilah "ketakselarasan" diartikan relatif sempit: "ketakselarasan adalah sebuah bidang yang memisahkan strata muda dari strata tua, pada bidang mana ditemukan jejak-jejak erosi atau pemancungan strata akibat aktivitas permukaan bumi (dalam beberapa kasus bidang itu juga korelatif dengan bidang erosi bawah laut), jejak-jejak penyingkapan di permukaan bumi, serta indikasi hiatus yang berarti (van Wagoner dkk, 1988).

Dari pembahasan di atas jelas bahwa sebuah sekuen dibatasi oleh bidang erosi daratan. Satuan-satuan yang dibatasi oleh condensed surface, bidang transgresi, atau bidang marine onlap tidak termasuk ke dalam kategori batas sekuen. Perlu diketahui

bahwa para peneliti Exxon, sebagaimana dikemukakan oleh Mitchum dkk (1977), telah mempertimbangkan dengan serius untuk memakai istilah "sintem" (“synthem”) sebagai pengganti istilah "sekuen", dengan harapan agar tidak terjadi kerancuan dengan istilah "sekuen" yang sebelumnya banyak digunakan dalam literatur sedimentologi atau dengan istilah-istilah yang digunakan untuk menamakan satuan strata yang ditentukan keberadaannya berdasarkan daur sedimentasi (misalnya "genetic depositonal sequence" yang digunakan oleh Galloway, 1989). Namun tampaknya mereka sukar untuk menerima "sintem stratigrafi".

(14)

gabungan (composite sequence) dapat mengandung ketakselarasan, namun ketakselarasan itu adalah ketakselarasan yang "tingkatannya" lebih tinggi daripada ketakselarasan yang menjadi pembatas sekuen. Ketakselarasan seperti itu dipandang "tidak cukup berarti" dari kacamata sekuen stratigrafi.

Dalam pengertian yang terbatas, satu sekuen mencerminkan satu siklus pengendapan yang dibatasi oleh erosi non-bahari dan diendapkan dalam satu siklus naik-turunnya alas kikis yang berarti (dalam skala penelitian sekuen). Pada kebanyakan cekungan, alas kikis dikontrol oleh muka air laut. Dengan demikian, setiap sekuen merupakan produk dari satu siklus naik-turunnya muka air laut relatif. Lukisan ideal dari sebuah sekuen yang terbentuk pada satu siklus perubahan muka air laut diperlihatkan pada gambar 2-13. Sekuen itu dinamakan sekuen tipe-1. Pada sekuen tipe-1, penurunan muka air laut cukup besar sedemikian rupa sehingga topset pertama dari sekuen itu terletak onlap terhadap klinoform dari sekuen yang terbentuk sebelumnya. Sekuen tipe-2 akan dijelaskan kemudian.

Menurut Van Wagoner dkk (1988), batas sekuen tipe-1 dicirikan oleh jejak penyingkapan yang berasosiasi dengan erosi non-bahari, peremajaan sungai, perpindahan fasies ke arah cekungan, penurunan coastal onlap, serta pola onlapping dari strata yang terbentuk kemudian. Coastal onlap adalah istilah yang digunakan untuk menamakan titik onlap pada strata topset yang ada di tepi cekungan (lihat Bab 3). Akibat migrasi fasies ke arah cekungan, endapan-endapan non-bahari atau pesisir, misalnya batupasir endapan sungai menganyam dan endapan estuarium, dapat terletak langsung di atas endapan laut dangkal seperti batupasir lower shoreface atau batulumpur paparan. Superposisi fasies seperti itu disebut dislokasi fasies (facies dislocation). Van Wagoner dkk (1988) menafsirkan bahwa batas sekuen tipe-1 terbentuk pada saat laju penurunan guntara lebih tinggi dibanding laju subsidensi cekungan pada offlap break.

2.4.2 Definisi Systems Tract

Sekuen tipe-1 seperti yang terlukis pada gambar 2-13 merupakan bentuk ideal dari sekuen yang terbentuk pada shelf-break margin. Sekuen itu dapat tersusun oleh sejumlah paket endapan tertentu. Sejak ditemukannya konsep seismik stratigrafi,

diketahui bahwa pengendapan dalam suatu cekungan tidak berlangsung secara menerus dan seragam di semua tempat, melainkan dalam paket-paket yang masing-masing dibatasi oleh bidang-bidang seismik tertentu (lihat Bab 3). Para peneliti Exxon menemukan suatu keteraturan dimana paket-paket itu umumnya tersusun dalam pola yang dapat diprakirakan, sebagaimana kenampakannya pada penampang seismik. Paket-paket itu dinamakan systems tract.

