• Tidak ada hasil yang ditemukan

BAB II TINJAUAN PUSTAKA

N/A
N/A
Protected

Academic year: 2021

Membagikan "BAB II TINJAUAN PUSTAKA"

Copied!
16
0
0

Teks penuh

(1)

BAB II

TINJAUAN PUSTAKA

2.1 Hutan Hujan Tropis

Hutan merupakan kumpulan pepohonan yang tumbuh rapat beserta tumbuh-tumbuhan memanjat dengan bunga yang beraneka warna yang berperan sangat penting bagi kehidupan di bumi ini (Arief 2001).

Menurut Arief (2001) hutan hujan tropis mempunyai suhu bulanan rata-rata 20˚ C – 50˚ C dengan curah hujan 2000 – 5000 mm per tahun. Hutan hujan tropis terdapat di Amerika Selatan (lembah Amazone), Amerika Tengah, Afrika (lembah Congo), dan Asia Tenggara (Indonesia, Malaysia, dan Filipina). Jenis-jenis pohon yang tumbuh untuk Amerika, yaitu: Swietinia, Mora, Cedrella, Ocotea, dan Virolla. Jenis-jenis pohon yang tumbuh untuk Afrika, yaitu: Terminalia, Khaya, Triplochiton, dan Anchomea. Sedangkan jenis-jenis pohon yang tumbuh untuk Asia Tenggara adalah Dipterocarpaceae.

Dalam UU RI No. 41 tahun 1999, hutan adalah suatu kesatuan ekosistem berupa hamparan lahan berisi sumberdaya alam hayati yang didominasi pepohonan dalam persekutuan alam lingkungan, yang satu dengan yang lainnya tidak dapat dipisahkan.Pengertian hutan dapat ditinjau dari beberapa faktor antara lain: wujud biofisik lahan dan tumbuhan, fungsi ekologi, kepentingan kegiatan operasional pengelolaan atau kegiatan tertentu lainnya, dan status hukum lahan hutan (Suhendang 2002).

Hutan bukan hanya sekumpulan individu pohon, tetapi sebagai masyarakat tumbuhan yang kompleks, terdiri atas pepohonan, semak, tumbuhan bawah, jasad renik tanah, dan hewan. Satu sama lain saling terikat dalam hubungan ketergantungan. Untuk dapat dikategorikan sebagai hutan, sekelompok pepohonan harus mempunyai tajuk yang cukup rapat, sehingga merangsang pemangkasan alami dengan cara menaungi ranting dan dahan di bagian bawah, serta menghasilkan tumpukan bahan organik (serasah) yang sudah terurai maupun yang belum di atas tanah mineral (Indriyanto 2008).

Menurut Simbolon et al. (1989) diacu dalam Indriyanto (2008), hutan hujan tropis memiliki ciri, yaitu: terdapat pada daerah beriklim basah, tanah

(2)

kering, pedalaman, dan berupa hutan campuran didominasi oleh pohon-pohon yang selalu hijau. Di Indonesia, hutan hujan tropik terdapat di Sumatera, Kalimantan, Sulawesi, Maluku, dan Irian Jaya. Hutan tersebut mempunyai lebih kurang 3000 jenis pohon besar dan termasuk ke dalam 450 marga atau genus (Arief 1994, diacu dalam Indriyanto 2008).

Isi tegakan hutan hujan tropika didominasi oleh pohon-pohon yang selalu hijau dan tidak mengenal periode menggugurkan daun. Menurut tinggi tempatnya hutan hujan tropik dibedakan menjadi 3 zone sebagai berikut (Indriyanto 2008):

Zone 1 : 0 – 1000 mdpl; hutan hujan bawah Zone 2 : 1000 – 3300 mdpl; hutan hujan tengah Zone 3 : 3300 – 4100 mdpl; hutan hujan atas

2.2 Sistem Silvikultur Tebang Pilih Tanam Indonesia (TPTI)

Menurut Darjadi dan Hardjono (1976) diacu dalam Indriyanto (2008), sistem silvikultur adalah proses pemeliharaan, penebangan, penggantian sesuatu tegakan hutan untuk menghasilkan kayu atau hasil hutan lainnya dalam bentuk tertentu. Silvikultur TPTI adalah serangkaian tindakan yang dilakukan secara berencana terhadap tegakan tidak seumur untuk mamacu pertumbuhan tegakan sesuai dengan keadaan hutan dan tapaknya sehingga terbentuk tegakan tertata, yakni yang optimal dan lestari.

Tujuan TPTI adalah terbentuknya struktur dan komposisi tegakan hutan alam tak seumur yang optimal dan lestari sesuai dengan sifat-sifat biologi dan keadaan tempat tumbuh aslinya. Ini ditandai dengan wujud tegakan yang mengandung jumlah pohon, tiang, permudaan jenis-jenis niagawi dengan mutu dan produktivitas tinggi, didampingi oleh sejumlah jenis pohon lainnya sehingga memenuhi tingkat keanekaragaman hayati yang diinginkan.

