• Tidak ada hasil yang ditemukan

BAB IV ANALISA DAN HASIL PERANCANGAN. TPA Rawa Kucing Kota Tangerang dengan menggunakan profil baja.

N/A
N/A
Protected

Academic year: 2021

Membagikan "BAB IV ANALISA DAN HASIL PERANCANGAN. TPA Rawa Kucing Kota Tangerang dengan menggunakan profil baja."

Copied!
51
0
0

Teks penuh

(1)

UNIVERSITAS MERCUBUANA IV - 1 BAB IV

ANALISA DAN HASIL PERANCANGAN

4.1 PENDAHULUAN

Bab IV ini menjelaskan mengenai Perancangan dan Perhitungan Hanggar TPA Rawa Kucing Kota Tangerang dengan menggunakan profil baja.

Untuk mempermudah proses perancangan struktur hanggar tersebut, maka tahapan yang digunakan :

a. Perancangan Gording b. Perancangan Kuda – kuda c. Perancangan Plat Kopel d. Perancangan Kolom e. Perancangan Sambungan f. Perhitungan Jumlah Material

4.2 PERANCANGAN GORDING 4.2.1 DATA PERENCANAAN

Jenis Penutup Atap : Zincalum (Product Blueschop

Lysaght) Type Lysaght Trimdek, BMT 0.48

Berat Atap : 4.86 kg/m2

Aksesoris Atap : 20% x Beban Atap : 0.972 kg/m2

Berat Atap + Aksesoris : 4.86 + 0.972 : 5.832 kg/m2

Beban Hujan : 20 kg/m2

(2)

UNIVERSITAS MERCUBUANA IV - 2

Beban Angin : 25 kg/m2 (asumsi jauh dari laut)

Tegangan Leleh (fy) : 2400 kg/cm2 : 240 N/mm2

Tegangan Dasar : 1600 kg/cm2 : 160 N/mm2

Faktor Keamanan : 1.5

Jarak Kuda-kuda (D port = Lx) : 7.5 m

Jarak tumpuan Lateral (Dport/2 = Ly): 3.75 m

Bentang Kuda-kuda : 40 m

Jarak Antar Gording : 1.06 m (maksimum 3.05 untuk atap

type BMT 0.48)

Kemiringan (α) : 21 °

Sin α : 0.36

Cos α : 0.93

Tangen α : 0.38

4.2.2 PERENCANAAN PROFIL LIPPED CHANNEL : 150 x 50 x 20 x 3.2

B = 50 mm H = 150 mm Ix = 280 cm4 (Momen Inertia) Iy = 28 cm4 ix = 5.71 cm (Radius of gyration = rx) iy = 1.81 cm Zx = 37.4 cm3 Zy = 8.2 cm3

(3)

UNIVERSITAS MERCUBUANA IV - 3

A = 8.61 cm2

W = 6.76 kg/m

Ebaja = 2.1 x 106 kg/cm2 Buku PPI hal. 11 (Mutu Baja BJ 37)

G = E/2.6 Mpa (Modulus Geser)

= 810.000 kg/cm2

= 81.000 Mpa

Cw = 1.398 cm6

J = 2.938 cm4

Sx = 3.77 cm

4.2.3 PRELIMERI PEMBEBANAN GORDING

1. Beban Mati (DL)

Atap Zincalum x Jarak Gording = 4.86 x 1.06 = 1.15 kg/m

Accesories x Jarak Gording = 0.97 x 1.06 = 1.03 kg.m

Berat sendiri gording = 6.76 kg/m +

qDL = 12.94 kg/m

2. Beban Hidup (La) : Buku PPI 1983 hal. 13

Beban pekerja dianggap pada pusat bentang (La) = 100 kg

(4)

UNIVERSITAS MERCUBUANA

Syarat sudut < 65° Koefisien muka angin tekan

= 0.02 α - 0.4 = 0.02 x 21 - 0.4 = Koefisien muka angin hisap ω tekan = koefisien = 0.02 x 25 = 0.53 kg/m ω hisap = koefisien = -0.40 x = -10.60 kg/ 4. Beban Hujan (H) H hujan = w x Luas = 20 x 1.06 = 159.0 kg UNIVERSITAS MERCUBUANA

Gambar 4.1 Bidang Angin sudut = 21°

Koefisien muka angin tekan

0.4 = 0.02 Koefisien muka angin hisap = - 0.40

koefisien x w angin x jarak gording 25 x 1.06

kg/m

koefisien x w angin x jarak gording 25 x 1.06 kg/m = w x Luas = 20 x 1.06 x 7.5 = 159.0 kg IV - 4

(5)

UNIVERSITAS MERCUBUANA IV - 5 4.2.4 MOMEN YANG BEKERJA PADA GORDING

a. Momen Akibat Beban Mati (q)

Gambar 4.2 Gaya Akibat Beban Mati

qx = qDL x cos α = 12.94 x 0.93 = 12.08 kg/m qy = qDL x sin α = 12.94 x 0.36 = 4.64 kg/m Mx = 1 x qx x Ly2 = 1 x 12.08 x 3.752 = 21.24 kgm 8 8 My = 1 x qx x Ly2 = 1 x 4.64 x 3.752 = 8.15 kgm 8 8

b. Momen Akibat Beban Hidup (P = La)

Gambar 4.3 Gaya Akibat Beban Hidup

(6)

UNIVERSITAS MERCUBUANA IV - 6

Mx = 1 x P x cos α x Lx = 1 x 100 x 0.93 x 7.5 = 175.05

4 4

My = 1 x P x sin α x Ly = 1 x 100 x 0.36 x 3.75 = 33.60 kgm

4 4

c. Momen Akibat Beban Angin (q = WL)

Karena beban angin bekerja tegak lurus arah sumbu X, maka yang ditinjau hanya pada Mx. Tanda minus (-) berarti arah angin tekan sangat dominan.

Angin tekan, Mx= 1 x ω tekan x Ly2 = 1 x 0.53 x 3.752 = 0.93 kgm

8 8

Angin hisap, My = 1 x ω hisap x Ly2

= 1 x (- 10.60) x 3.752 = (-18.63) kgm

d. Momen Akibat Kombinasi Pembebanan (Maksimum) - Ditinjau pada arah sumbu y (Mux)

1. 1.4 x DL = 1.4 x 21.24 = 29.73 kgm 2. 1.2 x DL + 0.5 x La = 1.2 x 21.24 + 0.5 x 100 = 25.49 + 50 = 75.49 kgm 3. 1.2 x DL + 1.6 x La = 1.2 x 21.24 + 1.6 x 100 = 25.49 + 160 = 185.49 kgm 4. 1.2 x DL + 1.6 x La + 0.8 x WL= 1.2 x 21.24 + 1.6 x 100 + 0.8 x 0.53 = 25.49 + 160 + 0.42 = 185.91 kgm 5. 1.2 x DL + 1.3 x WL + 0.5 x La= 1.2 x 21.24 + 1.3 x 0.53 + 0.5 x 100

(7)

UNIVERSITAS MERCUBUANA IV - 7 = 25.49 + 1 + 50 = 76.18 kgm 6. 0.9 x DL + 1.3 x WL = 0.9 x 21.24 + 1.3 x 0.53 = 19.11 + 0.69 = 19.80 kgm 7. 0.9 x DL – 1.3 x WL = 0.9 x 21.24 1.3 x 0.53 = 19.11 - 0.69 = 18.43 kgm - Ditinjau pada arah sumbu x (Muy)

1. 1.4 x DL = 1.4 x 8.15 = 11.41 kgm 2. 1.2 x DL + 0.5 x La = 1.2 x 8.15 + 0.5 x 100 = 9.78 + 50 = 59.78 kgm 3. 1.2 x DL + 1.6 x La = 1.2 x 8.15 + 1.6 x 100 = 9.78 + 160 = 169.78 kgm 4. 1.2 x DL + 1.6 x La + 0.8 x WL = 1.2 x 8.15 + 1.6 x 100 + 0.8 x 0 = 9.78 + 160 + 0 = 169.78 kgm 5. 1.2 x DL + 1.3 x WL + 0.5 x La = 1.2 x 8.15 + 1.3 x 0 + 0.5 x 100 = 9.78 + 0 + 50 = 59.78 kgm 6. 0.9 x DL + 1.3 x WL = 0.9 x 8.15 + 1.3 x 0 = 7.34 + 0 = 7.34 kgm 7. 0.9 x DL – 1.3 x WL = 0.9 x 8.15 - 1.3 x 0 = 7.34 - 0 = 7.34 kgm

Dari kombinasi pembebanan diatas, maka didapat hasil momen kombinasi maksimum sebagai berikut :

- Mux = 185.91 kgm = 185.91 x 104 Nmm = 1.86 KNm - Muy = 169.78 kgm = 169.78 x 104 Nmm = 1.70 KNm

(8)

UNIVERSITAS MERCUBUANA IV - 8 4.2.5 PERHITUNGAN PERENCANAAN LRFD PADA PROFIL

GORDING

a. Batas kelangsingan penampang/ Unbraced Length - Cek tekuk lokal pada plat flange

λ = b/ tf = 50/3.2 = 15.63

λp = 170/ √fy = 170 / √240 = 10.97

λr = 370/ √fy - fr = 370 / √240 - 70 = 28.38

λp < λ < λr = 10.97 < 15.63 < 28.38 .... Penampang tidak kompak ! - Cek tekuk lokal pada plat web

