• Tidak ada hasil yang ditemukan

BAB 2 TINJAUAN TEORITIS 2.1. Statistik Non Parametrik - Chapter II (584.9Kb)

N/A
N/A
Protected

Academic year: 2019

Membagikan "BAB 2 TINJAUAN TEORITIS 2.1. Statistik Non Parametrik - Chapter II (584.9Kb)"

Copied!
16
0
0

Teks penuh

(1)

BAB 2

TINJAUAN TEORITIS

2.1. Statistik Non Parametrik

Tes Statistik Non Parametrik adalah test yang modelnya tidak menetapkan syarat-syaratnya mengenai parameter-parameter populasi yang merupakan induk sampel penelitiannya. Oleh karena itu observasi-observasi independen dan variabel yang diteliti pada dasarnya memiliki kontinuitas. Uji Metode Non Parametrik atau bebas sebaran adalah prosedur pengujian hipotesa yang tidak mengasumsikan pengetahuan apapun mengenai sebaran populasi yang mendasarinya kecuali selama itu kontinu.

(2)

Statistik Non Parametrik memiliki keunggulan atau kelebihan yaitu kebanyakan prosedur non parametrik memerlukan asumsi daalm jumlah yang minimal maka kemungkinan untuk beberapa prosedur non parametrik perhitungan-perhitungannya dapat dilakukan dengan cepat dan mudah terutama bila terpaksa dilakukan secara manual. Jadi pengguna prosedur-prosedur ini menghemat waktu yang diperlukan untuk perhitungan dan ini merupakan bahan pertimbangan bila hasil penyajian harus segera terssaji atau bila mesin hitung berkemampuan tinggi tidak tersedia. Dengan statistik non parametrik [ara peneliti juga dengan dasar matematik dan statistik yang kurang, biasanya konsep dan metode prosedur non parametrik mudah dipahami. Prosedur-prosedur non parametrik boleh menggunakan skala pengukuran.

(3)

Dalam implementasi, pengguna prosedur yang tepat merupakan tujuan dari peneliti. Beberapa parameter yang dapat digunakan sebagai dasar dalam penggunaan statistik non parametrik adalah :

1. Hipotesa yang diuji tidak melibatkan parameter populasi

2. Skala yang digunakan lebih lemah dari skala prosedur parametrik. 3. Asumsi-asumsi parametrik tidak terpenuhi.

Banyak prosedur non parametrik yang dapat digunakan dalam analisis statistik, diantaranya :

1. Uji Chi-Kuadrat 2. Uji Binomial 3. Uji Run

4. Uji Kolomogrov Smirnov satu Sampel 5. Uji dua sampel independen

6. Uji beberapa sampel independen 7. Uji dua sampel yang berkaitan 8. Uji beberapa sampel yang berkaitan

2.2 Hipotesa

(4)

hipotesis tersebut. Pembuktian itu hanya dapat dilakukan dengan menguji hipotesis dengan data dilapangan.

Penaksiran parameter populasi dan uji hipotesa adalah pokok pembicaraan dalam statistik inferensi. Teknik inferensi pertama dikembangkan berdasarkan pada sejumlah asumsi tentang sifat populasi dari mana sampel tersebut diambil. Teknik inferensi seperti ini dalam statistika digolongkan dalam statistik non parametrik, karena harga-harga populasi merupakan “parameter” yang ditaksir atau hipotesis yang di uji.

Permasalahan yang harus diselesaikan dalam teknik adalah menaksir parameter-parameterr populasi yang didistribusikan sudah diasumsikan berdasarkan data sampel, atau menguji hipotesis tertentu yang berhubungan dengan parameter, misalnya uji hipotesis bahwa mean µ mempunyai nilai µo.

Untuk mendapatkan suatu sampel yang mempunyai distribusi tertentu sesuai dengan asumsi distribusi populasinya sangatlah sulit, oleh karena itu di kembangkanlah suatu teknik inferensi yang tidak memerlukan asumsi-asumsi tertentu tentang distribusi sampelnya. Teknik inferensi seperti ini dalam statistik dikenal dengan Statistik Non Parametrik, karena tidak memerlukan penaksiran atau uji hipotesis yang berhubungan dengan parameter populasinya.