Sasaran sistem TPTI adalah tegakan hutan alam produksi tidak seumur dengan keanekaragaman hayati yang tinggi. Untuk mencapai tujuan pelaksanaan TPTI, Departemen Kehutanan (1993) membuat acuan, sebagai berikut:

1. Pengaturan komposisi jenis pohon di dalam hutan yang diharapkan dapat lebih menguntungkan baik ditinjau dari segi ekologi maupun ekonomi.

(3)

2. Pengaturan struktur/kerapatan tegakan yang optimal di dalam hutan yang diharapkan dapat memberikan peningkatan produksi kayu bulat dari tegakan sebelumnya.

3. Terjaminnya fungsi hutan dalam rangka pengawetan tanah dan air. 4. Terjaminnya fungsi perlindungan hutan.

Pelaksanaan sistem silvikultur TPTI dalam pengusahaan hutan dimaksudkan untuk mengatur kegiatan penebangan dan pembinaan hutan alam produksi yang mempunyai jumlah pohon inti minimal 25 pohon per hektar. Pohon inti adalah pohon jenis komersial berdiameter 20 cm yang akan membentuk tegakan utama yang akan ditebang pada rotasi tebangan berikutnya. Pohon inti yang ditunjuk, diutamakan terdiri dari pohon-pohon komersial yang sama dengan pohon yang ditebang. Seandainya jumlahnya masih kurang dari 25 pohon per hektar dapat ditambah dari jenis kayu lain (Departemen kehutanan 1993).

Sistem silvikultur TPTI merupakan sistem yang paling sedikit mengubah ekosistem hutan di hutan produksi yang merupakan hutan alam campuran tak seumur, dibanding sistem silvikultur lainnya. Sistem TPTI diharapkan menjadi modifikasi dari peristiwa alami di dalam hutan dengan menyingkirkan pohon-pohon yang tua agar ruang yang dipakai dapat dimanfaatkan oleh pohon-pohon-pohon-pohon muda yang masih produktif (Departemen Kehutanan 1993).

2.3 Biomassa, Karbon dan Cara Pendugaannya

Biomassa merupakan jumlah total dari bahan organik yang dinyatakan dalam berat kering oven ton per hektar (Brown 1997). Menurut Whitten et al. (1984) biomassa hutan adalah jumlah total bobot kering semua bagian tumbuhan hidup, baik untuk seluruh atau sebagian tubuh organisme, produksi atau komunitas dan dinyatakan dalam berat kering per satuan luas (ton/ha). Biomassa dibedakan ke dalam dua kategori, yaitu: biomassa di atas permukaan tanah (above ground biomass) dan di bawah permukaan tanah (below ground biomass). Menurut Hairiah (2002) yang termasuk ke dalam komponen biomassa di atas permukaan tanah adalah semua vegetasi di atas permukaan tanah yang masih hidup termasuk semak-semak, tumbuhan bawah, dan bagian-bagian vegetasi yang mati (nekromassa) termasuk serasah di atas permukaan tanah, tunggak yang mati, batang, cabang, dan ranting.

(4)

Biomassa tumbuhan bertambah karena tumbuhan menyerap karbondioksida dari udara dan mengubah zat tersebut menjadi bahan organik melalui proses fotosintesis. Jumlah biomassa di dalam hutan adalah hasil dari perbedaan antara produksi melalui fotosintesis dengan konsumsi melalui respirasi dan proses penebangan (Whitten et al. 1984).

Menurut Chapman (1976) secara garis besar metode pendugaan biomassa di atas permukaan tanah dapat dikelompokkan menjadi dua cara yaitu :

1. Metode Pendugaan Langsung (destructive sampling) a. Metode Pemanenan Individu Tanaman

Metode ini dapat digunakan pada tingkat kerapatan yang cukup rendah dan komunitas dengan jenis yang sedikit. Nilai total biomassa diperoleh dengan menjumlahkan biomassa seluruh individu dalam suatu unit area contoh.

b. Metode Pemanenan Kuadrat

Metode ini mengharuskan memanen semua individu dalam suatu unit area contoh dan menimbangnya. Nilai total biomassa diperoleh dengan mengkonversi berat bahan organik tumbuhan yang dipanen di dalam suatu unit area contoh.

c. Metode Pemanenan Individu Pohon yang Mempunyai Luas Bidang Dasar Rata-rata

Metode ini biasanya diterapkan pada tegakan yang memiliki ukuran individu seragam. Pohon yang ditebang ditentukan berdasarkan rata-rata diameternya dan kemudian menimbangnya. Nilai total biomassa diperoleh dengan menggandakan nilai berat rata-rata dari pohon contoh yang ditebang dengan jumlah individu pohon dalam suatu unit area tertentu atau jumlah berat dari semua pohon contoh yang digandakan dengan rasio antara luas bidang dasar dari semua pohon dalam suatu unit area dengan jumlah luas bidang dasar dari semua pohon contoh.