λ = h/tw = 150/ 3.2 = 46.88

λp = 1680/ √fy = 1680/ √240 = 108.44

λ < λp = 46.88 < 108.44 ...Penampang kompak! Keterangan : - fy = tegangan leleh = 240 Mpa = 2400 kg/cm2

- Fr = tegangan sisa = 70 Mpa untuk penampang gilas panas = 115 Mpa untuk penampang yg dilas b. Menghitung Momen Residual (Mr)

- Mr = (fy – fr) x Sx

= (2400 – 700) x 3.77 = 1700 x 3.77

= 64.09 Kgm c. Perencanaan Lentur

- Mn tanpa tekuk global pada penampang kompak (Web)

(9)

UNIVERSITAS MERCUBUANA IV - 9

= 37.4 x 2400 = 898 Kgm

- Mn tanpa tekuk global pada penampang tidak kompak (Flange) Mn = Mp – (Mp – Mr) x (( λ - λp) / (λr - λp)) = 898 – (898 – 64.09) x (( 15.63 – 10.97) / (28.38 – 10.97)) = 898 – (834) x (4.65 / 17.40) = 674.83 Kgm φ Mn = 0.9 x Mn = 0.9 x 674.83 = 607.35 Kgm Mu = 185.91 Kgm Mu ≤ φ Mn = 185.91 Kgm ≤ 607.35 Kg.m...OK! d. Menghitung Perencanaan Lateral (Lp dan Lr)

X1 = π / Sx x √(E.G.J.A) / 2 = 3.14 / 3.8 x √(2.1 x 104 x 810000 x 2.938 x 8.61) / 2 = 0.833 x (20743385 / 2) = 0.833 x 10371692.51 = 8,638,491.90 Kgcm = 8,638.49 Kgm X2 = ((4 Cw) / Iy) x (Sx / G.J)2 = (( 4 x 1398) / 28) x (3.77 / 810,000 x 2.938)2 = (5592 / 28) x (1.58 x 10-9)2 = 199.71 x 2.51 x 10-18 = 5.01 x 10-16 Kgcm

(10)

UNIVERSITAS MERCUBUANA IV - 10 = 5.01 x 10-18 Kgm Lp = (790 / √ fy ) x ry = (790 / √ 2400) x 1.81 = 29.19 cm = 0.292 m Lr = ((ry x (X1 / ( fy – fr)) x √ 1 + √ 1 + X2 x (fy – fr)2 = (( 1.81 x ( 8,638,491.90 / (1700)) x √1 + √1 + 5.01 x 10-16 x 2,890,000 = 9,197.45 x 1.41 = 13,007.16 cm = 130.07 m

Dari hitungan diatas diketahui :

Lp < L < Lr = 0.29 < 7.5 < 130.07 maka Mn :

Mn = Cb x (( Mr + (Mp – Mr)) x (( Lr – L) / (Lr – Lp))) < Mp Besaran Cb ditentukan sebesar 1.01 , sehingga :

Mn = 1.01 x ((64.09 + (898 – 64.09)) x ( 122.57 / 129.78))) = 1.01 x (897.60 x 0.944)

= 1.01 x 847.75

= 856.22 Kgm ≤ Mp = 897.60 ... OK! e. Kesimpulan untuk nilai tekuk lokal penampang

- Tekuk lokal pada web = Mnx = 897.60 Kgm

- Tekuk lokal pada flange = Mny = 674.83 Kgm

- Tekuk Lateral = 856.22 Kgm

Momen nominal diambil nilai yang terkecil, berdasarkan SNI baja dan LRFD :

(11)

UNIVERSITAS MERCUBUANA IV - 11

Mu = 1.86 KNm ≤ φ Mn = 0.9 x 8.56 KNm

Mu = 1.86 KNm ≤ φ Mn = 7.71 KNm...OK!

4.2.6 KUAT GESER WEB PADA PROFIL GORDING

a. Gaya geser yang dicek hanya pada sumbu X (sumbu kuat)

- qu = 1.2 DL + 1.6 LL = 1.2 x 12.94 + 1.6 x 100 = 15.53 + 160 = 175.53 Kg/m - Vu = 0.5 x qu x Dpor x Cos α = 0.5 x 175.53 x 7.5 x 0.93 = 614.52 Kg = 6.15 KN

b. Besaran luas penampang untuk perhitungan geser

- Aw = H x tw

= 150 x 3.2 = 480 mm2

c. Kelangsingan Web dan batas-batas kelangsingan

- h/ tw = 150/ 3.2 = 46.88 < 260 tidak disyaratkan

pengaku

- 2.45 x √E / fy = 2.45 x √ 875 = 72.47 - 3.07 x √ E / fy = 3.07 x √ 875 = 90.81 d. Gaya geser nominal

- Vn = 0.6 x fy x Aw

(12)

UNIVERSITAS MERCUBUANA IV - 12

= 6,912 Kg = 69.12 KN

e. Geser di design dengan faktor tahanan (φv = 0.9)

- Vu = 6.15 KN ≤ φ v x Vn = 0.9 x 69.12

= 62.21 KN ...OK!

4.2.7 CEK MASALAH PUNTIR

Untuk mengatasi masalah puntir (Torsion), maka persamaan menjadi :

(Mux / (φ Mnx)) + ( Muy / (φ Mny/2)) ≤ 1

( 185.91 / (0.9 x 898)) + ( 169.78 / ( 0.9 x 674.83 /2)) ≤ 1

( 185.91 / 807.84) + (169.78 / 303.67) ≤ 1

Cek rasio

( 0.23 ) + ( 0.56) = 0.79 ≤ 1

OK!

4.2.8 BATASAN LENDUTAN PADA GORDING

a. Batasan lendutan (∆ max)

Menurut SNI – 03 – 1729 – 2002, tabel 6.4.3 (hal. 15) agar memenuhi persyaratan lendutan maksimum, maka disyaratkan untuk balok biasa ( L/2400)

∆ max = 750 / 240

= 3.13 cm b. Defleksi pada arah Y (fy)

- Akibat beban mati δ DL dan akibat beban hidup δ LL ∆ terjadi = 5/384 (qDL x cos α x L4

(13)

UNIVERSITAS MERCUBUANA IV - 13 = (5x 0.13 x 0.93 x 7504) / (2,1x106 x 280x384) = (5x38.229.225.728,78) / 225.792.000.000 = 0.85 cm ∆ terjadi = 1/48 (P x cos α x L3) / E x Ix = (1x100 x 0.93 x 7503) / (2,1x106 x 280x48) = (39.385.424.242,85)/(28.224.000.000) = 1.40 cm

c. Defleksi pada arah X (fx)

- Akibat beban mati δ DL dan akibat beban hidup δ LL ∆ terjadi = 5/384 (qDL x sin α x L4 ) / E x Ix = (5x0.13 x 0.36 x 7504) / (2,1x106 x 280 x 384) = (5x14.674.824.844,53) / 225.792.000.000 = 0.33 cm ∆ terjadi = 1/48 (P x sin α x L3 ) / E x Ix = (1x100 x 0.36 x 7503) / (2,1x106 x 280 x 48) = (1x15.118.647.871,44) / (28.224.000.000) = 0.54 cm d. Defleksi total ∆ komb = √ ( δ fy2 + δ fx2 ) = √ ( 0.85 + 1.40)2 + (0.33 + 0.54)2 = 2.40 cm

e. Kontrol defleksi terhadap beban layan (service)

(14)

UNIVERSITAS MERCUBUANA IV - 14 4.2.9 KEKUATAN ATAP

Beban yang dipikul atap

- Beban Angin = 25 kg/m2

- Beban Hujan = 20 kg/m2 +

45 kg/m2

Dari brosur Lysaght Trimdek (Lampiran No. 12) beban yang dapat dipikul atap = 9.60 kPa = 960 kg/m2

Maka Beban total 45 kg/m2 < Beban yang diijinkan = 960 kg/m2

...OK!

4.2.10 KESIMPULAN

Dari perhitungan perancangan gording diatas, dapat diambil kesimpulan bahwa profil Lip- kannal C type C 150.50.20.3.2 aman dan OK memenuhi persyaratan perancangan struktur gording.

4.3 PERANCANGAN KUDA-KUDA

4.3.1 PERANCANGAN PROFIL SIKU GANDA : 2 x 100 x 100 x 10

B = 100 mm

H = 200 mm

T = 10 mm

A = 38 cm2

W = 29.83 Kg/m

Ix = Iy = 175 cm4(Geometrical Momen of Inertia)

ix = iy = 3.03 cm (Radius of Gyration of Area)

Zx = Zy = 24.37 cm3 (Modulus of Section)

(15)

UNIVERSITAS MERCUBUANA IV - 15

Ebaja = 2.1 x 106 kg/cm2 (Buku PPI hal. 11 )

Alat sambung = Baut

Profil gording = C 150 x 50 x 20 x 3.2 Berat Gording = 6.76 kg/m

4.3.2 PRELIMERI PEMBEBANAN KUDA-KUDA

1. Berat sendiri kuda-kuda

Dalam program SAP, berat sendiri kuda-kuda secara otomatis masuk dengan sendirinya, dengan memasukkan dimensi profil pada program tersebut.