(5)

1. Hipotesa harus muncul danada hubungannya dengan teori serta masalah yang diteliti.

2. Setiap hipotesis adalah kemungkinan jawaban terhadap persoalan yang di teliti. 3. Hipotesis harus dapat di uji atau terukur tersendiri untuk menetapkan hipotesis

yang benar kemungkinannya didukung oleh data empirik.

Perlu diingat, apapun syarat suatu hipotesis, yang jelas bahwa penampilan setiap hipotesis adalah bentuk statement, yaitu pernyataan tentang sifat atau keadaan hubungan dua atau lebih variabel yang akan diteliti.

Adapun jenis hipotesis yang mudah dimengerti adalah hipotesis nol(H0), hipotesa alternatif (Ha), hipotesa kerja (Hk). tetapi yang biasa adalah H0 yang merupaakan bentuk dasar atau memiliki statement yang menyatakan tidak ada hubungan antara dua variabel x dan variabel y yang akan diteliti atau variabel independen(x) tidak mempengaruhi variabel dependen (y).

2.3 Analisis yang digunakan

2.3.1 Analisis Univariat

Dilkukan untuk mengetahui distribusi frekuensi dari masing-masing variabel x dan y.

(6)

Hipotesis yang diuji biasanya adalah kelompok inti berbeda dalam ciri khas tertentu, dengan demikian perbedaan itu berhubungan dengan frekuensi relatif masuknya anggota-anggota kelompok ke dalam beberapa kategori.

Untuk menguji hipotesa ini kita menghitung banyak kasus dari masing-masing kelompok yang termasuk dalam kategori dan membandingkan proporsi dari kasus-kasus dari suatu kelompok dalam berbagai kategori dengan proporsi kasus dari kelompok yang lain. Dalam hal ini digunakan hipotesa Chi-Kuadrat.

2.4 Uji Chi-Kuadrat

Uji Chi-Kuadrat merupakan salah satu prosedur non parametrik yang dapat digunakan dalam analisis statistik yang sering digunakan dalam praktek. Teknik Chi-Kuadrat (Chi-Square : Chi dibaca: kai: symbol dari huruf Yunani : 𝑥𝑥2) ditemukan oleh Helmat pada tahun 1875, tetapi pada tahun 1900 pertama kali diperkenalkan kembali oleh Karl Pearson.

(7)

juga dapat disebut uji keselarasan (goodness of fit test ), karena untuk menguji apakah sebuah sampel selaras dengansalah satu distribusi teoritis (sepeti distribusi normal, uniform, binomial,dan lainnya).

Pada kedua prosedur tersebut selalu meliputi perbandingan frekuensi yang teramati dengan frekuensi yang diharapkanbila hipotesis nol yang ditetapkan benar.

Karena dalam penelitian yang dilakukan data yang diperoleh tidak selamanya berupa data skala internal saja melainkan juga data skala nominal yaitu berupa perhitungan frekunsi pemunculan tertentu.

Perhitungan frekuensi pemunculan juga sering dikaitkan dengan perhitungan presentasi, proporsi atau yang lain sejenis. Chi-Kuadrat adalah teknik statistika yang dipergunakan untuk menguji probabilitas seperti itu, yang dilakukan dengan cara mempertentangkan antara frekuensi yang benar-benar terjadi, frekuensi yang diobservasi, observed frequencies (disingkat F0 atau O ) dengan frekuensi yang diharapkan, expected frequencies (disingkat Fh atau E)

Ada beberapa hal yang perlu diperhatikan dalam menggunakan Chi-Kuadrat, yaitu sebagai berikut :

1. Chi-Kuadrat digunakan untuk menganalisa data yang berbentuk frekuensi.

2. Chi-Kuadrat tidak dapat digunakan menentukan besar atau kecilnya korelasi dari variabel-variabel.

(8)