Istilah systems tract pertama kali didefinisikan oleh Brown & Fisher (1977) sebagai suatu paket sistem pengendapan seumur. Sistem pengendapan (depositional system) sendiri didefinisikan sebagai kumpulan tiga dimensional dari berbagai litofasies yang secara genetik dihubungkan satu sama lain oleh proses-proses atau lingkungan pengendapannya (Fisher & McGowen, 1967). Jadi, systems tract adalah satuan pengendapan tiga dimensional. Batas-batas systems tract dapat berupa onlap, downlap, dsb. Dalam rekaman seismik, systems tract adalah satuan yang memperlihatkan keseragaman refleksi seismik

dan dibatasi oleh bidang-bidang terminasi strata. Satuan seperti itu disebut seismic-stratigraphic unit oleh Brown & Fisher (1977); seismic sequence oleh Mitchum dkk (1977); dan seismic package oleh sejumlah ahli lain.

Systems tract dikenal dari khuluk bidang pembatas dan geometri internalnya. Dalam satu siklus perubahan muka air laut

relatif, dikenal adanya tiga systems tract utama; masing-masing mencirikan tahap perubahan muka air laut relatif yang berbeda-beda (gambar 2-13). Tata istilah yang berkaitan dengan systems tract sering menimbulkan kerancuan. Untuk menghindarkan terjadinya kerancuan, kita perlu selalu mengingat tujuan pembagian stratigrafi ke dalam satuan-satuan yang disebut systems tract itu. Systems tract merupakan satuan yang dapat dipetakan dan berguna dalam prediksi stratigrafi karena mengandung

kelompok sistem pengendapan dengan paleogeografi dan polaritas pengendapan yang konsisten.

(15)

Systems tract paling bawah (jadi, secara stratigrafi berarti paling tua) dalam sekuen tipe-1 disebut lowstand systems tract.

Systems tract ini diendapkan pada perioda antara penurunan muka air laut relatif pada offlap break dengan penaikan muka air

laut relatif yang terjadi kemudian.

Penurunan muka air laut pada offlap break dari shelf-break margin akan menimbulkan efek yang ekstrim terhadap sistem sungai. Sebelum terjadinya penurunan muka air laut relatif, sungai memiliki graded river profile yang relatif tetap, di atas mana terjadi erosi dan di bawah mana terjadi pengendapan. Pada waktu itu, sungai dapat dengan bebas memindahkan alurnya sebagai tanggapan terhadap perubahan muka air laut yang terjadi di bawah graded river profile. Ketika muka air laut turun pada offlap break, profil sungai harus menyesuaikan diri dengan alas kikis baru (lihat Bab 7). Sungai harus menoreh

endapan-endapan yang sebelumnya membentuk topset: endapan dataran aluvial, endapan dataran pantai, dan/atau endapan paparan. Sedimen rombakan yang terbentuk akan langsung diangkut menuju bagian cekungan yang lebih dalam. Pada waktu itu, sungai tidak lagi bebas lagi untuk memindahkan alurnya. Sedimen yang ada didalamnya akan diangkut menuju satu titik fokus yang sama, yaitu bagian dalam dari cekungan. Tahap itu merupakan fasa tidak stabil dimana proses-proses sedimentasi didominasi oleh kekandasan lereng pada skala besar, bypassing lereng, dan pengendapan kipas bawah laut-dalam. Proses-proses itu terus mendominasi rekaman stratigrafi pada tahap penurunan muka air laut relatif dan sistem sungai terus didorong untuk menoreh endapan-endapan tua.

Pada waktu muka air laut relatif mencapai titik paling bawah, profil sungai kembali mengalami masa stabil dan sistem topset-clinoform kembali terbentuk. Topset pertama yang terbentuk pada waktu itu akan terletak onlap terhadap offlap break

sebelum-nya. Pada mulanya, laju penaikan air laut relatif cukup rendah sehingga laju pembentukan akomodasi topset juga rendah (gambar 2-15). Laju pembentukan akomodasi yang rendah ini tidak sebanding dengan pemasokan sedimen yang tinggi. Karena itu, sistem pengendapan akan berprogradasi. Bertambahnya laju pembentukan akomodasi kemudian dapat mengimbangi, bahkan melebihi, laju pasokan sedimen sehingga akhirnya sistem pengendapan akan beragradasi dan beretrogradasi membentuk transgressive systems tract.