Asumsi awal menggunakan profil siku ganda : L 100 x 100 x 10 2. Berat Atap

Berat Atap + Accesories = 5.832 Kg/m2

Qatap = Berat atap+accesories x jarak

kuda-kuda = 5.832 x 7.5 = 43.74 Kg/m Patap = qatap x L = 43.74 x 1.06 = 46.36 Kg 3. Berat Gording

Pgording = Berat gording x Jarak kuda-kuda

= 6.76 x 7.5 = 50.70 Kg

(16)

UNIVERSITAS MERCUBUANA IV - 16

4. Beban Hidup

Berat pekerja = 100 kg

Berat air hujan = panjang kuda-kuda max x panjang

gording x 20 kg/m = 1.06 x 7.5 x 20 = 159 kg

5. Beban Angin

Tekanan angin diluar daerah pantai (qw) = 25 kg/m2

Sudut kemiringan kuda-kuda = 21

Koefisien angin tekan = 0.02 α - 0.4

= 0.02 x 21 – 0.4= 0.42 – 0.4 = 0.02

Koefisien angin hisap = - 0.4

a. Angin tekan qt = Ljrk gording x Bantar kk x Koefisien tekan

= 1.06 x 7.5 x 0.02 x 25 = 3.97 Kg

Beban angin vertikal (Vt) = qt x cos α

= 3.97 x 0.93

= 3.71 Kg

Beban angin horisontal (Ht) = qt x sin α

= 3.97 x 0.36

(17)

UNIVERSITAS MERCUBUANA IV - 17

b. Angin hisap qh = Ljrk antar gording x Bantar kk x Koefisien hisap

= 1.06 x 7.5 x 0.4 x 25 = 79.50 Kg

Beban angin vertikal (Vt) = qt x cos α = 79.50 x 0.93 = 74.22 Kg Beban angin horisontal (Ht) = qt x sin α

= 79.50 x 0.36 = 28.49 Kg

4.3.3 INPUT KOMBINASI PEMBEBANAN

- Beban mati DL = Berat atap + Berat gording = 46.36 + 50.70

= 97.06 Kg

- Beban Hidup LL = Beban pekerja = 100 Kg

- Beban Hujan H = 159 Kg

- Beban Angin W (tekan V) = 3.71 Kg

(tekan H) = 1.42 Kg

- Beban Angin W (hisap V) = 74.22 Kg

(hisap H) = 28.49 Kg

Kombinasi pembebanan yang digunakan (diambil yang maksimal) : 1. 1.4 DL

2. 1.2 DL + 1.6 LL + 0.5 H

(18)

UNIVERSITAS MERCUBUANA IV - 18

4. 1.2 DL + 1.6 LL + γ LL + 0.5 H ---> γ = 0.5 (bila L < 5 Kpa, SNI hal. 13) 1.2 DL + 2.1 LL + 0.5 H 5. 1.2 DL + 1 E + 0.5 LL 6. 1.2 DL - 1 E + 0.5 LL 7. 0.9 DL + 1.3 W 8. 0.9 DL - 1.3 W

Kombinasi pembebanan yang diambil nomer : 1, 2, 3, 4 dan 7

4.3.4 OUTPUT GAYA BATANG

(19)

UNIVERSITAS MERCUBUANA IV - 19 4.3.5 PEMBUKTIAN BATANG TEKAN

Gambar 4.12 Rangka Kuda-kuda

DL = 97.06 kg LL = 100 kg H = 159 kg P = Beban Combo 4 P = 1.2 DL + 1.6 LL + γ LL + 0.5 H = 1.2 (97.06) + 1.6 (100) + 0.5 (100) + 0.5 (159) = 405.97 kg V1 = 42,248.12 kg H1 = 2,646.42 kg V2 = 50,928.66 kg H2 = 2,646.42 kg

(20)

UNIVERSITAS MERCUBUANA IV - 20 Gambar 4.13 Joint 42 Σ V = 0 P + S83 sin 60.24 = 0 405.97 + S83 (0.87) = 0 0.87 S83 = 405.97 S83 = - 466.63 kg (Tekan) Σ H = 0 S41 + S83 cos 60.24 = 0 S41 + S83 (0.496) = 0 S41 = - S83 (0.496) S41 = - (-466.63) x (0.496) S41 = + 231.45 kg (Tarik)

(21)

UNIVERSITAS MERCUBUANA IV - 21 Gambar 4.14 Joint 1 Σ V = 0 S83 cos 29.76 + S206 – V1 = 0 -466.63 (0.868) + S206 – 42,248.12 = 0 S206 = + 42,248.12 + 405.04 S206 = +42,653.16 kg (Tarik) Σ H = 0 S83 sin 29.76 + H1 – S1 = 0 S83 (0.496) + 2,646,42 – S1 = 0 S1 = -466.63 x 0.496 + 2,646.42 S1 = -231.45 + 2,646.42 S1 = +2,414.97 kg (Tarik)

(22)

UNIVERSITAS MERCUBUANA IV - 22 Gambar 4.15 Joint 43 Σ V = 0 S42 sin 19.34 – S206 – S85 sin 60.24 = 0 S42 (0.331) - 42,653.16 – S85 (0.868) = 0 0.331 S42 – 0.868 S85 = 42,653.16 ...Persamaan (1) Σ H = 0 - S41 + S42 cos 19.34 + S85 cos 60.24 = 0 -231.45 + S42 (0.944) + S85 (0.496) = 0 0.944 S42 + 0.496 S85 = 231.45..Persamaan (2)

(23)

UNIVERSITAS MERCUBUANA IV - 23

Dari persamaan (1) dan Persamaan (2)

0.331 S42 – 0.868 S85 = 42,653.16 x 0.944 0.944 S42 + 0.496 S85 = 231.45 x 0.331 Menjadi 0.31 S42 – 0.82 S85 = 40,264.58 0.31 S42 + 0.16 S85 = 76.61 - -0.98 S85 = 40,187.97 S85 = - 40,859.37 kg (Tekan) Kepersamaan (1) 0.331 S42 – 0.868 S85 = 42,653.16 0.331 S42 – 0.868 (- 40,859.37) = 42,653.16 0.331 S42 + 35,465.94 = 42,653.16 0.331 S42 = 42,653.16 - 35,465.94 0.331 S42 = +7,187.22 S42 = + 21,713.66 kg (Tarik)

(24)

UNIVERSITAS MERCUBUANA IV - 24 Gambar 4.16 Joint 44 Σ V = 0 P – S43 sin 18.31 + S209 + S42 sin 19.34 = 0 405.97 – S43 (0.314) + S209 + 21,713.66 (0.331) = 0 7,593.20 – 0.314 S43 + S209 = 0 Persamaan (1) Σ H = 0 S42 cos 19.34 – S43 cos 18.31 = 0 S43 (0.949) = 21,713.66 (0.944) 0.949 S43 = 20,497.70 S43 = + 21,599.26 kg (Tarik) Kepersamaan (1) 7,593.20 – 0.314 S43 + S209 = 0

(25)

UNIVERSITAS MERCUBUANA IV - 25 7,593.20 – 0.314 x 21,599.26 + S209 = 0 S209 = 6,782.17 – 7,593.20 S209 = - 811.03 kg (Tekan) Gambar 4.17 Joint 2 Σ V = 0

S85 sin 60.24 + S87 sin 67.64 + S2 sin 20.58 + S209 + V2 = 0 -40,859.37 x 0.868 + S87 x 0.93 + S2 x 0.352 – 811.03 + 50,928.66=0

-35,465.94 + 0.925 S87 + 0.352 S2 + 50,117.63 =0 14,651.70 + 0.925 S87 + 0.352 S2 =0

(26)

UNIVERSITAS MERCUBUANA IV - 26

Σ H = 0

S1 + S85 cos 60.24 – S2 cos 20.58 – S87 cos 67.64 – H2 = 0 2,414.97 + (-40,859.37) (0.496) – S2 (0.936) – S87 (0.38) – 2,646.42 =0 2,414.97 – 20,266.249 – 0.936 S2 – 0.380 S87 – 2,646.42 = 0

-20,497.70 – 0.936 S2 – 0.380 S87 = 0

- 0.936 S2 – 0.380 S87 = 20,497.70 Persamaan (2)

Dari persamaan (1) dan persamaan (2)

0.925 S87 + 0.352 S2 = -14,651.79 x 0.380 – 0.380 S87 + 0.936 S2 = 20,497.70 x 0.925 Menjadi 0.352 S87 - 0.134 S2 = - 5,567.65 – 0.380 S87 + 0.866 S2 = 18,960.37 + -0.73 S2 = 13,392.73 S2 = -18,295.08 kg (Tekan) Kepersamaan (1) 0.925 S87 + 0.352 S2 = -14,651.70 0.925 S87 + 0.352 x (-18,295.08) = -14,651.70 0.925 S87 – 6,439.87 = -14,651.70 0.925 S87 = -8,211.83 S87 = -8,877.66 kg (Tekan)

(27)

UNIVERSITAS MERCUBUANA IV - 27 4.3.6 CEK PERENCANAAN KUDA-KUDA DENGAN LRFD

Dari kombinasi hasil pembebanan dan output perhitungan SAP, maka didapat hasil kombinasi sebagai berikut :

Digunakan hasil perhitungan dari COMBO – 4 (Maksimum) Gaya tarik maksimum pada kuda-kuda

Nu tarik (batang 43) = 5,508.51 kg = 5.51 ton

Panjang batang tarik terpanjang = 1,053.32 mm

Gaya tekan maksimum

Nu tekan (batang 3) = 15,986.79 kg = 15.99 ton

Panjang batang tekan terpanjang = 1,069.00 mm

Cek Kuat Tarik

- Cek Kondisi Leleh

Nu ≤ φ Nn

Nu ≤ φ x Ag x fy ...untuk kondisi leleh φ = 0.9

Nu ≤ 0.9 x 38 x 2400

Nu ≤ 82080 kg

Nu ≤ 82.08 T

5.51 T ≤ 82.08 T ... OK!

- Cek Kondisi Fraktur Asumsi

Baut yang akan digunakan = dia 11/8” = 28.57 mm

(28)

