ANALISIS KEKUATAN LENTUR DAN DAKTILITAS PADA
PENAMPANG KOLOM BETON BERTULANG, KOLOM BAJA DAN
KOLOM COMPOSITE DENGAN SOFTWARE ‘XTRACT’
Oleh :
Rudy Tiara 10 0404 102
Disetujui :
Pembimbing
Ir. Sanci Barus, MT
BIDANG STUDI STRUKTUR
DEPARTEMEN TEKNIK SIPIL
FAKULTAS TEKNIK
UNIVERSITAS SUMATERA UTARA
ABSTRAK
Daktilitas dan kekuatan lentur merupakan dua parameter penting dalam perencanaan
suatu kolom. Kurva hubungan antara momen dan kurvatur dapat digunakan untuk
menentukan nilai daktilitas suatu kolom. Nilai daktilitas suatu kolom dapat ditentukan dengan
membagi nilai kurvatur saat ultimit dengan nilai kurvatur saat leleh (yield).
Nilai daktilitas dan kekuatan lentur suatu kolom dipengaruhi oleh beberapa parameter.
Analisis momen kurvatur dilakukan untuk mengetahui pengaruh parameter luas tulangan
longitudinal, jarak antar sengkang, luas profil baja, bentuk profil baja, mutu beton dan mutu
tulangan longitudinal serta tulangan sengkang terhadap kekuatan lentur dan daktilitas dari
penampang kolom beton bertulang, kolom komposit dan kolom baja. Analisis tersebut dilakukan dengan bantuan software „XTRACT‟ dengan memperhitungkan efek pengekangan yang terjadi pada material beton.
Hasil analisis menunjukkan jarak antar sengkang yang rapat, mutu beton dan mutu
tulangan longitudinal yang rendah dapat meningkatkan nilai daktilitas suatu kolom beton
bertulang. Sedangkan, luas tulangan longitudinal yang besar dan mutu tulangan transversal
yang rendah dapat menurunkan nilai daktilitas suatu kolom beton bertulang. Selain itu,
konfigurasi tulangan longitudinal juga dapat mempengaruhi nilai daktilitas suatu kolom.
Bentuk dan luas profil baja yang digunakan mempengaruhi nilai daktilitas suatu
kolom komposit. Kolom komposit dengan profil H di tengahnya memiliki nilai daktilitas
yang lebih tinggi daripada kolom komposit dengan profil I. Profil H memberikan efek
pengekangan yang lebih besar dibandingkan profil I sehingga nilai daktilitasnya pun lebih
tinggi.
KATA PENGANTAR
Puji dan syukur kepada Tuhan Yang Maha Esa atas segala rahmat dan berkat-Nya
hingga selesainya tugas akhir ini dengan judul “Analisis Kekuatan Lentur dan Daktilitas
pada Penampang Kolom Beton Bertulang, Kolom Baja dan Kolom Composite dengan
Software ‘XTRACT’ ”. Tugas akhir ini disusun untuk diajukan sebagai salah satu syarat
yang harus dipenuhi dalam ujian sarjana Teknik Sipil bidang Studi Struktur pada Departemen
Teknik Sipil Fakultas Teknik Universitas Sumatera Utara (USU).
Penulis menyadari bahwa tugas akhir ini masih memiliki banyak kekurangan. Hal ini
disebabkan keterbatasan pengetahuan dan kurangnya pemahaman penulis. Dengan tangan
terbuka dan hati yang tulus, penulis menerima saran kritik Bapak dan Ibu dosen serta rekan
mahasiswa demi penyempurnaan tugas akhir ini.
Penulis juga menyadari bahwa selesainya tugas akhir ini tidak lepas dari bimbingan,
dukungan dan bantuan semua pihak. Untuk itu, pada kesempatan ini penulis ingin
mengucapkan ucapan terima kasih kepada :
1. Bapak Ir. Sanci Barus, MT, selaku pembimbing yang telah banyak meluangkan waktu,
tenaga dan pikiran dalam memberikan bimbingan yang tiada hentinya kepada penulis
dalam menyelesaikan tugas akhir ini serta kepada Bapak Ir. Besman Surbakti, MT selaku
pembanding.
2. Bapak Prof. Dr. Ing. Johannes Tarigan, selaku Ketua Departemen Teknik Sipil
Universitas Sumatera Utara.
3. Bapak Ir.Syahrizal, MT, selaku Sekretaris Departemen Teknik Sipil Universitas Sumatera
Utara dan pembanding.
4. Teristimewa kepada kedua orang tua penulis, Tia Tji Po dan Tin Bie Gek, beserta
kakak-kakak saya : Lindawati dan Lidyawati kemudian Lolita Simbara yang telah mendukung,
5. Rudi Kirana, Deni Hermawan, John Thedy, Desindo Wijaya, Akbar Soesilo, Erwin
Susanto dan lain-lain, selaku teman seperjuangan penulis yang selalu mengingatkan dan
memberikan dukungan moral kepada penulis hingga tugas akhir ini dapat selesai tepat
waktu.
6. Erwin, selaku abang senior stambuk 2004 yang memberikan konstribusi besar kepada
penulis dalam hal memberikan ide, semangat dan arahan hingga selesainya tugas akhir
ini.
7. Teman-teman jurusan Teknik Sipil, terutama teman-teman seangkatan 2010 yang
senantiasa membantu penulis sewaktu menemui kendala serta telah menjadi teman yang
baik selama 4 tahun kebersamaan di kampus, abang/ kakak stambuk 2007, 2008 dan 2009
serta adik-adik 2011, 2012 dan 2013 terima kasih atas dukungan dan informasi yang
bermanfaat selama ini.
8. Para pegawai Departemen Teknik Sipil Fakultas Teknik USU atas ketersediannya untuk
mengurus administrasi Tugas akhir ini.
9. Berbagai pihak yang tidak dapat penulis sebutkan satu-persatu. Terima kasih untuk
semuanya.
10.Dan tentunya terima kasih dan rasa syukur kepada Tuhan YME.
Medan, Juni 2014
Penulis
DAFTAR ISI
ABSTRAK ...i
KATA PENGANTAR ...ii
DAFTAR ISI...iv
DAFTAR GAMBAR ...vii
DAFTAR TABEL ...x
DAFTAR NOTASI... xi
BAB I. PENDAHULUAN ...1
1.1Latar Belakang Masalah ...1
1.2 Perumusan Masalah ...6
1.3 Pembatasan Masalah...6
1.4 Maksud dan Tujuan...7
1.5 Sistematika Penulisan...7
BAB II. TINJAUAN PUSTAKA ...9
2.1 Kolom ...9
2.2 Dasar Teori Pengekangan ...14
2.3 Model Tegangan-Regangan Material ...17
2.3.1 Hubungan Tegangan-Regangan Beton ...17
2.3.2 Hubungan Tegangan-Regangan Baja ...20
BAB III. ANALISIS DAN PEMODELAN ...24
3.1 Analisis Momen Kurvatur ...24
3.2 Kolom Beton Bertulang dengan Pengekangan (Confinement) ...26
3.2.1 Koefisien Kekangan Efektif ...28
3.2.2 Tegangan Kekangan Lateral Efektif ...29
3.2.3 Nilai Faktor Pengekangan (Confinement Factor) ...30
3.3 Kolom Baja yang Diselimuti Beton dengan Pengekangan (Confinement) ...30
3.4 Pemodelan Penampang ...33
3.4.1 Penampang Tipe A ...36
3.4.2 Penampang Tipe B ...38
3.4.3 Penampang Tipe C ...38
3.5 Diagram Alir ...39
BAB IV. ANALISIS MOMEN KURVATUR DENGAN ‘XTRACT’ ...41
4.1 Penggunaan „XTRACT‟ ...41
4.2 Contoh Analisis Momen Kurvatur dengan bantuan „XTRACT‟ ...45
BAB V. HASIL DAN PEMBAHASAN ...52
5.1 Hasil Perhitungan Kurva Tegangan Regangan Kolom Beton Bertulang ...52
5.1.1 Penampang Kolom A1 ...52
5.1.2 Penampang Kolom A2 ...59
5.2 Hasil Perhitungan Kurva Hubungan Tegangan-Regangan Kolom Komposit ...61
5.2.1 Penampang Kolom B1 ...61
5.2.2 Penampang Kolom B2 ...62
5.3 Perhitungan Kurva Hubungan Tegangan-Regangan Kolom Baja ...63
5.4 Hasil Analisis Momen Kurvatur ...63
5.4.1 Hasil Analisis Penampang Tipe A ...63
5.4.2 Hasil Analisis Penampang Tipe B ...68
5.4.3 Hasil Analisis Penampang Tipe C ...69
5.5 Pembahasan...70