Dari penjelasan di atas tampak bahwa lowstand systems tract terdiri dari dua bagian. Pertama, kipas bawahlaut yang diendapkan selama penurunan muka air laut relatif. Kedua, sistem topset-clinoform yang pada awalnya berpola progradasi, namun kemudian berpola aggradasi, yang terbentuk selama terjadinya penaikan muka air laut relatif secara lambat. Bagian-bagian itu sebenarnya dapat dipandang sebagai dua systems tract tersendiri karena keduanya mungkin tidak mencerminkan satu kesinambungan pengendapan. Walau demikian, secara tradisional, keduanya dimasukkan ke dalam satu systems tract karena batas antara keduanya tidak jarang berangsur, di dalam mana kipas bawahlaut menempati bagian bawahnya (Posamentier dan Vail, 1988).

2.4.3.1 Lowstand Submarine Fan

Ada dua satuan yang dapat dikenal dalam lowstand submarine fan yakni kipas dasar cekungan (basin floor fan) yang terletak di bagian bawah lereng dan kipas lereng (slope fan) yang terletak pada lereng (gambar 2-14). Dalam literatur lama, kipas lereng sering disebut slope front fill. Van Wagoner dkk (1988) menyatakan bahwa kipas dasar cekungan disusun oleh endapan kipas bawahlaut yang terletak pada lereng bawah atau dasar cekungan. Proses pembentukan kipas berasosiasi dengan erosi ngarai bawah laut dan penorehan paparan oleh sungai. Sedimen silisiklastik tidak diendapkan di paparan atau lereng, melainkan langsung diangkut menuju bagian cekungan yang lebih dalam melalui lembah torehan dan ngarai bawahlaut, untuk kemudian membentuk kipas dasar cekungan. Alas dari kipas dasar cekungan, yang berimpit dengan batas bawah lowstand systems tract, berkorelasi dengan batas sekuen tipe-1. Batas atas dari kipas tersebut dapat berupa bidang downlap

(16)

lereng. Pengendapan kipas dasar cekungan, pembentukan ngarai, dan erosi lembah torehan ditafsirkan terjadi selama penurunan muka air laut relatif.

Menurut Van Wagoner dkk (1988), kipas lereng dicirikan oleh turbidit dan endapan aliran gravitasi di bagian tengah atau bagian bawah dari lereng. Pengendapan kipas lereng dapat terjadi pada waktu yang bersamaan dengan pem-bentukan kipas dasar cekungan atau dengan waktu pembentukan bagian bawah dari lowstand wedge. Batas atas dari kipas lereng dapat berperan sebagai bidang downlap untuk bagian tengah dan bagian atas dari lowstand wedge. Kipas lereng biasanya disusun oleh kompleks alur-tepi alur (lihat Bab 9).

2.4.3.2 Lowstand Prograding Wedge

Lowstand prograding wedge adalah sistem topset-clinoform yang diendapkan selama naiknya muka air laut relatif. Sistem ini

dipisahkan dari transgressive system tract, yang terletak diatasnya, oleh bidang progradasi maksimum (maximum progradation surface). Bidang itu menandai terjadinya perubahan geometri tumpukan parasekuen dari geometri progradasional pada

lowstand wedge menjadi geometri retrogradasional pada transgressive systems tract.

Pada awalnya pengendapan lowstand prograding wedge hanya terbatas di sekitar muara lembah torehan (gambar 2-15). Hanya sedikit, jika ada, akomodasi topset pada waktu itu; seluruh sedimen di-bypass melewati topset kemudian diendapkan pada lereng klinoform. Pada waktu itu, lereng kemungkinan tidak stabil dan pengendapan kipas terjadi sewaktu-waktu. Bagian bawah lowstand prograding wedge dapat mengandung turbidit yang sering menunjukkan gejala seismik "shingled".

Ketika muka air laut relatif naik sedikit demi sedikit, lembah torehan mulai terisi oleh endapan fluvial dan estuarium, dan topset dari prograding wedge mulai terbentuk. Peningkatan laju penaikan muka air laut relatif menghasilkan asosiasi fasies yang

mengindikasikan pertambahan volume akomodasi, misalnya bertambah banyaknya batubara, serpih dataran limpah banjir, fasies laguna, dan fasies yang mencirikan pengaruh pasut ke bagian atas serta ketidaksinambungan tubuh-tubuh pasir endapan sungai. Perubahan menuju prograding systems tract yang ada diatasnya dapat berlangsung secara berangsur maupun tiba-tiba. Batas ini dapat disebut bidang progradasi maksimum, bidang transgresi, atau lowstand surface.