4. Chi-Kuadrat cocok digunakan untuk data kategorik, data diskrit atau data normal. Cara memberikan interpretasi terhadap Chi-Kuadrat adalah dengan menetukan df (degree

of freedom)atau db ( derajat bebas). Setelah itu berkonsultasi tabel harga kritis

Chi-Kuadrat. Selanjutnya membandingkan antara harga Chi-Kuadrat dari hasil perhitungan dengan harga kritis Chi-Kuadrat, akhirnya mengambil kesimpulan dengan ketentuan :

1. Bila harga Chi-Kuadrat (𝑥𝑥2) sama atau lebih besar dari tabel Chi-Kuadrat maka hipotesa nol ( H0 ) ditolak dan hipotesa alternatif (Ha) diterima.

2. Bila harga Chi-Kuadrat lebih kecil dari tabrel Chi-Kuadrat maka hipotesa nol (H0) diterima dan hipotesa alaternatif ( Ha ) ditolak.

Ada beberapa persoalan yang dapat diselesaikan dengan mengambil manfaat dari Chi-Kuadrat diantaranya adalah :

1. Uji Independen antara Dua Faktor

Secara umum untuk menguji Independen antar dua faktor dapat dijelaskan sebagai berikut: misalkan diambil sebuah sampel acak berukuran ni dengan tiap pengamatan tunggal diduga terjadi karena adanya dua macam faktor I dan II. Faktor I terbagi atas b taraf atau tingkatan dan faktor II atas k taraf. Banyak pengamatan yang terjadi karena taraf ke-I ( i = 1,2,…,b)dan taraf ke-j faktor ke II ( j = 1,2,…,k) akan dinyatakan dengan Oij hasilnya dapat dicata dalam sebuah daftar kontigensi b x k. pasangan hipotesis yang akan diuji berdasarkan data dengan memakai penyesuaian persyaratan data yang di uji sebagai berikut :

(9)

H1 : Kedua faktor tidak bebas statistik

Tabel yang disajikan akan dianilisis untuk setiap sel yang diperlukan kemudian tabel kontigensi. Data tabel tersebut diatas, agar dapat dicari hubungan antara faktor-faktor menggunakan statistik uji Chi-Kuadrat.

Pengujian eksak sukar digunakan, karena disini hanya akan dijelaskan pengujian yang bersifat pendekatan. Untuk itu diperlukan frekuensi teoritik atau banyak gejala yang diharapkan terjadi yang disini akan dinyatakan dengan Eij.

Rumusnya adalah sebagai berikut :

E

ij

= (n

io

x n

oj

) / n

Dengan :

Eij = banyak data teoritis ( banayk gejala yang diharapkan terjadi ) nio = jumlah baris ke-i

noj = jumlah kolom ke-j n = total / jumlah data.

Dengan demikian misalnya didapat nilai dari teoritis masing-masing data : E11= (n10 x n01) / n ; E12 = (n10 x n02) / n

E21= (n20 x n01) / n ; E22 = (n20 x n02) / n dan seterusnya…

(10)

sehingga nilai statistik yang digunakan untuk menguji hipotesis diatas adalah :

𝑋𝑋2 =� �(𝑂𝑂𝑂𝑂𝑂𝑂 − 𝐸𝐸𝑂𝑂𝑂𝑂

2)

𝐸𝐸𝑂𝑂𝑂𝑂 𝑘𝑘

𝑂𝑂=1 ℎ

𝑂𝑂=𝑂𝑂

Dengan :

Oij : jumlah observasi untuk kasus-kasus yang dikategorikan dalam baris ke-i dan kolom ke-j

Eij : banyak kasus yang diharapkan untuk dikategorikan dalam baris ke-i dan kolom ke-j Dengan kriteria pengiujian sebagai berikut :

Tolak H0 jika 𝑋𝑋2 hitung ≥ 𝑋𝑋2 table Terima H0 jika 𝑋𝑋2 hitung <𝑋𝑋2 table

Dalam taraf nyata α = 0.05 dan derajat kebebasan (dk) untuk distribusi Chi-Kuadrat adalah (b-1)(k-1), kriteria pengujiannya adalah tolak H0 jika X2 ≥ X2(1-α)(k-1) dalam hal lainnya kita terima hipotesis H0.