2. Metode Pendugaan Tidak Langsung (non destructive sampling) a. Metode Hubungan Allometrik

Persamaan allometrik dibuat dengan mencari korelasi yang paling baik antar dimensi pohon dengan biomassanya. Sebelum membuat persamaan

(5)

tersebut, pohon-pohon yang mewakili sebaran kelas diameter ditebang dan ditimbang. Nilai total biomassa diperoleh dengan menjumlahkan semua berat individu pohon dari suatu unit area tertentu.

b. Metode Crop Meter

Pendugaan biomassa metode ini dengan cara menggunakan seperangkat peralatan elektroda listrik yang kedua kutubnya diletakkan di atas permukaan tanah pada jarak tertentu. Biomassa tumbuhan yang terletak antara dua elektroda dipantau dengan memperhatikan electrical capacitance yang dihasilkan alat tersebut.

Menurut Brown (1997) ada dua pendekatan untuk menduga biomassa dari pohon, yaitu: pendekatan pertama berdasarkan pendugaan volume kulit sampai batang bebas cabang yang kemudian dirubah menjadi kerapatan biomassa (ton/ha), sedangkan pendekatan kedua dengan menggunakan persamaan regresi biomassa atau lebih dikenal dengan persamaan allometrik. Persamaan allometrik digunakan untuk mempermudah pendugaan biomassa berdasarkan parameter pohon hidup dengan mengukur dimensi pohon atau tegakan yang mudah diukur, biasanya menggunakan diameter setinggi dada (Dbh) sebagai dasar pendugaan. Metode ini menggunakan biomassa sebagai fungsi dari diameter pohon dengan persamaan sebagai berikut :

Biomassa di atas tanah (Y) = a Db Keterangan :

Y = biomassa pohon (kg)

D = diameter setinggi dada (130 cm) a dan b merupakan konstanta

Menurut Ketterings et al. (2001) metode yang paling akurat dalam pengukuran biomassa tegakan di atas permukaan tanah adalah dengan cara menimbang biomassa pohon secara langsung di lapangan, tetapi metode tersebut membutuhkan banyak waktu, sangat merusak, dan pada umumnya terbatas pada area yang sempit serta ukuran pohon yang kecil. Pendugaan biomassa meggunakan metode non destructive dengan allometrik bisa lebih cepat dilaksanakan dan area yang lebih luas bisa dijadikan contoh. Persamaan allometrik sering digunakan pada studi-studi ekologi dan inventarisasi hutan

(6)

dalam menduga hubungan antara diameter setinggi dada atau variabel-variabel lain yang mudah diukur dengan volume pohon atau biomassa pohon.

Penetapan persamaan allometrik yang akan digunakan dalam pendugaan biomassa merupakan tahapan penting proses pendugaan biomassa. Setiap persamaan allometrik dikembangkan berdasarkan kondisi tegakan dan variasi jenis tertentu yang berbeda satu dengan yang lain. Penelitian Brown (1997) telah menghasilkan persamaan allometrik untuk menduga biomassa vegetasi di atas permukaan tanah di hutan alam tropis. Pada Tabel 1 disajikan beberapa persamaan allometrik yang telah dibuat untuk menduga biomassa di hutan alam tropis berdasarkan perbedaan curah hujan. Persamaan tersebut dikembangkan dari data 371 pohon dari 3 daerah tropis dengan rentang diameter antara 5 – 148 cm yang dikumpulkan dari berbagai sumber.

Tabel 1 Persamaan allometrik untuk menduga biomassa di hutan alam tropis berdasarkan zona iklim

Zona Iklim Persamaan Kisaran Dbh

(cm) Jumlah Contoh Pohon R2 Kering Y = exp[-1,996 + 2,32 * ln(D)] 5 - 40 28 0,89 Y = 10^[-0,535 + log10 (BA)] 3 - 30 191 0,94 Lembab Y = 42,69 – 12,800(D) + 1,242(D2) 5 - 148 170 0,84 Y = exp[-2,134 + 2,530 * ln(D)] 0,97 Basah Y = 21,297 – 6,953(D) + 0,740(D2) 4 - 112 169 0,92 Sumber : Brown (1997) Keterangan :

Y = biomassa per pohon (kg)

D = diameter pohon setinggi dada (cm) BA = basal area (cm2)