UNIVERSITAS MERCUBUANA IV - 28

= 42.86 mm ~ 57.14 mm dipakai 45 mm Diambil jarak dari tepi = 45 mm

Jarak antar baut (s) = 3d ~ 7d ≤ 14t

= 3 (28.57) ~ 7 (28.57) ≤ 14 (10)

= 85.71 ~ 199.99 ≤ 140

Maka digunakan jarak antar baut = 100 mm

Tebal plat = 10 mm

φlubang = φbaut + 2mm

= 28.57 mm + 2 mm = 30.57 mm

Gambar 4.18 Potongan Baut Pola segaris An = Ag – (d x t)

= 38 – (2.857 x 1) = 38 – 2.857 = 35.143 cm2 Periksa terhadap syarat An = 0.85 Ag

An = 0.85 x 38 An = 32.3 cm2 100 6 0 5 0 1 1 0 100 1 0 0 40 60

(29)

UNIVERSITAS MERCUBUANA IV - 29

Maka yang digunakan An yang terkecil = 32.30 cm2 U = 1 – (x / L)

= 1 – (19.29 / 50)

= 1 – 0.386 = 0.614 ≤ 0.85 (untuk penampang selain I,termasuk penampang bersusun, dengan alat

pengencang minimal 3 buah perbaris)

Ae = U x An = 0.614 x 32.3 = 19.83 cm2 Nn = φ x Ae x fu = 0.75 x 19.83 x 3700 = 55,017.32 Kg > Nu tekan = 55,017.32 Kg > 15,986.79 Kg ...OK! Keterangan :

Ae = Luas penampang effektif An = Luas netto penampang, mm2 U = Koefisien reduksi

= 1 – (x / L) ≤ 0.9

X = eksentrisitas sambungan = ½ penampang siku dan pelat = (0.5 x 10) + (0.5 x 28.74) = 5 + 14.285 = 19.29 mm Fu = Tegangan tarik putus, Mpa = 3700 Kg/cm2

Dengan φ adalah faktor tahanan, yang besarnya adalah : φ = 0.9 untuk kondisi leleh

(30)

UNIVERSITAS MERCUBUANA IV - 30

φ = 0.75 untuk kondisi fraktur

Cek Kuat Tekan

- Periksa kelangsingan λtarik = i = = = 2.15 cm λtarik = , . = 48,99 ≤ 200 ...OK! Nn = Ag x fcr

K = 1 (perletakan sendi – sendi)

Q = 1 (penampang tempa) λc = λ π x = . π x = 0.53 Untuk 0.25 < λc < 1.2 maka ω = . . . λ ω = . . .. = 1.15 λc x < 1.5 0.53 x √1 < 1.5 maka Fcr = ( 0.658% λ & ) x Q x fy Fcr = ( 0.658 . & ) x 1 x 2400 Fcr = 0.658 . x 1 x 2400 Fcr = 0.889 x 1 x 2400 Fcr = 2,133.70 Kg/cm2

(31)

UNIVERSITAS MERCUBUANA IV - 31

Nn = Ag x Fcr Nn = 38 x 2,133.70

Nn = 81,080 Kg > Nu = 15.986.79 kg ... OK!

Cek Kuat Tekan terhadap batang terpanjang

Nu tekan (batang 87) = 3.829,25 kg = 2,83 ton

Panjang batang tekan terpanjang = 2,629 mm

- Periksa kelangsingan λtarik = i = = = 2.15 cm λtarik = . . = 122.28 ≤ 200 ...OK! Nn = Ag x fcr

K = 1 (perletakan sendi – sendi)

Q = 1 (penampang tempa) λc = λ π x = . π x = 1.32 Untuk λc ≥ 1.2 maka ω = 1.25 x λc2 ω = 1.25 x 1.322 ω = 2.178

(32)

UNIVERSITAS MERCUBUANA IV - 32 λc x < 1.5 1.32 x √1 < 1.5 maka Fcr = ( 0.658% λ & ) x Q x fy Fcr = ( 0.658 . & ) x 1 x 2400 Fcr = 0.658 . x 1 x 2400 Fcr = 0.482 x 1 x 2400 Fcr = 1,156.80 Kg/cm2 Nn = Ag x Fcr Nn = 38 x 1,156.80 Nn = 43,958.40 Kg > Nu = 3.829,25 kg ... OK! 4.3.7 KESIMPULAN

Dari perhitungan perancangan kuda-kuda diatas, dapat diambil kesimpulan bahwa profil siku ganda type L 100.100.10 aman dan OK memenuhi persyaratan perancangan struktur kuda-kuda.

(33)

UNIVERSITAS MERCUBUANA IV - 33 4.4 PERANCANGAN PELAT KOPEL

4.4.1 PERANCANGAN DIMENSI PELAT KOPEL

Gambar 4.19 Perencanaan pelat kopel

t = tebal pelat penyambung

t = 10 mm

ey = jarak titik berat profil

ey = 28.2 mm

rx/ry = jari-jari girasi komponen terhadap sumbu x-x/ sumbu y-y, adalah:

ix /iy = 30.3 mm = 3.03 cm

Lkx = panjang tekuk profil (terpanjang)

Lkx = 1,749.19 mm = 174.92 cm

a = jarak antara dua titik berat elemen

λx/λy = kelangsingan pada arah tegak lurus sumbu x-x . sumbu y-y 100 10 10

100.100.10

PROFIL

10 100

A

t 1 2a 1 2a a

ix

ix

y

x

ey PLAT KOPEL TAMPAK - A

(34)

UNIVERSITAS MERCUBUANA IV - 34

LI = jarak spasi plat kopel komponen tekan λiy/λw = kelangsingan ideal

m = konstanta jumlah profil = 2

iI=imin=iη = jari-jari girasi minimum, sumbu I-I = 1.95 cm Ix = Iy = 175 cm4 Ia = Iξ = 278 cm4 Ib = Iη = 72 cm4 A = 19 cm2 a = 2.ey + t = 2 x 28.2 + 10 = 66.4 mm = 6.64 cm λx = = . . = 115.46 cm iy = '( + 1/2, iy = 3.03 + (0.5 / 6.64) = √9.1809 + 11.0224 = √20.2033 = 4.49 cm λy = = . . = 77.92 cm λw2 = λ( + 3 x λ4 --- > m = 2 (dua profil)

(35)

UNIVERSITAS MERCUBUANA IV - 35 Perencanaan optimum λw2 = λ/ λ/ = λ( + 3 x λ4 λ/ = λ( + x λ4 λ/ = λ( + λ4 λ4 = λ/ - λ( λ4 = 115.46 – 77.92 = 13,331.0116 – 6,071.5264 = 7,259.4852 λI = 7,259.4852 = 85.20 cm λI = η --- > i1 = imin = iη LI = λI x iη = 85.20 x 1.95 = 166.14 cm n = jumlah medan n = = .

. = 1.05 medan ≅ 3 medan (Syarat ganjil untuk

jumlah medan) Jarak antar kopel

L1 =

6 = .

(36)

UNIVERSITAS MERCUBUANA IV - 36

Gambar 4.20 Pelat kopel - Periksa kelangsingan penampang

λy = η = . . = 29.90 λω = λ( + λ1 = √29.90 + 85.20 = √894.01 + 7259.04 = √8153.05 = 90.29 cm ≤ λx = 115.46 cm ...OK! -Periksa kekakuan 7 10 x I1 = Imin = 175 cm4

Ip = momen inersia pelat kopel, untuk pelat kopel dimuka dan dibelakang yang tebalnya t dan tingginya h, maka

Ip = 1/12 x t x h3 Ip ≥ 10 x a = 2 x ½ a = 2 x ½ x 6.64 = 6.64 cm Ip ≥ 10 x . . Ip ≥ 199.28 cm4 a 583 583 583 1749 PLAT KOPEL

(37)

UNIVERSITAS MERCUBUANA IV - 37

Perhitungan Ip apabila tebal pelat kopel dipakai t = 10 mm = 1 cm 1/12 x t x h3 ≥ 199.28 cm4 1/12 x 1 x h3 = 199.28 cm4 h3 = . h3 = 2391.36 h = 13.37 cm ≅ 15 cm = 150 mm

Dimensi pelat kopel

p = 100 + 100 + 10 = 210 mm

p x h x b = 210 x 150 x 10

Gambar 4.21 Dimensi pelat kopel

150

1

0

0

1

0

0

1

0

2

1

0

(38)

UNIVERSITAS MERCUBUANA IV - 38 4.4.2 PERIKSA KEKUATAN PELAT KOPEL

Q terbesar (tekan) = 15,986.79 kg Dengan panjang batang = 1.069,00 mm

Jumlah pelat kopel dalam 1 batang tekan = 1069/150 = 7.13 ≅

7 pelat kopel

Q = 2% x Nutekan

= 2% x 15,986.79

= 319.74 kg

Gaya sebesar 319.74 kg dibagi untuk 7 pelat kopel, sehingga masing-masing kopel memikul 45.68 kg.