BAB VI. KESIMPULAN DAN SARAN ...73
6.1 Kesimpulan ...73
6.2 Saran ...74
DAFTAR GAMBAR
Gambar 1.1 : Kolom RC (Reinforced Concrete) ...2
Gambar 1.2 : Kolom SRC (Steel Reinforced Concrete) ...2
Gambar 1.3 : Kolom CFT (Concrete Filled Tube) ...3
Gambar 1.4 : Kolom Komposit SRC (Steel Reinforced Concrete) ...4
Gambar 1.5 : Material dalam Kolom SRC (Steel Reinforced Concrete) ...5
Gambar 2.1 : Kolom sengkang persegi ...10
Gambar 2.2 : Kolom Spiral ...11
Gambar 2.3 : Kolom Komposit ...12
Gambar 2.4 : Kelakuan Kolom dalam Struktur ...13
Gambar 2.5 : Efektifitas Pengekangan (a) sengkang persegi (b) spiral ...14
Gambar 2.6 : Material Beton pada Kolom Beton Bertulang ...16
Gambar 2.7 : Material Beton pada Kolom Baja yang Diselimuti Beton ...16
Gambar 2.8 : Model Tegangan-Regangan Beton ...17
Gambar 2.9 : Kurva nilia K ...19
Gambar 2.10: Model Tegangan-Regangan Elasto-Plastis ...20
Gambar 2.11 : Model Tegangan-Regangan Baja dengan Strain Hardening ...21
Gambar 3.1 : Model Aksi Busur (Arching Action) dengan sudut 45 ̊ ...28
Gambar 3.2 : Nilai Faktor Pengekangan untuk Material Beton Terkekang Sebagian ...32
Gambar 3.3 : Nilai Faktor Pengekangan untuk Material Beton Terkekang Penuh ...32
Gambar 3.5 : Tipe A2...34
Gambar 3.6 : Tipe A3 ...34
Gambar 3.7 : Tipe B1 ...35
Gambar 3.8 : Tipe B2 ...35
Gambar 3.9 : Tipe C1 ...35
Gambar 3.10 : Tipe C2 ...35
Gambar 3.11 :Flowchart Penyusunan Tugas Akhir ...39
Gambar 5.1 : Kurva Tegangan Regangan Beton Terkekang A1-01, A1-06 dan A1-07 ...53
Gambar 5.2 : Kurva Tegangan Regangan Beton Tidak Terkekang A1-01, A1-06 dan A1-07 ...53
Gambar 5.3 : Kurva Tegangan Regangan Beton Terkekang A1-02 ...54
Gambar 5.4 : Kurva Tegangan Regangan Beton Terkekang A1-03 ...55
Gambar 5.5 : Kurva Tegangan Regangan Beton Terkekang A1-04 ...55
Gambar 5.6 : Kurva Tegangan Regangan Beton Terkekang A1-05 ...56
Gambar 5.7 : Kurva Tegangan Regangan Beton Tidak Terkekang A1-05 ...57
Gambar 5.8 : Kurva Tegangan Regangan Beton Terkekang A1-08 ...57
Gambar 5.9 : Kurva Tegangan Regangan Beton Tidak Terkekang A1-08 ...58
Gambar 5.10 : Kurva Tegangan Regangan Beton Terkekang A1-09 ...58
Gambar 5.11 : Kurva Tegangan Regangan Beton Terkekang A2-01 ...59
Gambar 5.12 : Kurva Tegangan Regangan Beton Terkekang A3-01 ...60
Gambar 5.13 : Kurva Tegangan Regangan Material Beton B1-01 ...62
Gambar 5.16 : Kurva Momen Kurvatur dengan Variasi Jarak antar Sengkang ...65
Gambar 5.17 : Kurva Momen Kurvatur dengan Variasi Mutu Beton ...66
Gambar 5.18 : Kurva Momen Kurvatur dengan Variasi Mutu Tulangan Longitudinal ...66
Gambar 5.19 : Kurva Momen Kurvatur dengan Variasi Mutu Tulangan Sengkang ...67
Gambar 5.20 : Kurva Momen Kurvatur dengan Variasi Letak Tulangan Longitudinal ...68
Gambar 5.21 : Kurva Momen Kurvatur B1-01 dan B2-01 ...69
DAFTAR TABEL
Tabel 3.1 : Penampang-penampang Tipe A, Tipe B dan Tipe C ...36
Tabel 3.2 : Penampang Tipe A untuk meninjau pengaruh luas tulangan longitudinal ...36
Tabel 3.3 : Penampang Tipe A untuk meninjau pengaruh jarak sengkang ...37
Tabel 3.4 : Penampang Tipe A untuk meninjau pengaruh mutu beton ...37
Tabel 3.5 : Penampang Tipe A untuk meninjau pengaruh mutu tulangan longitudinal ...37
Tabel 3.6 : Penampang Tipe A untuk meninjau pengaruh mutu tulangan sengkang ...37
Tabel 3.7 : Penampang Tipe A untuk meninjau pengaruh letak tulangan longitudinal ...38
Tabel 3.8 : Penampang Tipe B ...38
Tabel 3.9 : Penampang Tipe C ...38
Tabel 5.1 : Penampang Kolom Tipe A1 ...52
Tabel 5.2 : Penampang Kolom Tipe A2 ...59
Tabel 5.3 : Penampang Kolom Tipe A3 ...60
Tabel 5.4 : Penampang Kolom Tipe B1 ...61
Tabel 5.5 : Penampang Kolom Tipe B2 ...62
Tabel 5.6 : Hasil Analisis Penampang Kolom Tipe A ...64
Tabel 5.7 : Hasil Analisis Penampang Kolom Tipe B ...68
DAFTAR NOTASI
Ac = Luas penampang inti (mm2)
Acc = Luas daerah beton terkekang (mm2)
Ae = Luas daerah efektif terkekang pada inti (mm2)
Ag = Luas bruto kolom (mm2)
Asl = Luas tulangan longitudinal (mm2)
Ass = Luas profil baja (mm2)
Atx = Luas tulangan transversal dalam arah x (mm2)
Aty = Luas tulangan transversal dalam arah y (mm2)
bc = Lebar beton inti (mm)
dc = Diameter beton inti (mm)
Ec = Modulus tangen dari beton yang tidak terkekang (MPa)
Es = Modulus Elastisitas Baja (MPa)
Esec = Modulus Secant dari Beton yang Terkekang (MPa)
fc = Tegangan beton (MPa)
f‟c = Kekuatan tekan beton (MPa)
f‟cc = Kekuatan tekan beton maksimum (MPa)
flx = Tegangan kekangan lateral dalam arah x (MPa)
flx‟ = Tegangan kekangan lateral efektif dalam arah x (MPa)
fly‟ = Tegangan kekangan lateral efektif dalam arah y (MPa)`
fyh = Tegangan leleh hoop atau sengkang (MPa)
fyl = Tegangan leleh tulangan longitudinal (MPa)
fys = Tegangan leleh hoop atau sengkang (MPa)
K = Nilai faktor pengekangan
ke = Koefisien kekangan efektif
Kh = Nilai faktor pengekangan untuk beton terkekang penuh
Kp = Nilai faktor pengekangan untuk beton terkekang sebagian
r = Rasio antara Ec dengan selisih Ec dan Esec
s = Spasi tulangan transversal (mm)
s‟ = Spasi bersih antar sengkang (mm)
wi = Jarak antar tulangan longitudinal (mm)
x = Rasio antara � dengan �
� = Regangan pada beton
� = Regangan maksimum beton pada beton yang terkekang
� 0 = Regangan maksimum beton pada beton yang tidak terkekang (nilainya
0,002)
� = Regangan pada saat terjadi spalling
� = Regangan leleh
� = Rasio antara luas tulangan longitudinal dengan luas penampang inti kolom
� = Rasio antara luas tulangan transversal dengan luas beton terkekang
� = Rasio antara luas tulangan transversal dalam arah x dengan luas beton
terkekang
� = Rasio antara luas tulangan transversal dalam arah y dengan luas beton
ABSTRAK
Daktilitas dan kekuatan lentur merupakan dua parameter penting dalam perencanaan
suatu kolom. Kurva hubungan antara momen dan kurvatur dapat digunakan untuk
menentukan nilai daktilitas suatu kolom. Nilai daktilitas suatu kolom dapat ditentukan dengan
membagi nilai kurvatur saat ultimit dengan nilai kurvatur saat leleh (yield).
Nilai daktilitas dan kekuatan lentur suatu kolom dipengaruhi oleh beberapa parameter.
Analisis momen kurvatur dilakukan untuk mengetahui pengaruh parameter luas tulangan
longitudinal, jarak antar sengkang, luas profil baja, bentuk profil baja, mutu beton dan mutu
tulangan longitudinal serta tulangan sengkang terhadap kekuatan lentur dan daktilitas dari
penampang kolom beton bertulang, kolom komposit dan kolom baja. Analisis tersebut dilakukan dengan bantuan software „XTRACT‟ dengan memperhitungkan efek pengekangan yang terjadi pada material beton.