Lowstand prograding wedge seringkali mengandung lebih banyak pasir dibanding highstand wedge yang terbentuk

kemudian karena banyak memperoleh pasokan pasir hasil daur ulang dari highstand topset. Karena sering terletak di atas highstand systems tract sebelumnya, yang bagian atasnya kaya akan serpih, dan kemudian ditutupi oleh serpih transgressive

system tract, lowstand wedge dapat berperan sebagai jebakan stratigrafi.

2.4.4 Transgressive Systems Tract

Transgressive systems tract adalah systems tract yang berada di tengah-tengah sekuen tipe-1 maupun sekuen tipe-2 (gambar 2-13, 2-16, 2-18). Sistem ini diendapkan pada suatu bagian dari fasa penaikan muka air laut relatif, pada saat mana laju pertambahan volume akomodasi topset lebih tinggi dibanding laju pemasokan sedimen. Sistem ini sebagian besar berupa topset, dengan sedikit klinoform, dan seluruhnya memiliki geometri retrogradasional. Sistem-sistem pengendapan yang aktif

pada saat terbentuknya systems tract adalah sistem-sistem pengendapan topset seperti aluvial, paralik, dataran pantai, delta paparan, dan paparan. Jenis sedimen yang sering ditemukan antara lain batubara serta endapan limpah banjir, laguna, dan lakustrin. Sistem-sistem itu mengindikasikan rendahnya pasokan sedimen. Sistem-sistem pengaliran mungkin ditutupi oleh air laut sedemikian rupa sehingga membentuk estuarium. Luasnya paparan dan endapan yang dipengaruhi oleh pasut merupakan sebagian dari ciri transgressive systems tract. Ke arah cekungan, transgressive systems tract dapat berkorespondensi dengan condensed section yang mengindikasikan laju pengendapan yang sangat lambat. Condensed section dapat berupa serpih

(17)

Laju penaikan muka air laut tertinggi terjadi pada fasa pembentukan transgressive systems tract. Systems tract ini berakhir ketika laju pertumbuhan volume akomodasi topset menurun hingga satu kondisi dimana laju pertumbuhan tersebut sebanding dengan laju pemasokan sedimen. Produk kondisi itu disebut marine flooding surface. Pada saat laju pertumbuhan dengan laju pemasokan sedimen mencapai kesetimbangan, pola endapan akan berubah dari pola retrogradasi menjadi progradasi.

Topset dari transgressive systems tract cenderung mengandung persentase pasir lebih sedikit dibanding systems tracts lain

karena dalam proses pembentukan systems tract ini hanya sedikit terjadi bypassing sedimen halus menuju bagian cekungan yang lebih dalam. Dengan kata lain, sedimen halus yang dikirim pada waktu pembentukan transgressive systems tract ini hampir seluruhnya diendapkan pada topset. Dengan demikian, transgressive systems tract sering mengandung lapisan penutup untuk reservoar hidrokarbon. Kadang-kadang sedimen berbutir halus dalam systems tract ini juga berperan sebagai batuan induk (lihat Bab 11). Posamentier & Allen (1993) mengusulkan satu komponen baru untuk transgressive systems tract yang disebut komponen "healing phase". Mereka menunjukkan adanya baji-baji sedimen yang terletak pada kaki klinoform transgressive systems tract yang ditafsirkan sebagai endapan rombakan selama berlangsungnya transgresi. Sebenarnya baji-baji sedimen itu

dapat ditafsirkan sebagai komponen lowstand systems tract dari sekuen yang terbentuk kemudian atau sebagai nendat yang berasal dari endapan highstand systems tract.

Sistem-sistem pengendapan yang ada di seluruh dunia dewasa ini umumnya membentuk transgressive systems tract. Dewasa ini banyak terdapat paparan benua yang luas dan sebagian besar diantaranya merupakan topset dari lowstand systems tract yang terbentuk paling akhir. Delta yang ada dewasa ini umumnya berupa delta paparan. Dalam delta-delta itu, banyak

kipas tidak aktif. Estuarium dan wilayah pasang-surut banyak ditemukan di bagian baratdaya Eropa. Pantai timur AS, di lain pihak, didominasi oleh proses mundurnya gosong pesisir dan laguna, sedangkan sedimentasi laut-dalam umumnya hanya berupa turbidit yang terbentuk akibat nendatan dari lereng benua.