Kuat geser pelat kopel :

λw = 8 = = 20 kn = 5 + 9 : & Q P P

(39)

UNIVERSITAS MERCUBUANA IV - 39 = 5 + ;;.< &== & = 5 + . = 5 + 45.45 = 50.45 1.1 x 6 = 1.1 x . = 1.1 x 44,143.75 = 1.1 x 210.10 = 231.11 λw = 20 < 1.1 x 6 = 231.11 sehingga Vn = 2 x 0.6x fy x Aw = 2 x 0.6 x 2400 x 20 x 1 = 57.60 kg φ Vn = 0.9 x Vn = 0.9 x57.60 = 51.84 kg >? φ >6 = . . = 0.88 < 1 ...OK ! 4.4.3 KESIMPULAN

(40)

UNIVERSITAS MERCUBUANA IV - 40 4.5 PERANCANGAN KOLOM

4.5.1 DATA-DATA KOLOM

Gambar 4.22 Detail Perancangan Struktur Kolom Dari kombinasi hasil pembebanan dan output perhitungan SAP, maka didapat hasil kombinasi sebagai berikut :

Digunakan hasil perhitungan dari COMBO – 4 (Maksimum) Gaya tarik maksimum pada kolom

Nu tarik (batang 206) = 9,278.31 kg = 9.28

ton

Panjang batang tarik terpanjang = 1,749.19 mm

Gaya tekan maksimum

Nu tekan (batang 221) = 14,035.70 kg = 14,04

ton

Panjang batang tekan terpanjang (Ly) = 1,625.00 mm Profil yang digunakan : HB 150 x 150 x 7 x 10

H = 150 mm B = 150 mm Ag = 40.14 cm2 ANGKUR BAUT KOLOM BAJA HB 150.150.7.10

(41)

UNIVERSITAS MERCUBUANA IV - 41 tw = 7 mm tf = 10 mm Ix = 1640 cm4 Iy = 563 cm4 ix = 6.39 cm iy = 3.75 cm

4.5.2 PERIKSA KEKUATAN KOLOM

- Cek kelangsingan penampang

Flange : ( @ ) / tf ≤ 170/ A( ( )/10 ≤ 170/√2400 7.5 ≤ 10.97 ...Penampang kompak! Web : (h / tw) ≤ 1680/ A( (150 / 7) ≤ 1680/√2400 21.43 ≤ 108.44...Penampang kompak ! Kondisi kedua tumpuan adalah jepit – sendi sehingga diambil k = 0.8 Tinjauan pada arah sumbu bahan ( sumbu X)

rx = = . = √40.86 = 6.39 cm λx = = . .

(42)

UNIVERSITAS MERCUBUANA IV - 42

=

. = 1.88

Tinjauan pada arah sumbu bebas bahan (sumbu Y)

ry = = . = √14.03 = 3.75 cm λy = = . . = . = 34.67 λy ≥ λx

34.67 ≥ 1.88 batang menekuk kearah sumbu lemah

λcy = λ π x = . π x = 11.041 x √0.0011 = 11.041 x 0.034 = 0.37 Untuk 0.25 < λc < 1.2 maka ω = . . . λ ω = . . .. = . . = 1.06 Nn = Ag x fcr = Ag x ( ω ) = 40.14 x ( . ) = 40.14 x 2,264.15 = 90,883.02 Kg = 90.88 Ton

(43)

UNIVERSITAS MERCUBUANA IV - 43 φc x Nn = 0.85 x Nn = 0.85 x 90.88 = 77.25 Ton Cek : B? φC D EF < 1 . . < 1 0.2 < 1 ...OK! 4.5.3 KESIMPULAN

Dari hasil perhitungan diatas, profil kolom HB 150 x 150 x 7 x 10 cukup OK dan dapat digunakan sebagai batang tekan pada struktur kolom.

4.6 PERANCANGAN BAUT 4.6.1 DATA – DATA BAUT

Nu tekan (batang 3) = 15,986.79 kg = 15.99 ton

Panjang batang tekan terpanjang = 1,069.00 mm Mutu baut baja BJ 41

fub = 4,100 Kg/cm2

φbaut = 11/8” = 28.57 mm

Abaut = ¼ π d2

= ¼ x π x (28.57)2

= 640.75 mm2 = 6.41 cm2

Tebal pelat penyambung = 10 mm

Jarak tepi baut (le) = 1.5 d ~ 2 d

(44)

UNIVERSITAS MERCUBUANA IV - 44

= 42.86 mm ~ 57.14 mm

Diambil jarak dari tepi = 45 mm

Jarak antar baut (s) = 3d ~ 7d ≤ 14t

= 3 (28.57) ~ 7 (28.57) ≤ 14 (10)

= 85.71 ~ 199.99 ≤ 140

Diambil jarak antar baut = 100 mm

4.6.2 PERIKSA KEKUATAN BAUT

- Kekuatan terhadap geser :

Vd = φ x Vn

= φ x r1 x fub x Ab

= 0.75 x 0.4 x 4100 x 6.41

= 7,884.30 kg

Jumlah baut n = Vu/Vd = 15,986.79/7,884.30

= 2

- Kekuatan baut terhadap tarik

Td = φ x Tn = φ x 0.75 x fub x Ab = 0.75 x 0.75 x 4100 x 6.41 = 14,783.06 Kg G? 6 ≤ Td . ≤ Td 7,993.40 kg ≤ 14,783.06 Kg ...OK!

(45)

UNIVERSITAS MERCUBUANA IV - 45

- Kekuatan terhadap tarik dan tekan

Fu = B? 6 @ ≤ r1 x φf x fub x m = . . ≤ 0.4 x 0.75 x 4100 x 1 = 831.35 ≤ 1,230 Ft ≤ f1 – (r2 x fuv) ≤ f2 Ft ≤ 4100 – (2.857 x 831.35) ≤ 3100 Ft ≤ 1,724.84 ≤ 3100 1,724.84 ≤ 3100 ...OK! Td = φf x Tn Td = φf x ft x Ab Td = 0.75 x 3100 x 6.41 Td = 14,903.25 Kg ≥ 15,986.79/2 14,903.25 Kg ≥ 7,993.40 Kg ...OK!

- Kekuatan terhadap kuat tumpu

1.5 d = 1.5 x (r1 + r2) ≥ Ie 1.5 d = 1.5 x (2.857 + 1.4285)≥ Ie 1.5 d = 6.43 cm ≥ 4,5 cm ...OK! 3 d = 3 x (r1 + r2) ≥ S 3 d = 3 x (2.857 + 1.4285) ≥ S 3 d = 12.86 cm ≥ 10 cm ...OK!

(46)

UNIVERSITAS MERCUBUANA IV - 46 Rd = φf x Rn Rd = φf x2.4 x db x dp x fu Rd = 0.75 x 2.4 x 2.857 x 1.4285 x 4100 Rd = 30,119.44 Kg Nu/n ≤ Rd 15,986.79/2 Kg ≤ 30,119.44 Kg 7,993.40 Kg ≤ 30,119.44 Kg ... OK! 4.6.3 KESIMPULAN

Jadi dipakai baut φ 1 1/8” ( 28.57 mm) dengan tebal pelat 100 mm.

4.6.4 JUMLAH BAUT

(47)

UNIVERSITAS MERCUBUANA IV - 47 4.7 PERHITUNGAN JUMLAH MATERIAL

Table 4.3 Terlampir

4.7.1 KESIMPULAN

Jumlah kebutuhan material

1. C 150.50.20.3,2 = 44,210.40 kg 2. HB 150.150.7.10 = 13,042.26 kg 3. L 100.100.10 = 134,195.08 kg 4. Pelat 10 mm = 39,266.50 kg 5. Baut 11/8” = 4,920 buah 6. Pengecatan = 8,547.87 m2

(48)