Hasil analisis menunjukkan jarak antar sengkang yang rapat, mutu beton dan mutu
tulangan longitudinal yang rendah dapat meningkatkan nilai daktilitas suatu kolom beton
bertulang. Sedangkan, luas tulangan longitudinal yang besar dan mutu tulangan transversal
yang rendah dapat menurunkan nilai daktilitas suatu kolom beton bertulang. Selain itu,
konfigurasi tulangan longitudinal juga dapat mempengaruhi nilai daktilitas suatu kolom.
Bentuk dan luas profil baja yang digunakan mempengaruhi nilai daktilitas suatu
kolom komposit. Kolom komposit dengan profil H di tengahnya memiliki nilai daktilitas
yang lebih tinggi daripada kolom komposit dengan profil I. Profil H memberikan efek
pengekangan yang lebih besar dibandingkan profil I sehingga nilai daktilitasnya pun lebih
tinggi.
BAB I
PENDAHULUAN
1.1.
Latar Belakang MasalahDalam membangun suatu bangunan, perlu diperhatikan bahan konstruksi yang
akan digunakan. Bahan-bahan konstruksi yang sering dijumpai dalam konstruksi
bangunan saat ini adalah : kayu, beton, dan baja. Pada mulanya, bangunan-bangunan
lebih banyak dibangun dengan kayu. Namun seiring dengan semakin berkembangnya
ilmu pengetahuan, struktur dari bangunan-bangunan yang dibangun pun diusahakan
agar dapat lebih kuat dan tahan lama. Penggunaan bahan-bahan konstruksi untuk
struktur yang dibangun pun dilakukan dengan memanfaatkan keunggulan
masing-masing bahan. Salah satu cara pemanfaatan keunggulan masing-masing-masing-masing bahan dapat
terlihat pada penggunaan struktur beton bertulang, struktur yang terdiri dari beton dan
tulangan baja.
Pada struktur beton bertulang, karakteristik beton yang memiliki kekuatan
tekan yang tinggi dimanfaatkan untuk memikul gaya tekan yang terjadi pada
komponen struktur. Namun pada bagian yang mengalami gaya tarik, pada beton yang
lemah terhadap tarik dapat ditambahkan tulangan baja yang tahan terhadap gaya tarik
sehingga dapat bekerja bersama untuk menahan gaya luar yang timbul. Elemen
struktur yang dibangun dari bahan-bahan konstruksi gabungan ini dinamakan dengan
struktur komposit. Penggunaan bahan-bahan komposit ini dapat digunakan pada
beberapa bagian dari struktur bangunan misalnya pada kolom, balok, pelat lantai, dan
memiliki kekuatan yang lebih besar dan berperilaku lebih baik dalam menahan gaya
lateral seperti gaya lateral akibat dari gempa ataupun beban angin.
Struktur dari kolom yang digunakan pada bangunan di masa sekarang
umumnya merupakan salah satu jenis struktur komposit. Saat ini di Indonesia,
bangunan-bangunan umumya dibangun menggunakan struktur beton bertulang.
Secara umum, terdapat tiga jenis kolom komposit yang sering digunakan pada
bangunan yaitu : beton bertulangan baja (reinforced concrete), penampang baja yang
diselimuti dengan beton (steel section encased in concrete) atau sering disebut
sebagai steel reinforced concrete (SRC), dan penampang baja yang diisi dengan beton
(steel section in-filled with concrete). Contoh dari jenis kolom beton bertulang dan
kolom komposit dapat dilihat pada Gambar 1.1, 1.2, dan 1.3.
Gambar 1.1 : Kolom RC (Reinforced Concrete)
Gambar 1.3 : Kolom CFT (Concrete Filled Steel Tube)
Di antara ketiga jenis bahan komposit yang dikenal, kolom baja yang
diselimuti oleh beton memiliki daktilitas yang lebih baik dibandingkan dengan kedua
jenis kolom komposit lainnya, sehingga sangat cocok untuk digunakan pada struktur
bangunan tahan gempa (seismic-resistant structure). Kolom komposit baja yang
diselimuti oleh beton terdiri dari penampang baja yang diselimuti oleh beton dan
tulangan (tulangan memanjang dan sengkang). Dengan menggabungkan fungsi dari
penampang baja dan beton bertulangan, kolom komposit ini memiliki kekuatan dan
kekakuan yang lebih besar. Beton yang menyelimuti penampang baja juga dapat
berfungsi untuk perlindungan terhadap api. Oleh karena itu, penggunaan kolom
komposit jenis ini meningkat dengan pesat.
Meningkatnya penggunaan kolom komposit pada struktur bangunan memicu
dilakukannya penelitian-penelitian terhadap struktur komposit tersebut baik secara
eksperimen ataupun secara analitis. Penelitian-penelitian dilakukan untuk mengetahui
dan mempelajari perilaku dari masing-masing jenis kolom komposit.
Susantha et al (2001) melakukan penelitian mengenai hubungan antara
tegangan dan regangan dari beton yang terkekang oleh beberapa macam bentuk
penampang hollow baja. Beberapa penelitian mengenai pengaruh kekangan terhadap
Penelitian tersebut menghasilkan kesimpulan bahwa penggunaan penampang
baja yang diisi dengan beton dapat menyediakan kekangan pada beton. Hal tersebut
dapat meningkatkan kekuatan dan daktilitas dari suatu kolom. Sama halnya dengan
kolom CFT, di dalam kolom SRC beton juga mengalami kekangan (confinement) dari
profil baja yang ada (structural steel), sengkang (hoop) dan tulangan memanjang
(longitudinal bars) seperti yang dapat terlihat pada Gambar 1.4.
Gambar 1.4 : Kolom komposit SRC (Steel Reinforced Concrete)
Banyak percobaan yang telah dilakukan untuk mempelajari kekuatan ultimit
dari kolom SRC (Chen et al 2006). Percobaan-percobaan yang dilakukan pada kolom
komposit ini dilakukan dengan menggunakan penampang baja berbentuk H (
H-shaped structural steel section), penampang baja berbentuk T (T-shaped structural
steel section), penampang baja I (I-shaped structural steel section), penampang baja
berbentuk bersilangan (cross-shaped structural steel section) maupun bentuk-bentuk
yang lainnya. Dalam jurnal „Analytical Model for Predicting Axial Capacity and
Behavior of Concrete Encased Steel Composite Stub Columns’ oleh Chen et al, 2006,
direkomendasikan sebuah model analitis untuk memperkirakan kekuatan dari kolom
SRC. Selain itu, dalam model tersebut juga direkomendasikan nilai faktor kekangan
Menurut Mander et al (1988), efek kekangan yang terjadi pada beton yang
digunakan pada sebuah kolom SRC tidak semuanya memiliki efek yang sama. Pada
beton yang berada di dalam kolom SRC, terdapat tiga pembagian daerah confinement
beton yang terjadi yaitu: daerah yang betonnya terkekang dengan kuat (highly
confined concrete), daerah yang betonnya terkekang sebagian (partially confined
concrete) dan daerah yang betonnya tidak terkekang (unconfined concrete). Berikut
adalah ilutrasi dari ketiga daerah confinement beton tersebut :
Gambar 1.5 : Material dalam kolom SRC ( Steel Reinforced Concrete )
Karakteristik material beton yang berada dalam kolom SRC tersebut
berbeda-beda tergantung kepada kekangan yang dialami oleh material beton tersebut. Pada
gambar 1.5 terlihat, material beton terbagi mejadi tiga yaitu beton yang terkekang
dengan kuat (highly confined concrete) yang berada di sekitar penampang baja, beton
yang terkekang sebagian (partially confined concrete) dan beton yang tidak terkekang
(unconfined concrete). Pada kolom CFT, seperti yang telah dijelaskan sebelumnya,
efek kekangan dapat meningkatkan kekuatan dan daktilitas dari kolom tersebut
(Susanta KAS et al 2001). Pada tugas akhir ini akan dilakukan analisis momen
kurvatur untuk mengetahui efek kekangan (confinement) pada beton di dalam kolom
1.2. Perumusan Masalah
Dalam tugas akhir ini, akan dilakukan studi parameter dengan
membandingkan kekuatan dan daktilitas dari penampang kolom. Penampang kolom
yang akan dianalisis terdiri dari penampang kolom beton bertulang, kolom komposit
dan kolom baja. Daktilitas dari penampang akan dihitung nilainya dengan
menggunakan kurva hubungan antara momen dan kurvatur.