2.4.5 Highstand Systems Tract

Highstand systems tract adalah systems tract termuda, baik dalam sekuen sekuen tipe-1 maupun sekuen tipe-2 (gambar

2-13, 2-18). Sistem ini merupakan sistem topset-clinoform yang terletak diantara maximum flooding surface dan batas sekuen. Sistem ini terbentuk pada saat laju penaikan muka air laut mulai menurun, setelah melalui masa puncak, pada saat mana laju pembentukan akomodasi lebih kecil dibanding laju pemasokan sedimen (gambar 2-17). Penurunan laju penaikan muka air laut pada mulanya menyebabkan terbentuknya geometri aggradasi, namun sedikit demi sedikit kemudian berubah menjadi geometri progradasi. Sistem-sistem pengendapan yang ada pada tahap awal pembentukan highstand systems tract mungkin sama dengan sistem-sistem pengendapan yang ada pada tahap akhir pembentukan transgressive systems tract. Namun, menurunnya laju penaikan muka air laut serta terisinya wilayah paparan melalui proses progradasi, menyebabkan berkurangnya volume batubara, serpih limpah banjir, endapan laguna, dan endapan lakustrin yang diendapkan pada waktu itu. Tubuh-tubuh pasir endapan alur makin lama makin banyak diendapkan dan sifatnya menerus.

Posamentier & Vail (1988) membahas berbagai model yang mengimplikasikan bahwa bagian teratas dari highstand systems tract didominasi oleh endapan fluvial. Mereka menggunakan konsep "bay line" yang didefinisikan sebagai sebuah garis di tempat

mana profil sungai bersifat "graded" dan di tempat mana proses-proses fluvial diagantikan oleh proses-proses paralik dan paparan. Garis itu juga merupakan titik coastal onlap selama terjadinya penaikan muka air laut. Pada tahap akhir pembentukan highstand systems tract, bay line mulai bermigrasi ke arah cekungan, sejalan dengan mulai menurunnya muka air laut relatif.

Pada waktu itu, menurut Posamentier dan Vail (1988), akomodasi fluvial yang berarti akan terbentuk. Model ini terlalu sederhana dan telah menjadi salah satu penyebab timbulnya kesalahpahaman (lihat Miall, 1991; Shanley & McCabe, 1994).

(18)

Penurunan muka air laut relatif mungkin hanya terjadi pada daerah proksimal dari highstand topset sehingga muka air laut tidak sampai lebih rendah dibanding offlap break. Jika hal ini terjadi, batas sekuen akan terbentuk, namun tidak berasosiasi dengan penorehan sungai atau pengendapan kipas bawahlaut. Batas sekuen itu dapat dikenal dalam penampang seismik berdasarkan adanya perpindahan coastal onlap hingga suatu posisi yang lebih kurang sejajar dengan offlap break dan terletak onlap terhadap topset sekuen yang terbentuk sebelumnya (gambar 2-18). Batas sekuen seperti itu disebut batas sekuen tipe-2,

sedangkan systems tract yang dialasi oleh bidang ini disebut shelf-margin systems tract. Pada mulanya, geometri systems tract ini sedikit progradasional, namun kemudian berubah menjadi aggradasional. Batas antara shelf-margin systems tract dengan highstand systems tract terletak pada bidang dimana terjadi perubahan pola tumpukan parasekuen: dari aggradasional menjadi

retrogradasional. Di lain pihak, batas antara shelf-margin systems tract dengan highstand systems tract dari sekuen sebelumnya merupakan ketakselarasan yang samar dan mungkin hanya dapat dikenal dari perubahan pola tumpukan parasekuen: dari pro-gradasional menjadi agpro-gradasional. Shelf-margin systems tract mungkin sangat sukar untuk dikenal dalam singkapan, core, atau well log, kecuali jika singkapannya sangat besar atau jika sumur yang ada cukup rapat.

Batas sekuen tipe-2 dan shelf-margin systems tract kadang-kadang digunakan secara keliru dalam literatur karena sulitnya untuk menemukan bukti terjadinya pergeseran coastal onlap ke arah cekungan, namun tidak sampai melewati offlap break. Selain itu, resolusi rekaman seismik juga sering tidak cukup tinggi untuk mendeteksi adanya perubahan kemiringan yang samar, misalnya sewaktu suatu topset terletak onlap terhadap topset lain. Perubahan pola tumpukan parasekuen, dari progradasional menjadi aggradasional, tidak bersifat definitif karena perubahan pola seperti itu dapat saja terjadi karena peristiwa lain seperti penurunan laju suplai sedimen.