TABLE 4.3 PERINCIAN PERHITUNGAN VOLUME

Total Volume Total Luas

230,714.24

8,547.87

Volume Luas

Sort Orgil Code Size mm Kg m2

KUDA - KUDA PENUH

1 Kolom K1 HB 150x150x7x10 HB HB 150x150x7x10 5,000.00 5,000 32 31.50 5,040.00 141.76 2 Kolom K2 HB 150x150x7x10 HB HB 150x150x7x10 5,351.00 5,351 32 31.50 5,393.81 151.71 3 Kuda-kuda KDA 41 82 L 100x100x10 L L 100x100x10 1,000.00 1,000 64 15.10 966.40 25.60 4 Kuda-kuda KDA 42 81 L 100x100x10 L L 100x100x10 1,059.79 1,060 64 15.10 1,024.18 27.13 5 Kuda-kuda KDA 43 80 L 100x100x10 L L 100x100x10 1,053.32 1,053 64 15.10 1,017.93 26.96 6 Kuda-kuda KDA 44 79 L 100x100x10 L L 100x100x10 1,047.31 1,047 64 15.10 1,012.12 26.81 7 Kuda-kuda KDA 45 78 L 100x100x10 L L 100x100x10 1,041.72 1,042 64 15.10 1,006.72 26.67 8 Kuda-kuda KDA 46 77 L 100x100x10 L L 100x100x10 1,036.55 1,037 64 15.10 1,001.72 26.54 9 Kuda-kuda KDA 47 76 L 100x100x10 L L 100x100x10 1,031.76 1,032 64 15.10 997.09 26.41 10 Kuda-kuda KDA 48 75 L 100x100x10 L L 100x100x10 1,027.36 1,027 64 15.10 992.84 26.30 11 Kuda-kuda KDA 49 74 L 100x100x10 L L 100x100x10 1,023.32 1,023 64 15.10 988.94 26.20 12 Kuda-kuda KDA 50 73 L 100x100x10 L L 100x100x10 1,019.63 1,020 64 15.10 985.37 26.10 13 Kuda-kuda KDA 51 72 L 100x100x10 L L 100x100x10 1,016.28 1,016 64 15.10 982.13 26.02 14 Kuda-kuda KDA 52 71 L 100x100x10 L L 100x100x10 1,013.27 1,013 64 15.10 979.22 25.94 15 Kuda-kuda KDA 53 70 L 100x100x10 L L 100x100x10 1,010.52 1,011 64 15.10 976.57 25.87 16 Kuda-kuda KDA 54 69 L 100x100x10 L L 100x100x10 1,008.21 1,008 64 15.10 974.33 25.81 17 Kuda-kuda KDA 55 68 L 100x100x10 L L 100x100x10 1,006.15 1,006 64 15.10 972.34 25.76 18 Kuda-kuda KDA 56 67 L 100x100x10 L L 100x100x10 1,004.39 1,004 64 15.10 970.64 25.71 19 Kuda-kuda KDA 57 66 L 100x100x10 L L 100x100x10 1,002.93 1,003 64 15.10 969.23 25.68 20 Kuda-kuda KDA 58 65 L 100x100x10 L L 100x100x10 1,001.77 1,002 64 15.10 968.11 25.65 21 Kuda-kuda KDA 59 64 L 100x100x10 L L 100x100x10 1,000.90 1,001 64 15.10 967.27 25.62 22 Kuda-kuda KDA 60 63 L 100x100x10 L L 100x100x10 1,000.32 1,000 64 15.10 966.71 25.61 23 Kuda-kuda KDA 61 62 L 100x100x10 L L 100x100x10 1,000.04 1,000 64 15.10 966.44 25.60 24 Kuda-kuda KDB 1 40 L 100x100x10 L L 100x100x10 1,000.00 1,000 64 15.10 966.40 25.60 25 Kuda-kuda KDB 2 39 L 100x100x10 L L 100x100x10 1,068.16 1,068 64 15.10 1,032.27 27.34 26 Kuda-kuda KDB 3 38 L 100x100x10 L L 100x100x10 1,068.16 1,068 64 15.10 1,032.27 27.34 27 Kuda-kuda KDB 4 37 L 100x100x10 L L 100x100x10 1,068.16 1,068 64 15.10 1,032.27 27.34 28 Kuda-kuda KDB 5 36 L 100x100x10 L L 100x100x10 1,068.16 1,068 64 15.10 1,032.27 27.34 29 Kuda-kuda KDB 6 35 L 100x100x10 L L 100x100x10 1,068.16 1,068 64 15.10 1,032.27 27.34 30 Kuda-kuda KDB 7 34 L 100x100x10 L L 100x100x10 1,068.16 1,068 64 15.10 1,032.27 27.34 31 Kuda-kuda KDB 8 33 L 100x100x10 L L 100x100x10 1,068.16 1,068 64 15.10 1,032.27 27.34 32 Kuda-kuda KDB 9 32 L 100x100x10 L L 100x100x10 1,068.16 1,068 64 15.10 1,032.27 27.34 33 Kuda-kuda KDB 10 31 L 100x100x10 L L 100x100x10 1,068.16 1,068 64 15.10 1,032.27 27.34 34 Kuda-kuda KDB 11 30 L 100x100x10 L L 100x100x10 1,013.74 1,014 64 15.10 979.68 25.95 35 Kuda-kuda KDB 12 29 L 100x100x10 L L 100x100x10 1,010.96 1,011 64 15.10 976.99 25.88 36 Kuda-kuda KDB 13 28 L 100x100x10 L L 100x100x10 1,008.51 1,009 64 15.10 974.62 25.82 37 Kuda-kuda KDB 14 27 L 100x100x10 L L 100x100x10 1,006.36 1,006 64 15.10 972.55 25.76 38 Kuda-kuda KDB 15 26 L 100x100x10 L L 100x100x10 1,004.54 1,005 64 15.10 970.79 25.72 39 Kuda-kuda KDB 16 25 L 100x100x10 L L 100x100x10 1,003.03 1,003 64 15.10 969.33 25.68 40 Kuda-kuda KDB 17 24 L 100x100x10 L L 100x100x10 1,001.83 1,002 64 15.10 968.17 25.65 41 Kuda-kuda KDB 18 23 L 100x100x10 L L 100x100x10 1,000.93 1,001 64 15.10 967.30 25.62 42 Kuda-kuda KDB 19 22 L 100x100x10 L L 100x100x10 1,000.34 1,000 64 15.10 966.73 25.61 43 Kuda-kuda KDB 20 21 L 100x100x10 L L 100x100x10 1,000.04 1,000 64 15.10 966.44 25.60 44 Gording GR CNP 150x50x20x3.2 CNP CNP 150x50x20x3.2 7,500.00 7,500 688 6.76 34,881.60 2860.70 45 Filler FLT 88 160 L 100x100x10 L L 100x100x10 2,055.56 2,056 64 15.10 1,986.49 52.62 No

Ukuran Qty Weight

Description Material

(49)

47 Filler FLT 92 156 L 100x100x10 L L 100x100x10 1,907.77 1,908 64 15.10 1,843.67 48.84 48 Filler FLT 94 154 L 100x100x10 L L 100x100x10 1,805.14 1,805 64 15.10 1,744.49 46.21 49 Filler FLT 96 152 L 100x100x10 L L 100x100x10 1,683.74 1,684 64 15.10 1,627.17 43.10 50 Filler FLT 98 150 L 100x100x10 L L 100x100x10 1,543.81 1,544 64 15.10 1,491.94 39.52 51 Filler FLT 100 148 L 100x100x10 L L 100x100x10 1,385.57 1,386 64 15.10 1,339.01 35.47 52 Filler FLT 102 146 L 100x100x10 L L 100x100x10 1,209.24 1,209 64 15.10 1,168.61 30.96 53 Filler FLT 104 144 L 100x100x10 L L 100x100x10 1,015.00 1,015 64 15.10 980.90 25.98 54 Filler FLT 106 142 L 100x100x10 L L 100x100x10 1,012.09 1,012 64 15.10 978.08 25.91 55 Filler FLT 108 140 L 100x100x10 L L 100x100x10 1,009.52 1,010 64 15.10 975.60 25.84 56 Filler FLT 110 138 L 100x100x10 L L 100x100x10 1,007.26 1,007 64 15.10 973.42 25.79 57 Filler FLT 112 136 L 100x100x10 L L 100x100x10 1,005.32 1,005 64 15.10 971.54 25.74 58 Filler FLT 114 134 L 100x100x10 L L 100x100x10 1,003.69 1,004 64 15.10 969.97 25.69 59 Filler FLT 116 132 L 100x100x10 L L 100x100x10 1,002.35 1,002 64 15.10 968.67 25.66 60 Filler FLT 118 130 L 100x100x10 L L 100x100x10 1,001.32 1,001 64 15.10 967.68 25.63 61 Filler FLT 120 128 L 100x100x10 L L 100x100x10 1,000.59 1,001 64 15.10 966.97 25.62 62 Filler FLT 122 126 L 100x100x10 L L 100x100x10 1,000.15 1,000 64 15.10 966.54 25.60 63 Filler FLT 124 L 100x100x10 L L 100x100x10 1,000.00 1,000 32 15.10 483.20 12.80 64 Filler FLM 83 165 L 100x100x10 L L 100x100x10 2,014.86 2,015 64 15.10 1,947.16 51.58 65 Filler FLM 85 163 L 100x100x10 L L 100x100x10 2,014.86 2,015 64 15.10 1,947.16 51.58 66 Filler FLM 87 161 L 100x100x10 L L 100x100x10 2,628.64 2,629 64 15.10 2,540.32 67.29 67 Filler FLM 89 159 L 100x100x10 L L 100x100x10 1,955.20 1,955 64 15.10 1,889.51 50.05 68 Filler FLM 91 157 L 100x100x10 L L 100x100x10 2,492.60 2,493 64 15.10 2,408.85 63.81 69 Filler FLM 93 155 L 100x100x10 L L 100x100x10 1,829.76 1,830 64 15.10 1,768.28 46.84 70 Filler FLM 95 153 L 100x100x10 L L 100x100x10 2,289.16 2,289 64 15.10 2,212.24 58.60 71 Filler FLM 97 151 L 100x100x10 L L 100x100x10 1,646.71 1,647 64 15.10 1,591.38 42.16 72 Filler FLM 99 149 L 100x100x10 L L 100x100x10 2,025.14 2,025 64 15.10 1,957.10 51.84 73 Filler FLM 101 147 L 100x100x10 L L 100x100x10 1,421.39 1,421 64 15.10 1,373.63 36.39 74 Filler FLM 103 145 L 100x100x10 L L 100x100x10 1,712.08 1,712 64 15.10 1,654.55 43.83 75 Filler FLM 105 143 L 100x100x10 L L 100x100x10 1,311.56 1,312 64 15.10 1,267.49 33.58 76 Filler FLM 107 141 L 100x100x10 L L 100x100x10 1,529.99 1,530 64 15.10 1,478.58 39.17 77 Filler FLM 109 139 L 100x100x10 L L 100x100x10 1,331.32 1,331 64 15.10 1,286.59 34.08 78 Filler FLM 111 137 L 100x100x10 L L 100x100x10 1,500.21 1,500 64 15.10 1,449.80 38.41 79 Filler FLM 113 135 L 100x100x10 L L 100x100x10 1,351.99 1,352 64 15.10 1,306.56 34.61 80 Filler FLM 115 133 L 100x100x10 L L 100x100x10 1,460.27 1,460 64 15.10 1,411.20 37.38 81 Filler FLM 117 131 L 100x100x10 L L 100x100x10 1,373.62 1,374 64 15.10 1,327.47 35.16 82 Filler FLM 119 129 L 100x100x10 L L 100x100x10 1,444.10 1,444 64 15.10 1,395.58 36.97 83 Filler FLM 121 127 L 100x100x10 L L 100x100x10 1,395.05 1,395 64 15.10 1,348.18 35.71 84 Filler FLM 123 125 L 100x100x10 L L 100x100x10 1,419.25 1,419 64 15.10 1,371.56 36.33 85 Filler Kolom FLM 167 173 L 100x100x10 L L 100x100x10 1,000.00 1,000 64 15.10 966.40 25.60 86 Filler Kolom FLM 210-217 224-231L 100x100x10 L L 100x100x10 1,908.04 1,908 256 15.10 7,375.72 195.38