1.3. Pembatasan Masalah
Adapun pembatasan masalah yang dilakukan dalam penulisan tugas akhir ini
adalah sebagai berikut :
a. Penampang tidak mengalami perubahan bentuk pada saat gaya bekerja
sehingga distribusi regangan di sepanjang penampang adalah linier.
b. Model material baja yang digunakan adalah model elastis-plastis sempurna
(Elastic Perfectly Plastic).
c. Model material beton yang digunakan adalah model yang direkomendasikan
oleh Mander (Mander Model) baik untuk beton yang tidak terkekang
(Unconfined Concrete) maupun untuk beton yang terkekang (Confined
Concrete). Nilai faktor kekangan untuk model material beton pada kolom
komposit menggunakan hasil penelitian oleh Chen et al, 2006.
d. Tidak terdapat momen lentur yang bekerja pada kolom. Gaya luar yang
bekerja pada kolom adalah gaya aksial saja. Gaya aksial tersebut senilai 0,1 x
fc‟ x Ag dengan fc‟ adalah mutu beton dan Ag adalah luas bruto kolom.
1.4. Maksud dan Tujuan
Tujuan dari tugas akhir ini yaitu untuk mengetahui bagaimana pengaruh
parameter luas tulangan longitudinal, jarak antar sengkang, luas profil baja, bentuk
profil baja, mutu beton dan mutu baja tulangan longitudinal serta tulangan sengkang
terhadap kekuatan dan daktilitas dari penampang kolom beton bertulang, kolom
dengan penampang baja yang diselimuti oleh beton (kolom komposit), dan kolom
baja melalui hubungan dari momen dan kurvatur yang akan dianalisa dengan bantuan
program „XTRACT‟. Hal ini dilakukan dengan maksud agar hasil dari analisis yang
dilakukan dalam tugas akhir ini dapat digunakan untuk mendesain kolom dengan nilai
daktilitas yang baik.
1.5. Sistematika Penulisan
Sistematika penulisan ini bertujuan untuk memberikan gambaran secara garis
besar isi setiap bab yang dibahas pada tugas akhir ini adalah sebagai berikut :
BAB I. PENDAHULUAN
Bab ini berisi latar belakang masalah, tujuan penelitian, pembatasan masalah,
sistematika penulisan dari tugas akhir ini.
BAB II. TINJAUAN PUSTAKA
Bab ini berisi uraian tentang pembahasan umum jenis kolom, dasar teori
pengekangan, model tegangan-regangan material dalam kolom, dan ketentuan SK
SNI 03-2847-2002 yang digunakan sebagai rujukan.
BAB III. ANALISIS DAN PEMODELAN
Bab ini berisi uraian tentang apa yang dimaksud dengan analisis momen
kurvatur, bagaimana mencari nilai faktor pengekangan pada kolom beton bertulang
BAB IV. HASIL DAN PEMBAHASAN
Bab ini berisi data-data penampang untuk dianalisis, hasil analisis momen
kurvatur yang dilakukan dengan bantuan software „XTRACT‟ dan pembahasan
mengenai hasil yang didapatkan
BAB V. KESIMPULAN DAN SARAN
Pada bab ini akan dirangkum kesimpulan dari tugas akhir ini dan saran-saran
yang diharapkan dapat dijadikan perbaikan pada penelitian ataupun pengerjaan karya
BAB II
TINJAUAN PUSTAKA
2.1. Kolom
Kolom beton murni dapat mendukung beban sangat kecil, tetapi kapasitas
daya dukung bebannya akan meningkat cukup besar jika ditambahkan tulangan
longitudinal. Peningkatan kekuatan yang lebih besar dapat diperoleh dengan
memberikan kekangan lateral pada tulangan longitudinal ini. Akibat adanya beban
tekan, kolom cenderung tidak hanya memendek dalam arah memanjang tetapi juga
mengembang dalam arah lateral karena adanya pengaruh efek Poisson. Kapasitas
kolom seperti ini dapat meningkat dengan memberikan kekangan lateral dalam bentuk
sengkang persegi dengan jarak yang berdekatan atau spiral yang membungkus di
sekeliling tulangan longitudinal.
Kolom beton bertulang dikatakan kolom bersengkang persegi atau spiral
tergantung dari metode atau cara yang digunakan untuk mengikat atau menguatkan
tulangan secara lateral pada tempatnya. Jika kolom mempunyai serangkaian sengkang
persegi yang tertutup seperti pada Gambar 2.1, kolom dinamakan kolom sengkang
persegi. Sengkang ini sangat efektif dalam meningkatkan kekuatan kolom. Sengkang
mencegah tulangan longitudinal bergerak selama konstruksi dan sengkang menahan
kecenderungan tulangan longitudinal untuk menekuk ke arah luar akibat beban, yang
dapat menyebabkan selimut beton bagian luar pecah. Kolom sengkang persegi
biasanya berbentuk bujur sangkar atau persegi, tetapi dapat juga berupa oktagonal,
bulat, bentuk L, dan lain sebagainya. Bentuk bujur sangkar dan persegi lebih sering
Gambar 2.1 : Kolom sengkang persegi
Kemudian, kolom beton bertulang dinamakan kolom spiral apabila spiral
menerus yang terbuat dari tulangan atau kawat tebal membungkus sekeliling tulangan
longitudinal seperti pada Gambar 2.2. Spiral dengan jarak yang berdekatan dapat
mengekang lebih baik tulangan longitudinal pada posisinya, dan menyelimuti beton
bagian dalam serta meningkatkan kekuatan aksial dengan sangat besar. Saat beton
pada bagian dalam spiral cenderung menyebar keluar secara lateral akibat beban
tekan, spiral akan menahannya dan kolom tidak akan runtuh sampai spiral mengalami
leleh atau putus. Kolom spiral biasanya berbentuk lingkaran, tetapi juga dapat dibuat
menjadi bentuk persegi, oktagonal atau lainnya. Spiral sangat efektif dalam
digunakan untuk kolom dengan beban yang sangat besar dan untuk kolom di daerah
rawan gempa karena ketahannya terhadap gempa.
Gambar 2.2 : Kolom Spiral
Kolom komposit, seperti yang diilustrasikan pada Gambar 2.3, adalah kolom
beton yang diberi tulangan longitudinal dan profil baja. Kolom ini dapat digunakan
dengan atau tanpa tulangan longitudinal. Kolom ini juga dapat berbentuk persegi
ataupun lingkaran. Pada kolom yang berbentuk lingkaran, umumnya terdapat struktur
pipa beton di dalamnya. Kolom dengan bentuk lingkaran yang di dalamnya terdapat
Tube Columns).Kolom komposit yang berbentuk persegi dikenal sebagai kolom baja
yang diselimuti beton (concrete encased steel columns atau steel reinforced concrete).
Gambar 2.3 : Kolom Komposit
Selain kolom beton bertulang dan kolom komposit yang telah dijelaskan
sebelumnya, kolom yang hanya menggunkan profil baja juga sering digunakan pada
jenis-jenis bangunan tertentu. Tentunya, setiap jenis kolom mempunyai kelebihan dan
kekurangan masing-masing dalam penggunaan dan pelaksanaannya pada suatu
bangunan.
Dalam mendesain suatu bangunan, konsep strong columns weak beams
hendaknya diterapkan secara benar. Konsep ini mensyaratkan bahwa setelah struktur
mengalami gempa rencana sendi plastis boleh terjadi pada balok tetapi tidak pada
kolom. Tujuan dari konsep ini adalah agar struktur masih tetap dapat berdiri dan
orang yang berada di dalamnya memiliki waktu yang cukup untuk menyelamatkan
diri. Namun dalam pelaksanaannya, struktur yang mengalami gempa rencana sering
kali mengalami sendi plastis pada daerah yang memikul momen maksimum pada
kolom. Peristiwa ini dapat mengakibatkan daerah dekat perletakan mengalami
penurunan kekuatan dan tegangan yang tiba-tiba akibat lepasnya selimut beton
Gambar 2.4 : Kelakuan Kolom dalam Struktur
Penurunan kekuatan dan tegangan yang tiba-tiba pada kolom dalam suatu
struktur perlu dicegah ataupun diminimalisir. Struktur yang didesain diharapkan
mengalami kelakuan daktail (ductile) dan bukan mengalami kelakuan getas (brittle).
Oleh karena itu, pengekangan lateral terhadap kolom-kolom dalam suatu struktur
harus dilakukan. Hal ini dapat meningkatkan kekuatan beton pada daerah inti (core).
Pengekangan (confinement) ini memberikan peningkatan kekuatan yang cukup
signifikan pada daerah beton inti (core). Pengekangan ini juga akan meningkatkan
daktilitas dari kolom tersebut. Daktilitas dapat diartikan sebagai kemampuan suatu
struktur atau penampang untuk mengalami deformasi tanpa mengalami penurunan
kekuatan yang signifikan (Park & Ruitong, 1988).