2. Koefisien Kontigensi

Keguanaan teknik kontigensi yang diberi simbol C, adalah untuk mencari atau menghitung keeratan hubungan antara dua variabel yang mempunyai gejala ordinal (kategori) paling tidak berjenis normal.

(11)

adalah, tidak terbatas pada banyaknya kategori - kategori pada sel-sel petak atau tabel Kuadrat . test signifikansi yang digunakan adalah tetap menggunakan tabel kritis Chi-Kuadrat dengan derajat kebebasan (db) sama dengan jumlah kolom dikurangi satu dikalikan dengan jumlah baris dikurangi satu (b-1)(k-1). Rumus untuk menghitung koefisien kontigensi adalah :

C = � 𝑋𝑋2ℎ𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑋𝑋2

ℎ𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑖𝑖

Dengan :

C = koefisien kontigensi

X2hitung = harga Chi-Kuadrat n = banyak data

3. Metode Analisa

Dalam penelitian ini dilakukan analisa kuantitatif dengan langkah-langkah sebagai berikut :

Langkah 1 :

Pengumpulan data yang dilakukan penulisan dengan mengadakan penelitian pada sekolah yang akan didata.

Langkah 2 :

(12)

Dari data yang dianalisa maka dapat dibentuk daftar kontigensi frekuensi yang diamati seperti ini dibawah ini :

Tabel 2..1 daftar kontigensi

FAKTOR II (K TARAF) Jumlah

Dengan : faktor I dan II adalah faktor-faktor yang membentuk daftar kontigensi dengan b baris dan kolom. nij adalah frekuensi yang diamati.

𝑖𝑖(𝑂𝑂) =� 𝐸𝐸𝑂𝑂𝑂𝑂

(13)

Eij = (njo x noj ) / n Dengan :

Eij : frekuensi yang diharapkan n : jumlah data yang diamati

Dari rumus dia atas dapat disusun tabel kontigensi dar frekuensi yang diharapkan.

Tabel 2..2 daftar kontigensi dari frekuensi yang diharapkan

FAKTOR II (K TARAF) Jumlah

Dengan terbentuknya daftar frekuensi yang diamati dan daftar frekuensi yang diharapkan maka dapat ditentukan harga 𝑋𝑋2

Langkah 5

(14)

1. Tidak boleh menggunakan data kurang dari 20.

2. Frekuensi teoritis (Eij ) minimum 5 setiap kotak, sebab 𝑋𝑋2hanya berlaku apabila Eij ≥ 5, dengan kata lain apabila Eij terhadap data tidak dapat dipertanggung jawabkan. Untuk tabel dua terhadap data dua kolom dan untuk tabel lebih dari 2 x 2 sebelum menghitung 𝑋𝑋2 perlu diperhatikan dahulu Eij pada setiap kotak dalam tabel. Jika syarat tidak terpenuhi maka beberapa kolom atau baris perlu digabung.

3. Setiap kotak tidak boleh mempunyai frekuensi kurang dari 1.

Setiap kriteria-kriteria di atas dipenuhi maka harga 𝑋𝑋2 dapat dihitung dengan rumus :

𝑋𝑋2 = � �(𝑂𝑂𝑂𝑂𝑂𝑂 − 𝐸𝐸𝑂𝑂𝑂𝑂

2)

𝐸𝐸𝑂𝑂𝑂𝑂 𝑘𝑘

𝑂𝑂=1 ℎ

𝑂𝑂=𝑂𝑂

Untuk menguji apakah harga 𝑥𝑥2 dianggap berarti pada suatu level of signifikan tertentu harus dikethui nilai kritis dari 𝑥𝑥2 dengan menggunakan daftar pencarian harga Chi-Kuadrat yang dibandingkan dengan nilai yang diperoleh dari hasil perhitungan. Dengan membaca nilai Chi-Kuadrat yang tepat harus terlebih dahulu dipilih confidence coeficient

yang akan dipakai dan degree of freedom nya. Untuk hal yang umum degree offreedom

ini adalah sama dengan perkalian (k -1) dan (b -1) atau baris dikalikan kolom Degree of

freedom = (k -1) (b -1).