87 Sambungan DETAIL 2 Plate 10 PL Plate 10 61,625.00 61,625 64 78.50 309.60 7.89

88 Sambungan DETAIL 3 Plate 10 PL Plate 10 89,205.00 89,205 64 78.50 448.17 11.42

89 Sambungan DETAIL 3 Plate 10 PL Plate 10 98,623.00 98,623 64 78.50 495.48 12.62

90 Sambungan DETAIL 4 Plate 10 PL Plate 10 36,125.00 36,125 32 78.50 90.75 2.31

91 Sambungan DETAIL 5 Plate 10 PL Plate 10 134,016.00 134,016 32 78.50 336.65 8.58

92 Sambungan DETAIL 6 Plate 10 PL Plate 10 98,235.00 98,235 32 78.50 246.77 6.29

93 Sambungan DETAIL 7 Plate 10 PL Plate 10 75,579.00 75,579 192 78.50 1,139.13 29.02

94 Sambungan DETAIL 8 Plate 10 PL Plate 10 99,105.00 99,105 192 78.50 1,493.71 38.06

95 Sambungan DETAIL 9 Plate 10 PL Plate 10 74,736.00 74,736 448 78.50 2,628.32 66.96

96 Sambungan DETAIL 10 Plate 10 PL Plate 10 105,371.00 105,371 144 78.50 1,191.11 30.35

97 Sambungan DETAIL 12 Plate 10 PL Plate 10 22,493.00 22,493 32 78.50 56.50 1.44

98 Sambungan DETAIL 13 Plate 10 PL Plate 10 22,493.00 22,493 32 78.50 56.50 1.44

99 Plate Kopel Plate 10 PL Plate 10 31,500.00 31,500 7632 78.50 18,872.03 480.82

(50)

100 Kolom K1 HB 150x150x7x10 HB HB 150x150x7x10 5,000.00 5,000 8 31.50 1,260.00 35.44 101 Kolom K2 HB 150x150x7x10 HB HB 150x150x7x10 5,351.00 5,351 8 31.50 1,348.45 37.93 102 Kuda-kuda KDA 41 82 L 100x100x10 L L 100x100x10 1,000.00 1,000 16 15.10 241.60 6.40 103 Kuda-kuda KDA 42 81 L 100x100x10 L L 100x100x10 1,059.79 1,060 16 15.10 256.05 6.78 104 Kuda-kuda KDA 43 80 L 100x100x10 L L 100x100x10 1,053.32 1,053 16 15.10 254.48 6.74 105 Kuda-kuda KDA 44 79 L 100x100x10 L L 100x100x10 1,047.31 1,047 16 15.10 253.03 6.70 106 Kuda-kuda KDA 45 78 L 100x100x10 L L 100x100x10 1,041.72 1,042 16 15.10 251.68 6.67 107 Kuda-kuda KDA 46 77 L 100x100x10 L L 100x100x10 1,036.55 1,037 16 15.10 250.43 6.63 108 Kuda-kuda KDA 47 76 L 100x100x10 L L 100x100x10 1,031.76 1,032 16 15.10 249.27 6.60 109 Kuda-kuda KDA 48 75 L 100x100x10 L L 100x100x10 1,027.36 1,027 16 15.10 248.21 6.58 110 Kuda-kuda KDA 49 74 L 100x100x10 L L 100x100x10 1,023.32 1,023 16 15.10 247.23 6.55 111 Kuda-kuda KDA 50 73 L 100x100x10 L L 100x100x10 1,019.63 1,020 16 15.10 246.34 6.53 112 Kuda-kuda KDA 51 72 L 100x100x10 L L 100x100x10 1,016.28 1,016 16 15.10 245.53 6.50 113 Kuda-kuda KDA 52 71 L 100x100x10 L L 100x100x10 1,013.27 1,013 16 15.10 244.81 6.48 114 Kuda-kuda KDA 53 70 L 100x100x10 L L 100x100x10 1,010.52 1,011 16 15.10 244.14 6.47 115 Kuda-kuda KDA 54 69 L 100x100x10 L L 100x100x10 1,008.21 1,008 16 15.10 243.58 6.45 116 Kuda-kuda KDA 55 68 L 100x100x10 L L 100x100x10 1,006.15 1,006 16 15.10 243.09 6.44 117 Kuda-kuda KDA 56 67 L 100x100x10 L L 100x100x10 1,004.39 1,004 16 15.10 242.66 6.43 118 Kuda-kuda KDA 57 66 L 100x100x10 L L 100x100x10 1,002.93 1,003 16 15.10 242.31 6.42 119 Kuda-kuda KDA 58 65 L 100x100x10 L L 100x100x10 1,001.77 1,002 16 15.10 242.03 6.41 120 Kuda-kuda KDA 59 64 L 100x100x10 L L 100x100x10 1,000.90 1,001 16 15.10 241.82 6.41 121 Kuda-kuda KDA 60 63 L 100x100x10 L L 100x100x10 1,000.32 1,000 16 15.10 241.68 6.40 122 Kuda-kuda KDA 61 62 L 100x100x10 L L 100x100x10 1,000.04 1,000 16 15.10 241.61 6.40 123 Kuda-kuda KDB 1 40 L 100x100x10 L L 100x100x10 1,000.00 1,000 16 15.10 241.60 6.40 124 Kuda-kuda KDB 2 39 L 100x100x10 L L 100x100x10 1,068.16 1,068 16 15.10 258.07 6.84 125 Kuda-kuda KDB 3 38 L 100x100x10 L L 100x100x10 1,068.16 1,068 16 15.10 258.07 6.84 126 Kuda-kuda KDB 4 37 L 100x100x10 L L 100x100x10 1,068.16 1,068 16 15.10 258.07 6.84 127 Kuda-kuda KDB 5 36 L 100x100x10 L L 100x100x10 1,068.16 1,068 16 15.10 258.07 6.84 128 Kuda-kuda KDB 6 35 L 100x100x10 L L 100x100x10 1,068.16 1,068 16 15.10 258.07 6.84 129 Kuda-kuda KDB 7 34 L 100x100x10 L L 100x100x10 1,068.16 1,068 16 15.10 258.07 6.84 130 Kuda-kuda KDB 8 33 L 100x100x10 L L 100x100x10 1,068.16 1,068 16 15.10 258.07 6.84 131 Kuda-kuda KDB 9 32 L 100x100x10 L L 100x100x10 1,068.16 1,068 16 15.10 258.07 6.84 132 Kuda-kuda KDB 10 31 L 100x100x10 L L 100x100x10 1,068.16 1,068 16 15.10 258.07 6.84 133 Kuda-kuda KDB 11 30 L 100x100x10 L L 100x100x10 1,013.74 1,014 16 15.10 244.92 6.49 134 Kuda-kuda KDB 12 29 L 100x100x10 L L 100x100x10 1,010.96 1,011 16 15.10 244.25 6.47 135 Kuda-kuda KDB 13 28 L 100x100x10 L L 100x100x10 1,008.51 1,009 16 15.10 243.66 6.45 136 Kuda-kuda KDB 14 27 L 100x100x10 L L 100x100x10 1,006.36 1,006 16 15.10 243.14 6.44 137 Kuda-kuda KDB 15 26 L 100x100x10 L L 100x100x10 1,004.54 1,005 16 15.10 242.70 6.43 138 Kuda-kuda KDB 16 25 L 100x100x10 L L 100x100x10 1,003.03 1,003 16 15.10 242.33 6.42 139 Kuda-kuda KDB 17 24 L 100x100x10 L L 100x100x10 1,001.83 1,002 16 15.10 242.04 6.41 140 Kuda-kuda KDB 18 23 L 100x100x10 L L 100x100x10 1,000.93 1,001 16 15.10 241.82 6.41 141 Kuda-kuda KDB 19 22 L 100x100x10 L L 100x100x10 1,000.34 1,000 16 15.10 241.68 6.40 142 Kuda-kuda KDB 20 21 L 100x100x10 L L 100x100x10 1,000.04 1,000 16 15.10 241.61 6.40 143 Gording GR CNP 150x50x20x3.2 CNP CNP 150x50x20x3.2 7,500.00 7,500 184 6.76 9,328.80 765.07 144 Filler FLT 88 160 L 100x100x10 L L 100x100x10 2,055.56 2,056 16 15.10 496.62 13.16 145 Filler FLT 90 158 L 100x100x10 L L 100x100x10 1,991.34 1,991 16 15.10 481.11 12.74 146 Filler FLT 92 156 L 100x100x10 L L 100x100x10 1,907.77 1,908 16 15.10 460.92 12.21 147 Filler FLT 94 154 L 100x100x10 L L 100x100x10 1,805.14 1,805 16 15.10 436.12 11.55 148 Filler FLT 96 152 L 100x100x10 L L 100x100x10 1,683.74 1,684 16 15.10 406.79 10.78 149 Filler FLT 98 150 L 100x100x10 L L 100x100x10 1,543.81 1,544 16 15.10 372.98 9.88 150 Filler FLT 100 148 L 100x100x10 L L 100x100x10 1,385.57 1,386 16 15.10 334.75 8.87 151 Filler FLT 102 146 L 100x100x10 L L 100x100x10 1,209.24 1,209 16 15.10 292.15 7.74 152 Filler FLT 104 144 L 100x100x10 L L 100x100x10 1,015.00 1,015 16 15.10 245.22 6.50 Page 3