Pengekangan terhadap material beton pada kolom umumnya dapat dilakukan
dengan penggunaan tulangan transversal (sengkang) baik yang berbentuk segi empat
maupun yang berbentuk spiral. Selain itu, pengekangan juga dapat dilakukan dengan
Gambar 2.5 : Efektifitas Pengekangan (a) sengkang persegi; (b) spiral
2.2. Dasar Teori Pengekangan
Material beton dalam kolom beton bertulang (reinforced concrete column)
maupun kolom baja yang diselimuti beton (steel reinforced concrete column) akan
meningkat kekuatannya apabila dilakukan pengekangan terhadap kolom tersebut.
Pengekangan dilakukan dengan menggunakan tulangan transversal baik yang
berbentuk segi empat maupun yang berbentuk spiral. Pada saat penampang beton
bertulang diberi tegangan tekan yang relatif kecil, efek pengekangan (confinement)
tidak mempengaruhi kelakuan beton bertulang. Hal ini dikarenakan tegangan tersebut
masih dapat dipikul oleh beton dan tulangan longitudinal. Namun, ketika penampang
beton bertulang menerima tegangan yang melebihi tegangan ultimate, efek
pengekangan diperlukan agar struktur tidak mengalami keruntuhan secara tiba-tiba.
Efek pengekangan pada kolom diperlukan agar kolom akan lebih daktail pada
saat menerima beban ultimate. Dengan adanya efek pengekangan yang terjadi,
kekuatan dan daktilitas dari suatu penampang atau struktur akan meningkat. Hal ini
disebabkan adanya peningkatan tegangan dan kekuatan pada material beton yang
regangan (stress-strain curve) yang terjadi pada beton terkekang diperlukan dalam
menganalisa kekuatan dan daktilitas dari penampang atau struktur tersebut.
Beberapa peneliti telah merekomendasikan model kurva tegangan-regangan
untuk material beton yang terkekang dalam penampang beton bertulang (reinforced
concrete), antara lain :
a. Model Kent dan Park (1971)
b. Model Mander, Priestley, dan Park (1988)
c. Model Cusson dan Paultre (1995)
d. Model Diniz dan Frangopol (1997)
e. Model Kappos dan Konstantinidis (1999)
f. dan lain-lain
Di antara beberapa model di atas, model yang akan digunakan untuk mencari
persamaan kurva tegangan-regangan untuk material beton dalam kolom beton
bertulang dan kolom baja yang diselimuti beton dalam pengerjaan tugas akhir ini
adalah model Mander, Priestley, dan Park (1988).
Efek pengekangan yang terjadi di dalam suatu penampang kolom beton
bertulang membagi material beton menjadi dua jenis yaitu material beton untuk
selimut beton yang tidak mengalami kekangan (unconfined concrete) dan material
beton inti yang mengalami kekangan (confined concrete). Efek pengekangan ini
didapatkan dari adanya penggunaan tulangan transversal di sepanjang kolom. Berikut
Gambar 2.6 : Material Beton pada Kolom Beton Bertulang
Kemudian, efek pengekangan pada kolom baja yang diselimuti beton
membagi material beton menjadi tiga jenis yaitu daerah beton yang tidak terkekang
(unconfined concrete), daerah beton yang terkekang secara sebagian (partially
confined concrete) dan daerah beton yang terkekang secara penuh (highly confined
concrete).
Gambar 2.7 : Material Beton pada Kolom Baja yang Diselimuti Beton
Untuk material baja atau tulangan yang digunakan dalam pengerjaan tugas
akhir ini adalah material baja yang memiliki kurva tegangan-regangan dengan model
2.3. Model Tegangan-Regangan Material
Kolom beton bertulang (RC Column) dan kolom baja yang diselimuti beton
(SRC Column) memiliki 2 jenis material yaitu beton dan baja. Masing-masing
material memiliki sifat-sifat tersendiri sehingga perlu didefinisikan secara tersendiri
dengan menggunakan pendekatan tertentu. Pendekatan yang digunakan dalam tugas
akhir ini untuk material beton pada kolom beton bertulang adalah model Mander.
Kemudian, untuk material baja yang digunakan adalah model Elastis Plastis
Sempurna (Elastic Perfectly Plastic)
2.3.1. Hubungan Tegangan-Regangan Beton
Model hubungan tegangan-regangan beton yang digunakan adalah model yang
direkomendasikan oleh Mander et al (1988) seperti ilustrasi pada Gambar 2.8 berikut :
Kurva tegangan dan regangan dibentuk dengan persamaan berikut :
=
′−1+ (2-1)
dengan :
= �
� ; = �
� − � ; � =
′ �
dimana :
= tegangan beton (MPa)
′ = kekuatan tekan beton maksimum (MPa)
� = regangan beton
� = regangan beton pada tegangan maksimum beton
� = Modulus Elastisitas beton = 5000 ′ ...MPa
� = Modulus Secant dari beton terkekang (MPa)
Regangan beton pada tegangan maksimum beton diberikan dengan persamaan :
� =� 0 1 + 5 � −1 (2-2)
dengan nilai � 0 = 0.002
Kemudian, nilai dari ′ diberikan oleh persamaan berikut :
′ = ′ −1.254 + 2.254 1 +7.94 ′ ′ −2 ′′ (2.3)
atau ′ =�. ′ (2-4)
Gambar 2.9 : Kurva nilai K
dengan :
′= ′= (2-5)
untuk pengekang berbentuk persegi empat dicari dengan persamaan :
=
1−
2 6
=1 1−
′
2 1−
′
2
1−� (2-6)
=� . = � . (2-7)
dengan :
�
=
�dan
�
=
� (2-8)dimana :
s‟ adalah jarak bersih antar sengkang
� adalah rasio antara luas tulangan longitudinal (� ) dengan luas beton inti (� )
adalah lebar beton inti (jarak sengkang dari pusat ke pusat)
adalah jarak antar tulangan longitudinal
� adalah luas tulangan sengkang
2.3.2. Hubungan Tegangan-Regangan Baja
Terdapat dua model tegangan-regangan baja yang sering digunakan antara
lain: model Elastis Plastis Sempurna (Elastic Perfectly Plastic) dan model Baja
dengan Strain Hardening. Model Elastis Plastis Sempurna juga dikenal sebagai model
Elasto-Plastis. Berikut adalah ilustrasi dari kurva tegangan-regangan dari model
tegangan-regangan yang dijelaskan sebelumnya :
Gambar 2.10 : Model Tegangan-Regangan Elasto-Plastis
Model Elasto-Plastis (Gambar 2.10) adalah model yang menyederhanakan
kurva plastis menjadi garis linear yang sama besarnya dengan tegangan leleh.
Sedangkan, model Baja dengan Strain Hardening (Gambar 2.11) adalah model baja
yang terdiri dari 3 bagian yaitu : daerah elastis, daerah leleh (yield) dan daerah
Gambar 2.11 : Model Tegangan-Regangan Baja dengan Strain Hardening
Dalam pengerjaan tugas akhir ini, model yang digunakan adalah model
Elasto-Plastis. Model tegangan-regangan baja ini akan digunakan untuk tulangan
longitudinal, tulangan transversal dan profil baja.
2.4. Ketentuan SK SNI 03-2847-2002
Beberapa ketentuan SK SNI Tahun 2002 yang menjadi rujukan antara lain
terdapat dalam pasal 12 mengenai perencanaan komponen struktur terhadap beban
lentur atau aksial atau kombinasi dari beban lentur dan aksial. Dalam merencanakan
komponen struktur terhadap beban lentur atau aksial atau kombinasi dari beban lentur
dan aksial, digunakan asumsi sebagai berikut :
1. Perencanaan kekuatan komponen struktur untuk beban lentur dan aksial
didasarkan pada asumsi yang diberikan dalam 12.2 (2) hingga 12.2 (7) dan pada
pemenuhan kondisi keseimbangan gaya dan kompabilitas regangan yang berlaku.
2. Regangan pada tulangan dan beton harus diasumsikan berbanding lurus dengan
rasio tinggi total terhadap bentang bersih yang lebih besar dari 2/5 untuk bentang
menerus dan lebih besar dari 4/5 untuk bentang sederhana, harus digunakan
distribusi regangan non-linier. Lihat 12.7.
3. Regangan maksimum yang dapat dimanfaatkan pada serat tekan beton terluar
harus diambil sama dengan 0,003.
4. Tegangan pada tulangan yang nilainya lebih kecil daripada kuat leleh harus
diambil sebesar � dikalikan regangan baja. Untuk regangan yang nilainya lebih
besar dari regangan leleh yang berhubungan dengan , tegangan pada tulangan
harus diambil sama dengan .
5. Dalam perhitungan aksial dan lentur beton bertulangan, kuat tarik beton harus
diabaikan kecuali bila ketentuan 20.4 dipenuhi.
6. Hubungan antara distribusi tegangan tekan beton dan regangan tekan beton boleh
diasumsikan berbentuk persegi, trapesium, parabola, atau bentuk lainnya yang
menghasilkan perkiraan kekuatan yang cukup baik bila dibandingkan dengan hasil
pengujian.