Langkah 6 :

(15)

H0 : Tidak terdapat hubungan antara jenis pekerjaan dan tingkat pendidikan orang tua terhadap prestasi anak di sekolah.

H1 :Terdapat hubungan antara jenis pekerjaan dan tingkat pendidikan orang tua terhadap prestasi anak di sekolah.

Maka kriteria penerimaan dan penolakan hipotesa ini adalah sebagai berikut : Tolak H0 jika 𝑥𝑥2hitung ≥ 𝑥𝑥2tabel

Terima H1 jika 𝑥𝑥2hitung ≤ 𝑥𝑥2tabel Langkah 7 :

Selanjutnya akan ditentukan koefisien kontigensi ( C ) dengan menggunakan rumus sebagai berikut :

C = � 𝑋𝑋2ℎ𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑋𝑋2

ℎ𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑖𝑖

Dengan :

C = koefisien kontigensi

X2hitung = harga Chi-Kuadrat

n = banyak data

Harga C dipakai untuk nilai derajat asosiasi antara faktor-faktornya adalah dengan membandingkan harga C dengan koefisien kontigensi maksimum. Apabila harga koefisien kontigensi maksimum dihitung dengan rumus sebagai berikut :

(16)

Dengan : m = harga minimum b dan k (jumlah baris dan kolom ). Langkah 8 :

Dengan membandingkan C dengan Cmaksimal maka keeratan hubungan variabel I dan variabel II ditentukan oleh persentasenya. Hubungan antara dua variabel ini disimbolkan dengan Q dan mempunyai nilai -1 dan 1 maka hubungan kedua variabel itu semakin erat.

Q = 𝐶𝐶

𝐶𝐶𝑚𝑚𝑚𝑚𝑘𝑘𝑚𝑚 𝑋𝑋 100 %

Dengan :

Q : Untuk menyatakan derajat hubungan antara variabel I dan variabel II C : Koefisien kontigensi

Cmaks : Koefisien kontigensi maksimal

Dengan menggunakan ketentuan-ketentuan Davis (1971 ) sebagai berikut :

1. Sangat erat jika Q ≥ 0,70

Gambar

Tabel 2..1 daftar kontigensi
Tabel 2..2 daftar kontigensi dari frekuensi yang diharapkan

Referensi

Dokumen terkait

pengalaman nyeri. 4) Ajarkan pasien pengobatan non farmakologi. Resiko infeksi berhubungan dengan prosedur invasif. 2) Mampu mencegah timbulnya infeksi. 3) Jumlah leukosit

1) Menyusui/memberi ASI kepada bayi sangat penting untuk mengatasi masalah kelaparan. Pada kebanyakan masyarakat, banyak keluarga dan individu tidak mempunyai makanan yang

Hasil perhitungan terhadap nilai Z-Score tersebut adalah jika lebih besar dari 2,99 menunjukkan bahwa perusahaan tidak mengalami permasalahan dalam keuangan

Pada tahun 1924, bahan ini mulai diperkenalkan sebagai salah satu bahan pembuatan basis gigitiruan, namun mempunyai beberapa kelemahan seperti dapat terjadi perubahan warna,

Peraturan perundang-undangan menetapkan bahwa semua makanan yang dikemas harus mempunyai label yang memuat keterangan tentang isi, jenis dan jumlah bahan-bahan

Dengan demikian jumlah tenaga kerja bagian produksi yang seharusnya dibutuhkan adalah sebanyak 47 orang, sehingga secara keseluruhan dapat dikatakan terjadi

model pembelajaran PBL juga mempunyai beberapa kelemahan yaitu siswa akan merasa malas untuk mencoba jika tidak memiliki minat atau tidak mempunyai kepercayaan bahwa

kegiatan-kegiatan yang bukan basis (non basic activities) adalah kegiatan- kegiatan yang menyediakan barang-barang yang dibutuhkan oleh orang- orang yang bertempat tinggal