(51)

154 Filler FLT 108 140 L 100x100x10 L L 100x100x10 1,009.52 1,010 16 15.10 243.90 6.46 155 Filler FLT 110 138 L 100x100x10 L L 100x100x10 1,007.26 1,007 16 15.10 243.35 6.45 156 Filler FLT 112 136 L 100x100x10 L L 100x100x10 1,005.32 1,005 16 15.10 242.89 6.43 157 Filler FLT 114 134 L 100x100x10 L L 100x100x10 1,003.69 1,004 16 15.10 242.49 6.42 158 Filler FLT 116 132 L 100x100x10 L L 100x100x10 1,002.35 1,002 16 15.10 242.17 6.42 159 Filler FLT 118 130 L 100x100x10 L L 100x100x10 1,001.32 1,001 16 15.10 241.92 6.41 160 Filler FLT 120 128 L 100x100x10 L L 100x100x10 1,000.59 1,001 16 15.10 241.74 6.40 161 Filler FLT 122 126 L 100x100x10 L L 100x100x10 1,000.15 1,000 16 15.10 241.64 6.40 162 Filler FLT 124 L 100x100x10 L L 100x100x10 1,000.00 1,000 16 15.10 241.60 6.40 163 Filler FLM 83 165 L 100x100x10 L L 100x100x10 2,014.86 2,015 16 15.10 486.79 12.90 164 Filler FLM 85 163 L 100x100x10 L L 100x100x10 2,014.86 2,015 16 15.10 486.79 12.90 165 Filler FLM 87 161 L 100x100x10 L L 100x100x10 2,628.64 2,629 16 15.10 635.08 16.82 166 Filler FLM 89 159 L 100x100x10 L L 100x100x10 1,955.20 1,955 16 15.10 472.38 12.51 167 Filler FLM 91 157 L 100x100x10 L L 100x100x10 2,492.60 2,493 16 15.10 602.21 15.95 168 Filler FLM 93 155 L 100x100x10 L L 100x100x10 1,829.76 1,830 16 15.10 442.07 11.71 169 Filler FLM 95 153 L 100x100x10 L L 100x100x10 2,289.16 2,289 16 15.10 553.06 14.65 170 Filler FLM 97 151 L 100x100x10 L L 100x100x10 1,646.71 1,647 16 15.10 397.85 10.54 171 Filler FLM 99 149 L 100x100x10 L L 100x100x10 2,025.14 2,025 16 15.10 489.27 12.96 172 Filler FLM 101 147 L 100x100x10 L L 100x100x10 1,421.39 1,421 16 15.10 343.41 9.10 173 Filler FLM 103 145 L 100x100x10 L L 100x100x10 1,712.08 1,712 16 15.10 413.64 10.96 174 Filler FLM 105 143 L 100x100x10 L L 100x100x10 1,311.56 1,312 16 15.10 316.87 8.39 175 Filler FLM 107 141 L 100x100x10 L L 100x100x10 1,529.99 1,530 16 15.10 369.65 9.79 176 Filler FLM 109 139 L 100x100x10 L L 100x100x10 1,331.32 1,331 16 15.10 321.65 8.52 177 Filler FLM 111 137 L 100x100x10 L L 100x100x10 1,500.21 1,500 16 15.10 362.45 9.60 178 Filler FLM 113 135 L 100x100x10 L L 100x100x10 1,351.99 1,352 16 15.10 326.64 8.65 179 Filler FLM 115 133 L 100x100x10 L L 100x100x10 1,460.27 1,460 16 15.10 352.80 9.35 180 Filler FLM 117 131 L 100x100x10 L L 100x100x10 1,373.62 1,374 16 15.10 331.87 8.79 181 Filler FLM 119 129 L 100x100x10 L L 100x100x10 1,444.10 1,444 16 15.10 348.89 9.24 182 Filler FLM 121 127 L 100x100x10 L L 100x100x10 1,395.05 1,395 16 15.10 337.04 8.93 183 Filler FLM 123 125 L 100x100x10 L L 100x100x10 1,419.25 1,419 16 15.10 342.89 9.08 184 Filler Kolom FLM 167 173 L 100x100x10 L L 100x100x10 1,000.00 1,000 16 15.10 241.60 6.40 185 Filler Kolom FLM 210-217 224-231L 100x100x10 L L 100x100x10 1,908.04 1,908 64 15.10 1,843.93 48.85

186 Sambungan DETAIL 2 Plate 10 PL Plate 10 61,625.00 61,625 16 78.50 77.40 1.97

187 Sambungan DETAIL 3 Plate 10 PL Plate 10 89,205.00 89,205 16 78.50 112.04 2.85

188 Sambungan DETAIL 3 Plate 10 PL Plate 10 98,623.00 98,623 16 78.50 123.87 3.16

189 Sambungan DETAIL 4 Plate 10 PL Plate 10 36,125.00 36,125 8 78.50 22.69 0.58

190 Sambungan DETAIL 5 Plate 10 PL Plate 10 134,016.00 134,016 8 78.50 84.16 2.14

191 Sambungan DETAIL 6 Plate 10 PL Plate 10 98,235.00 98,235 8 78.50 61.69 1.57

192 Sambungan DETAIL 7 Plate 10 PL Plate 10 75,579.00 75,579 48 78.50 284.78 7.26

193 Sambungan DETAIL 8 Plate 10 PL Plate 10 99,105.00 99,105 48 78.50 373.43 9.51

194 Sambungan DETAIL 9 Plate 10 PL Plate 10 74,736.00 74,736 112 78.50 657.08 16.74

195 Sambungan DETAIL 10 Plate 10 PL Plate 10 105,371.00 105,371 72 78.50 595.56 15.17

196 Sambungan DETAIL 11 Plate 10 PL Plate 10 71,378.00 71,378 8 78.50 44.83 1.14

197 Sambungan DETAIL 12 Plate 10 PL Plate 10 22,493.00 22,493 8 78.50 14.13 0.36

198 Sambungan DETAIL 13 Plate 10 PL Plate 10 22,493.00 22,493 8 78.50 14.13 0.36

199 Plate Kopel Plate 10 PL Plate 10 31,500.00 31,500 3816 78.50 9,436.01 240.41

TOTAL MATERIAL C 150x50x20x3.2 44,210.40 kg HB 150x150x7x10 13,042.26 kg L 100x100x10 134,195.08 kg Pelat 10 mm 39,266.50 kg Baut 4,920.00 buah Pengecatan 8,547.87 m2 Page 4

Gambar

Gambar 4.2  Gaya Akibat  Beban Mati
Gambar 4.12 Rangka Kuda-kuda  DL  =  97.06 kg  LL  =  100 kg  H  =  159 kg  P  =  Beban Combo 4  P  =  1.2 DL + 1.6 LL + γ LL + 0.5 H  =  1.2 (97.06) + 1.6 (100) + 0.5 (100) + 0.5 (159)  =  405.97 kg  V1  =  42,248.12 kg  H1  =  2,646.42 kg  V2  =  50,928.
Gambar 4.18 Potongan Baut   Pola segaris     An   = Ag – (d x t)
Gambar 4.19 Perencanaan pelat kopel
+5

Referensi

Dokumen terkait

Melalui studi terhadap parameter sumber seismik diharapkan dapat mengetahui mekanisme penyebab aktivitas seismik apakah disebabkan karena aktivitas tambang ataukah mekanisme

Selain kendala tingkat pendidikan yang rendah dan perbedaan gender, tak sedikit pemilik usaha ini sudah berdiri cukup lama namun penghasilan yang diperoleh masih rendah?.

Na pake kainanurã, nuku  hãtxa kui  anurã, ketash kene xarabu retsami kaina xarabunã, haskai nuku yui kiki; ki inu  , kiki inu  , kiaki rã hamapai haskai

Nah, dalam bahasa Arab, jika kita ingin bisa menyusun sebuah kalimat sempurna yang dimengerti oleh orang lain, maka kita harus belajar ilmu Nahwu dan ilmu Shorof terlebih dahulu..

Dan kemampuan membaca anak dalam memahami arti kata dalam cerita sebelum diberi perlakuan (media mind mapping) dikategorikan rendah yaitu 39,58% dan sesudah penggunaan

fenomena yang berhubungan dengan perilaku konsumtif

SOLVENT HC Aliphatic HC Cyclic HC Aromatic HC Halogenated Alcohol Ketone Ether HEALTH EFFECT Bersifat anestetik.. Bahayanya disebabkan adanya kecenderungan berubah menjadi

Renstra Dinas Kependudukan dan Pencatatan Sipil Kabupaten Kepulauan Anambas Tahun 2016-2021 adalah Dokumen Perencanaan Pembangunan Jangka Menengah Satuan Kerja Perangkat