7. Ketentuan 12.2 (6) dapat dipenuhi oleh suatu distribusi tegangan beton persegi
ekuivalen yang didefinisikan sebagai berikut :
a. Tegangan beton sebesar 0,85 ′ diasumsikan terdistribusi secara merata pada
daerah tekan ekuivalen yang dibatasi oleh tepi penampang dan suatu garis
lurus yang sejajar dengan sumbu netral sejarak = �1 dari serat dengan
regangan tekan maksimum.
b. Jarak c dari serata dengan regangan maksimum ke sumbu netral harus diukur
dalam arah tegak lurus terhadap sumbu tersebut.
c. Faktor �1 harus diambil sebesar 0,85 untuk beton dengan nilai kuat tekan ′
tekan di atas 30 � , �1 harus direduksi sebesar 0,05 untuk setiap kelebihan
7 � di atas 30 � , tetapi �1 tidak boleh diambil kurang dari 0,65.
Beberapa ketentuan SK SNI Tahun 2002 lain yang menjadi rujukan antara lain :
1. Batas luar penampang efektif dari suatu komponen struktur tekan dengan tulangan
spiral atau sengkang pengikat yang dibuat monolir dengan suatu dinding atau pilar
beton tidak boleh diambil lebih dari 40 mm di luar batas tulangan spiral atau
sengkang pengikat. (pasal 12.8 (2))
2. Luas tulangan longitudinal komponen struktur tekan non-komposit tidak boleh
kurang dari 0,01 ataupun lebih besar dari 0,08 kali luas bruto penampang � .
(pasal 12.9 (1))
3. Jumlah minimum batang tulangan longitudinal pada komponen struktur tekan
adalah 4 untuk batang tulangan di dalam sengkang pengikat segi empat atau
lingkaran. (pasal 12.9 (2))
4. Spasi vertikal antara sengkang pengikat lateral tidak boleh melebihi 16 diameter
batang tulangan longitudinal, 48 diameter batang sengkang pengikat, atau ½ kali
BAB III
ANALISIS DAN PEMODELAN
3.1. Analisis Momen Kurvatur
Park dan Ruitong (1975) mendefinisikan daktilitas sebagai kemampuan
elemen untuk berdeformasi tanpa mengalami reduksi kapasitas lentur yang berarti.
Dalam konteks ketahanan gempa, daktilitas diartikan Park sebagai kemampuan untuk
berdeformasi secara siklik dalam kisaran amplitudo yang besar tanpa mengalami
pengurangan kekuatan yang berarti. Daktilitas elemen beton seringkali tidak menjadi
perhatian dalam perencanaan beton bertulang konvensional, yang hanya
mempertimbangkan kekuatan saat mencapai beban ultimit dan menerapkan kekakuan
yang cukup untuk membatasi lendutan pada saat beban layan. Hal ini tidak lagi cukup
bila daktilitas lentur menjadi pertimbangan, antara lain dengan memperhatikan
perilaku elemen beton bertulang pasca ultimit serta mengaplikasikan analisis
momen-kurvatur non linier.
Momen dan kurvatur merupakan dua parameter yang dapat digunakan untuk
menentukan nilai daktilitas dari suatu elemen struktur. Nilai daktilitas suatu elemen
atau yang dinyatakan dengan daktilitas kurvatur (curvature ductility), ��, dapat
diartikan sebagai perbandingan antara kurvatur ultimate � dengan kurvatur leleh
� atau dirumuskan sebagai berikut :
�� =�� (3-1)
Analisis momen kurvatur adalah suatu metode yang dapat digunakan untuk
menggunakan kurva hubungan material yang nonliniear. Analisis ini berguna untuk
mengetahui kapasitas dan daktilitas kurvatur suatu penampang kolom. Menurut Yeh
dan Sheikh (1992), langkah-langkah dalam analisis ini antara lain :
a. Tentukan nilai regangan tekan awal pada serat terluar beton.
b. Asumsikan suatu nilai garis netral.
c. Hitunglah regangan di tengah masing-masing elemen dan pada tulangan
longitudinal.
d. Gunakan model tegangan-regangan beton untuk beton yang tidak terkekang
dan yang terkekang untuk menentukan nilai tegangan.
e. Hitunglah gaya aksial dan bandingkan dengan gaya aksial yang diberikan.
(Jika perbedaan kurang dari atau sama dengan 0,5%, hasil dapat diterima dan
nilai momen dan kurvatur dapat dihitung. Jika tidak memenuhi, sesuaikan
kembali nilai garis netral dan kembali ke langkah ketiga.
Dalam tugas akhir ini, langkah-langkah di atas dilakukan dengan bantuan
software „XTRACT‟. Asumsi yang digunakan dalam pemodelan dan analisis
penampang-penampang adalah sebagai berikut :
- Sebagai perbandingan, tiga tipe penampang yang terdiri dari tipe A, tipe B dan
tipe C dipilih untuk dilakukan analisis momen kurvatur. Tipe A merupakan
penampang kolom beton bertulang. Tipe B merupakan penampang kolom baja
yang diselimuti beton. Tipe C merupakan penampang kolom baja.
- Analisis momen kurvatur dilakukan dengan menggunakan hubungan tegangan
dan regangan Mander Model untuk material beton pada penampang kolom
beton bertulang. Untuk kolom baja yang diselimuti beton, nilai faktor
„Analytical Model for Predicting Axial Capacity and Behavior of Concrete
Encased Steel Composite Stub Columns‟ (oleh Chen, 2006).
- Model material baja yang digunakan adalah model elastis-plastis sempurna
(Elastic Perferctly Plastic).
- Gaya aksial yang bekerja pada kolom adalah sebesar 0,1 ×� × ′ .
- Gaya tarik beton diabaikan dalam analisis.
- Profil baja yang digunakan merupakan built-up section untuk mempermudah
pemilihan luas profil baja untuk studi parameter.
3.2. Kolom Beton Bertulang dengan Pengekangan (Confinement)
Beton bertulang adalah suatu kombinasi antara material beton dan baja dimana
tulangan baja berfungsi menyediakan kuat tarik yang tidak dimiliki oleh beton.
Tulangan baja memiliki kuat tarik hampir 100 kali lebih besar daripada kuat tarik
beton biasa. Walaupun material beton memiliki kekuatan tarik yang rendah, kekuatan
tekan yang dimiliki oleh beton lebih tinggi daripada yang bisa disediakan oleh
tulangan baja. Kedua bahan tersebut saling berikatan dengan sangat baik sehingga
tidak terjadi gelincir di antara keduanya. Oleh karena itu, kedua bahan ini akan
bekerja sebagai satu kesatuan dalam menahan gaya-gaya yang terjadi. Ikatan yang
sangat kuat ini tercapai karena adhesi kimia yang baik antara kedua bahan, kekerasan
alami yang dimiliki oleh tulangan, dan ulir yang berjarak dekat yang ada pada
permukaan tulangan.
Selain itu, tulangan baja yang rawan terhadap karat dibungkus atau diselimuti
oleh beton yang memberikan perlindungan yang bagus terhadap karat. Penggunaan
beton bertulang juga memberikan tingkat ketahanan api yang memuaskan. Meskipun
membungkusnya menyediakan tingkat ketahanan yang cukup baik. Berdasarkan
hal-hal tersebut, beton bertulang sering kali digunakan dalam suatu bangunan.
Penggunaannya dalam suatu bangunan meliputi balok, pondasi, pelat lantai dan juga
kolom.
Pada suatu kolom beton bertulang, material beton di dalamnya akan
mengalami efek pengekangan (confinement) yang disebabkan oleh adanya tulangan
transversal ataupun tulangan longitudinal. Hal ini menyebabkan material beton yang
ada pada kolom beton bertulang tersebut terbagi menjadi dua jenis material yaitu :
material beton tidak terkekang (unconfined concrete) dan material beton terkekang
(confined concrete).
Penjelasan dari kedua material beton tersebut dapat dilihat dari Gambar 3.1.
Material beton tidak terkekang (unconfined concrete) ini terdapat pada bagian beton
yang tidak mengalami kekangan dari tulangan transversal maupun tulangan
longitudinal yang ada. Bagian yang dimaksud tersebut adalah daerah yang terbentuk
oleh aksi busur (arching action). Dalam arah horizontal, daerah parabola ini adalah
daerah yang mengalami efek pengekangan yang ditimbulkan oleh tulangan
longitudinal yang berdekatan. Lengkungan atau parabola yang terbentuk diasumsikan
terbentuk dalam persamaan parabola berderajat dua dengan sudut kemiringan awal
45 ̊.