Dalam studi singkapan, batas sekuen tipe-2 sering digunakan untuk menamakan batas sekuen minor. Perlu disadari bahwa batas sekuen tipe-2 dapat sebanding dengan sekuen tipe-1, tergantung pola subsidensi tektonik dari cekungannya.

2.4.7 Lowstand Systems Tract pada Tatanan Ramp Margin

Berbagai systems tract yang telah dijelaskan di atas terbentuk pada tatanan shelf-margin, pada tatanan mana kemiringan klinoform cukup besar sehingga memungkinkan terbentuknya sistem kipas bawahlaut. Pada tatanan ramp margin, sebagaimana dijelaskan oleh Van Wagoner dkk (1988), lowstand systems tract berwujud lowstand wedge yang tipis dan dapat dibedakan menjadi dua bagian (gambar 2-19). Bagian pertama dicirikan oleh gejala penorehan sungai dan sediment bypassing melalui dataran pantai. Bagian ini ditafsirkan terbentuk pada suatu fasa penurunan muka air laut yang cepat, hingga suatu saat dimana penurunan itu mulai stabil. Bagian kedua dicirikan oleh endapan pengisi lembah torehan pada sub-bagian proksimal dan satu atau lebih parasekuen set progradasional pada sub-bagian distal. Bagian ini ditafsirkan terbentuk pada tahap awal penaikan muka air laut yang berlangsung lambat.

Selama penurunan muka air laut, pada tatanan ramp margin tidak terjadi bypassing sedimen menuju dasar cekungan, melainkan pengendapan sedimen dalam bentuk baji-baji endapan yang miring ke arah cekungan. Setiap baji endapan itu disebut force regressive wedge (Posamentier dkk, 1992). Rangkaian force regressive wedge terletak diantara lowstand prograding wedge dan highstand prograding wedge dan membentuk suatu systems tract tersendiri yang disebut force regressive

wedge systems tract (Posamentier dkk, 1992). Batas bawah dari force regressive wedge systems tract adalah regressive marine

surface of erosion, sedangkan batas atasnya adalah regressive subaerial surface of erosion. Regressive marine surface of

erosion berkorelasi dengan bidang ketidakselarasan non-bahari sehingga secara bersama-sama keduanya berperan sebagai

batas sekuen. Force regressive marine wedges sering didominasi pasir dan dapat berperan sebagai reservoar yang menarik jika diselubungi oleh serpih. Beberapa contoh sekuen stratigrafi untuk tatanan ramp margin disajikan Posamentier dkk (1992) serta Posamentier & Chamberlain (1992).

Transgressive dan highstand systems tract pada tatanan ramp margin mirip dengan transgressive dan highstand systems

Referensi

Dokumen terkait

Melaksanakan penyusunan bahan perumusan dan pelaksanaan kebijakan di bidang pembinaan pendidik dan tenaga kependidikan sekolah menengah atas, sekolah menengah kejuruan,

Dari hasil wawancara di atas tampak bahwa 55 % siswa kelas III memiliki orientasi masa depan bidang pekerjaan yang jelas dengan menunjukkan motivasi yang kuat

Dani servis elektronik merupakan toko yang bergerak di bidang jasa servis elektronik yang terletak di daerah Brantaksekarjati, Kecamatan Welahan Kabupaten Jepara. toko ini

Siswa SMA di Panti Asuhan ‘X’ yang memiliki orientasi masa depan bidang pendidikan yang jelas adalah mereka yang memiliki minat yang jelas terhadap sesuatu hal,

Reformasi yang dimulai sejak berakhirnya pemerintahan Orde Baru pada bulan Mei 1998, telah menghantarkan rakyat Indonesia kepada perubahan di segala bidang,

Di Indonesia, industri hilir ini sangat didominasi oleh Pertamina yang telah lama bergerak di bidang retail Bahan Bakar Minyak (BBM) dan pelumas sekaligus menjadikannya

Lokasi Pasar Karang Anyar.. yang ada di pasar tersebut didominasi oleh pedagang baju,emas dan kebutuhan sehari- hari. Tenda dan los terbuka didominasi oleh pedagang

Berdasarkanohal-halmyang sudah diuraikan di atas diketahui mahasiswa FKG YARSI angkatan 2018 pada awal pemilihan bidang ilmu peminatan untuk penelitian skripsi mereka tidak memilih atau