Dalam arah vertikal, hal yang sama juga terjadi karena adanya efek
pengekangan antar lapisan tulangan transversal pada kolom. Hal ini akan
menyebabkan terbentuknya daerah beton yang tidak terkekang dengan lengkungan
atau parabola yang juga diasumsikan terbentuk dalam persamaan parabola dengan
kemiringan awal 45 ̊. Berikut adalah ilustrasi dari aksi busur (arching action) yang
Gambar 3.1 : Model Aksi Busur (Arching Action) dengan sudut 45 ̊
3.2.1. Koefisien Kekangan Efektif
Pada gambar 3.1, aksi busur (arching action) diasumsikan terjadi dalam
bentuk parabola berderajat dua dengan sudut kemiringan awal 45 ̊. Dalam arah
vertikal, aksi busur terjadi antar lapisan tulangan transversal. Dalam arah horisontal,
aksi busur terjadi di antara dua tulangan longitudinal yang berdekatan. Pada level
sengkang, daerah beton yang terkekang adalah luas inti kolom dikurangi dengan luas
daerah aksi busur berbentuk parabola. Untuk satu parabola, luasnya adalah ′ 2
6
dimana ′ adalah jarak bersih di antara dua tulangan longitudinal yang berdekatan.
Sehingga, luas total daerah beton yang tidak terkekang jika terdapat tulangan
longitudinal sebanyak n adalah :
�
=
′ 26
Dengan memperhitungkan pengaruh dari luas daerah beton yang tidak
terkekang dalam arah vertikal, luas daerah beton yang terkekang antar lapisan
tulangan transversal adalah :
� = − ′2
arah x dan y, dengan ≥ . Kemudian, nilai dari koefisien kekangan efektif adalah
perbandingan antara luas daerah efektif terkekang pada inti � dengan luas
� = rasio atau perbandingan luas tulangan longitudinal dengan luas penampang inti
kolom dan � = luas daerah beton terkekang serta � = luas penampang inti.
3.2.2. Tegangan Kekangan Lateral Efektif
Pada penampang beton bertulang yang berbentuk persegi, tegangan kekangan
lateral efektif mungkin saja memiliki nilai yang berbeda dalam arah sumbu x dan y.
Hal ini dikarenakan adanya perbedaan jumlah tulangan transversal yang mengekang
�
=
� dan�
=
�(3-6)
dimana : � dan � = luas total dari tulangan transversal dalam arah x dan y.
Tegangan kekangan lateral pada beton dalam arah x dan y dinyatakan sebagai :
= � dan =� (3-7)
Kemudian, tegangan kekangan lateral efektif dalam arah x dan y adalah :
′ = � dan ′ = � (3-8)
3.2.3. Nilai Faktor Pengekangan (Confinement Factor)
Nilai faktor pengekangan untuk material beton di dalam kolom beton
bertulang dapat ditentukan dengan kurva pada Gambar 2.9. Nilai ini ditentukan
dengan terlebih dahulu mencari perbandingan antara tegangan kekangan lateral efektif
dalam arah x dan y dengan nilai kekuatan tekan beton ( ′ )
3.3. Kolom Baja yang Diselimuti Beton dengan Pengekangan (Confinement)
Desain kolom komposit ini ditujukan untuk menggabungkan struktur baja dan
beton bertulang secara efektif. Kolom baja yang diselimuti beton (Steel Reinforced
Concrete Column) memberikan beberapa keuntungan dalam penggunaannya dalam
suatu bangunan. Kolom komposit ini memberikan kekuatan dan kekakuan yang
dimiliki oleh kolom beton bertulang dan juga daktilitas dari profil baja. Selain itu,
beton yang menyelimuti profil baja yang berada di dalamnya juga memberikan
perlindungan terhadap api, karat, dan buckling. Kolom ini memanfaatkan kekuatan
membantu penghematan biaya akibat penggunaan plat baja yang sangat tebal dan
memperkecil kemungkinan cacat dalam pengelasan (welding).
Di samping itu, profil baja yang berada di dalam kolom komposit ini memiliki
fungsi untuk mengekang material beton. Kemudian, penulangan lateral untuk kolom
SRC ini umumnya menggunakan sengkang persegi. Hal ini dikarenakan spiral tidak
dapat memberikan pengekangan yang efektif pada material beton yang berada di
sudut kolom persegi. Akibat adanya pengekangan oleh profil baja, tulangan
longitudinal dan tulangan transversal, material beton di dalam kolom SRC terbagi
menjadi tiga jenis yaitu :
a. Daerah beton yang Tidak Terkekang (Unconfined Concrete)
b. Daerah beton yang Terkekang Sebagian (Partially Confined Concrete)
c. Daerah beton yang Terkekang Penuh (Highly Confined Concrete)
Untuk membentuk kurva hubungan tegangan-regangan material-material
beton ini, langkah-langkah yang dilakukan mirip dengan yang dilakukan sewaktu
membentuk kurva hubungan tegangan-regangan material beton pada kolom beton
bertulang.
Yang membedakannya adalah penggunaan nilai faktor pengekangan untuk
kurva tegangan-regangan material beton terkekang sebagian dan terkekang penuh.
Gambar 3.2 : Nilai Faktor Pengekangan untuk Material Beton Terkekang Sebagian
Gambar 3.3 : Nilai Faktor Pengekangan untuk Material Beton Terkekang Penuh
Nilai faktor pengekangan yang digunakan untuk kedua material beton di
dilakukan oleh Chen et al (2006) dalam jurnal „Analytical Model for Predicting Axial
Capacity and Behavior of Encased Steel Composite Stub Columns’. Efek
pengekangan terhadap material beton yang terkekang sebagian berhubungan dengan
jarak sengkang suatu kolom. Pada Gambar 3.2, ditunjukkan hubungan antara variasi
jarak sengkang dengan faktor pengekangan Kp untuk material beton yang terkekang
sebagian.
Kemudian, nilai Kh untuk material beton yang terkekang secara penuh
berhubungan dengan bentuk profil baja yang mengekang beton inti. Pada Gambar 3.3,
ditunjukkan hubungan antara variasi bentuk profil baja dengan nilai Kh untuk material
beton yang terkekang penuh. Efek pengekangan terhadap beton inti diberikan oleh
profil baja yang mengekangnya.
3.4. Pemodelan Penampang
Penampang-penampang kolom dipilih dimensi dan data-data penampangnya
dengan mengubah parameter tertentu. Beberapa parameter akan dibandingkan untuk
mengetahui pengaruhnya terhadap kekuatan dan daktilitas beberapa penampang
kolom. Parameter-parameter yang akan dibandingkan antara lain :
1. Luas tulangan longitudinal ( Asl )
2. Jarak antar sengkang ( s )
3. Luas profil baja ( Ass)
4. Bentuk profil baja
5. Mutu beton ( fc’ )
6. Mutu baja ( fy) tulangan longitudinal dan tulangan sengkang
Secara garis besar, beberapa bentuk penampang yang akan dianalisis
a. Tipe A
Pada penampang tipe A, penampang yang akan dianalisis adalah
penampang kolom beton bertulangan baja (reinforced concrete). Penampang
ini dibagi menjadi tiga jenis yaitu : tipe A1 (pada Gambar 3.4), tipe A2 (pada
Gambar 3.5) dan tipe A3 (pada Gambar 3.6). Berikut adalah ilustrasi dari
penampang-penampang Tipe A :
Gambar 3.4 : Tipe A1 Gambar 3.5 : Tipe A2
Gambar 3.6 : Tipe A3
b. Tipe B
Pada penampang tipe B, penampang yang akan dianalisis adalah
penampang baja yang diselimuti oleh beton atau steel reinforced concrete.
Penampang Tipe B dibagi menjadi dua jenis yaitu: Tipe B1 (pada Gambar 3.7) dan Tipe B2 (pada Gambar 3.8). Berikut adalah ilustrasi dari
Gambar 3.7 : Tipe B1 Gambar 3.8 : Tipe B2
c. Tipe C
Pada penampang tipe C, penampang yang akan dianalisis adalah profil
baja H gabungan (built-up H section). Berikut adalah ilustrasi dari penampang
Tipe C :
Gambar 3.9 : Tipe C2 Gambar 3.10 : Tipe C2
Masing-masing tipe terdiri dari beberapa penampang. Tipe A1 terdiri dari 9
buah penampang kolom beton betulang. Kemudian, tipe A2 dan tipe A3 terdiri dari 1
buah. Tipe B1 dan B2 yang merupakan penampang kolom komposit terdiri dari 1
buah penampang. Selanjutnya, tipe C1 dan C2 yang merupakan penampang baja juga
terdiri dari 1 buah penampang. Tabel 3.1 menunjukkan daftar penampang yang akan
Tabel 3.1 : Penampang-penampang Tipe A, Tipe B dan Tipe C
Pada penampang tipe A, parameter yang akan ditinjau pengaruhnya terhadap
kekuatan lentur dan daktilitas adalah :
a. Luas tulangan longitudinal : analisis dilakukan terhadap A1-01 dan A1-02
Tabel 3.2 : Penampang Tipe A untuk meninjau pengaruh luas tulangan longitudinal
b. Jarak sengkang : analisis dilakukan terhadap A1-01, A1-03 dan A1-04
Tabel 3.3 : Penampang Tipe A untuk meninjau pengaruh jarak sengkang
c. Mutu beton : analisis dilakukan terhadap A1-01, A1-05 dan A1-08
Tabel 3.4 : Penampang Tipe A untuk meninjau pengaruh mutu beton
d. Mutu tulangan longitudinal : analisis dilakukan terhadap A1-01, A1-06 dan A1-07
Tabel 3.5 :Penampang Tipe A untuk meninjau pengaruh mutu tulangan longitudinal
Penampang Dimensi
e. Mutu tulangan sengkang : analisis dilakukan terhadap A1-01 dan A1-09
Tabel 3.6 : Penampang Tipe A untuk meninjau pengaruh mutu tulangan sengkang
A1-09 600 x 600 30 12 D22 420 100 280
f. Letak atau konfigurasi tulangan longitudinal : analisis dilakukan terhadap A2-01
dan A3-01
Tabel 3.7 : Penampang Tipe A untuk meninjau pengaruh letak tulangan longitudinal
Penampang Dimensi
Pada penampang tipe B, parameter yang akan ditinjau pengaruhnya terhadap
kekuatan lentur dan daktilitas adalah :
- Luas dan bentuk profil baja : analisis dilakukan terhadap B1-01 dan B2-01
Tabel 3.8 : Penampang tipe B
Penampang Dimensi
Pada penampang tipe C, parameter yang akan ditinjau pengaruhnya terhadap
kekuatan lentur dan daktilitas adalah :
- Luas dan bentuk profil baja : analisis dilakukan terhadap C1-01 dan C2-01
Tabel 3.9 : Penampang Tipe C
Penampang Dimensi profil baja
3.5. Diagram Alir
Langkah pengerjaan tugas akhir ini dapat diilustrasikan dalam diagram alir
(flowchart) sebagai berikut :
Gambar 3.11 : Flowchart Penyusunan Tugas Akhir
Dari diagram alir di atas, terlihat bahwa pengerjaan tugas akhir ini diawali
dengan menentukan dimensi dan data-data penampang (section properties) yang akan Pemilihan dimensi dan data-data penampang
Perhitungan manual untuk mencari persamaan
tegangan-regangan material beton
Perhitungan kurva tegangan-regangan dengan Excel
Pemodelan penampang di XTRACT Input data tegangan-regangan material
Proses Running
Output
Kurva Momen-Kurvatur Data-data hasil analisa lainnya
Hitung Daktilitas dan mencari nilai
kapasitas momen maksimum
dianalisis. Kemudian, dilakukan perhitungan untuk mencari persamaan
tegangan-regangan material beton penampang kolom beton bertulang kolom komposit.
Selanjutnya, data-data kurva tegangan-regangan dihitung menggunakan Microsoft
Excel. Data yang diperoleh diinput pada „XTRACT‟ sebagai model material beton
yang digunakan dalam analisis. Model material baja juga didefinisikan dengan
memilih model baja Elasto Plastis.
Langkah selanjutnya adalah memodelkan penampang yang akan dianalisis
dengan bantuan „XTRACT‟. Setelah itu, proses running dilakukan dan diperoleh data
keluaran (output) berupa kurva momen kurvatur dan data-data hasil analisis lainnya.
Kemudian, dilakukan perhitungan daktilitas dan mencari nilai kapasitas momen
maksimum penampang yang dianalisis. Pembahasan dan kesimpulan dituliskan
BAB IV
ANALISIS MOMEN KURVATUR DENGAN ‘XTRACT’
4.1. Penggunaan ‘XTRACT’
Dalam pengerjaan tugas akhir ini, program „XTRACT‟ digunakan untuk
membantu proses analisis momen kurvatur yang cukup rumit apabila dilakukan
dengan manual. „XTRACT‟ merupakan salah satu program analisis penampang yang
sering digunakan untuk memudahkan proses analisis. Analisis yang dapat dilakukan
antara lain : momen-kurvatur, interaksi gaya aksial-momen dan sebagainya. Analisis
dapat dilakukan dengan model material yang nonlinear.
Langkah-langkah yang dilakukan dalam melakukan analisis momen kurvatur
dengan bantuan program „XTRACT‟ adalah sebagai berikut :
1. Untuk melakukan analisa terhadap suatu penampang dengan menggunakan
software „XTRACT‟, diawali dengan memilih satuan (dalam hal ini adalah
N-mm) dan sumber bentuk penampang yang akan digunakan (dalam hal
ini adalah User Defined). User Defined dipilih jika pengguna perlu untuk
menganalisis bentuk penampang yang tidak terdapat di Templates.
2. Kemudian, pilihlah model material baja yang akan digunakan yaitu
BiLiniear. Model ini merupakan model Elasto-Plastis yang digunakan
untuk pengerjaan tugas akhir ini.
3. Input-lah data-data untuk material baja yang akan digunakan dengan
memasukkan nilai tegangan baja dan regangan pada saat failure.
4. Selanjutnya, data model material beton dimasukkan dengan memilih User
Defined. Ini berarti data model kurva tegangan-regangan yang digunakan
5. Data tegangan dan regangan material beton dapat dimasukkan dari file
yang telah disimpan terlebih dahulu dalam file notepad dengan memilih
Add Stress Strain from File. Masukkan nilai dari regangan ultimit beton.
6. Setelah mendefinisikan model material yang digunakan, bentuklah
penampang yang akan dianalisis. Input dimensi penampang menggunakan
7. Selanjutnya, analisis momen kurvatur dapat dilakukan dengan terlebih
dahulu memilihnya pada Moment Curvature.
8. Kemudian, masukkan nilai gaya aksial yang diasumsikan bekerja pada
9. Proses analisis dilakukan dengan memilih Toolbar „Process‟ dan diikuti
„Run Analysis‟
10.Untuk dapat menampilkan data-data hasil analisis, pilihlah Toolbar
„Project Manager‟.
4.2. Contoh Analisis Momen Kurvatur dengan bantuan ‘XTRACT’
Pada subbab ini, diberikan contoh analisis momen kurvatur dari penampang kolom
beton bertulang dengan bantuan „XTRACT‟. Analisis momen kurvatur dilakukan
terhadap penampang A1-01. Berikut adalah langkah-langkah yang dilakukan untuk
1. Pertama, pilihlah satuan yang akan digunakan (dalam hal ini N-mm) dan juga
pilih sumber bentuk penampang yang akan digunakan (dalam hal ini adalah
User Defined). User Defined dipilih karena bentuk dan dimensi penampang
akan diinput sendiri. Kemudian, pilih Begin XTRACT.
2. Selanjutnya, model material baja yang digunakan pada penampang A1-01
didefinisikan dengan memilih model material BiLiniear seperti berikut :
Kemudian, isikan data-data material baja yang digunakan yaitu tegangan leleh
baja (yield stress) dan regangan runtuh (failure strain). Pada bagian Material
3. Dilanjutkan dengan mendefinisikan model material beton yang terdiri dari
beton terkekang dan tidak terkekang dengan memilih User Defined pada
toolbarMaterials.
Proses input dilakukan dengan memasukkan nilai tegangan dan regangan
material yang telah disimpan dalam bentuk file Notepad. Setelah memasukkan
data tegangan dan regangan material, masukkan nilai regangan ultimit
(ultimate strain) dari material beton terkekang pada bagian Compression.
karena analisis dilakukan hingga penampang mencapai kondisi ultimit
sehingga nilai yield strain diasumsikan mendekati ultimate strain.
Pada bagian Tension, isikan nilai seperti yang terdapat pada Gambar di atas.
Hal ini dilakukan karena nilai regangan yang menentukan proses analisis
dihentikan adalah nilai regangan dalam keadaan Compression.
4. Selanjutnya, model material beton tidak terkekang juga diinput dengan cara
yang sama pada langkah 3 di atas. Nilai regangan ultimit dan leleh diisi
dengan nilai yang mendekati nilai 1 karena runtuhnya material beton tidak
terkekang bukanlah kondisi ultimit dari penampang. Sehingga, proses analisis
5. Kemudian, bentuk dan dimensi penampang dimasukkan dengan memilih
toolbar Show Builder Tools dan pilihlah bentuk penampang bujur sangkar.
Masukkan koordinat X dan Y yang merupakan titik pusat dari penampang.
6. Penampang yang telah dibentuk didiskritkan dengan memilih Unconfined
Concrete untuk selimut beton dengan tebal 40 mm. Untuk material
penampang, dipilih Confined Concrete.
7. Pilih Draw Bars. Pilihlah material BiLinear untuk tulangan longitudinal dan
diamaternya. Input tulangan longitudinal dilakukan dengan memasukkan