Persamaan tersebut diperuntukkan untuk 3 zona iklim yang berbeda, yaitu: kering, lembab dan basah. Suatu tempat dikatakan masuk dalam zona kering apabila curah hujan lebih rendah dibandingkan dengan potensial evapotranspirasi (misalnya curah hujan < 1500 mm/th dan periode kering selama beberapa bulan). Zona lembab adalah zona yang curah hujannya mendekati seimbang dengan potensial evapotranspirasi (misalnya curah hujan antara 1500 – 4000 mm/th dengan tanpa periode kering atau periode kering sangat pendek). Zona basah

(7)

mempunyai curah hujan yang lebih besar dari potensial evapotranspirasi (misalnya > 4000 mm/th dan tanpa periode kering).

Dalam inventarisasi karbon hutan, pool karbon (carbon pool) yang diperhitungkan setidaknya ada 4 pool karbon. Keempat pool karbon tersebut adalah biomassa atas permukaan, biomassa bawah permukaan, bahan organik mati, dan karbon organik tanah. Biomassa atas permukaan adalah semua material hidup di atas permukaan. Termasuk bagian dari pool karbon ini adalah batang, tunggul, cabang, kulit kayu, biji, dan daun dari vegetasi baik dari strata pohon maupun dari strata tumbuhan bawah di lantai hutan. Biomassa bawah permukaan adalah semua biomassa dari akar tumbuhan yang hidup. Pengertian akar ini berlaku hingga ukuran diameter tertentu yang ditetapkan. Hal ini dilakukan sebab akar tumbuhan dengan diameter yang lebih kecil dari ketentuan cenderung sulit untuk dibedakan dengan bahan organik tanah dan serasah. Bahan organik mati meliputi kayu mati dan serasah. Serasah dinyatakan sebagai semua bahan organik mati dengan diameter yang lebih kecil dari diameter yang telah ditetapkan dengan berbagai tingkat dekomposisi yang terletak di permukaan tanah. Kayu mati adalah semua bahan organik mati yang tidak tercakup dalam serasah baik yang masih tegak maupun yang roboh di tanah, akar mati, dan tunggul dengan diameter lebih besar dari diameter yang telah ditetapkan. Karbon organik tanah mencakup karbon pada tanah mineral dan tanah organik termasuk gambut.

Karbon di hutan alam dapat diduga dengan menggunakan pendugaan biomassa hutan. Brown (1997) menyatakan bahwa umumnya 50% dari biomassa hutan tersusun atas karbon. IPCC (2006) menyatakan bahwa konsentrasi karbon dalam bahan organik adalah sekitar 47%, dengan demikian estimasi jumlah karbon tersimpan dapat dihitung dengan mengalikan total berat massanya dengan konsentrasi karbon, yaitu: total biomassa dikalikan dengan konsentrasi karbon dalam biomassa sebesar 0,47. Untuk memperhitungkan besarnya potensial emisi karbon akibat kegiatan pemanenan kayu, maka dapat diduga dari besarnya biomassa hutan yang terdapat pada pohon yang di panen/ditebang, pohon yang mengalami kerusakan akibat kegiatan penebangan dan dari pohon yang mengalami kerusakan akibat kegiatan penyaradan.

(8)

Total emisi karbon tahunan merupakan fungsi dari faktor-faktor, yaitu: (1) Luas areal yang ditebang per tahun; (2) Jumlah kayu yang dipanen per unit area (ha) per tahun; (3) Jumlah limbah per ha per tahun yang merupakan sisa penebangan, pohon yang rusak/mati akibat penebangan, kematian pohon akibat jalan sarad, jalan angkut, TPn, logyard; (4) Biomassa kayu yang dipakai lama sebagai produk kayu (GOFC – gold 2009).

2.4 Mengapa Karbon (C) Tersimpan Perlu Diukur

Perubahan iklim global yang terjadi akhir-akhir ini disebabkan karena terganggunya keseimbangan energi antara bumi dan atmosfir. Keseimbangan tersebut dipengaruhi, antara lain: peningkatan gas-gas asam arang atau karbondioksida (CO2), metana (CH4), dan nitrogen oksida (N2O) yang lebih

dikenal dengan gas rumah kaca (GRK). Saat ini konsentrasi GRK sudah mencapai tingkat yang membahayakan iklim bumi dan keseimbangan ekosistem (Hairiah & Rahayu 2007).

Konsentrasi GRK di atmosfir meningkat sebagai akibat adanya pengelolaan lahan yang kurang tepat, antara lain: pembakaran vegetasi hutan dalam skala luas pada waktu yang bersamaan dan adanya pengeringan lahan gambut. Kegiatan-kegiatan tersebut umumnya dilakukan pada awal alih guna lahan hutan menjadi lahan pertanian. Kebakaran hutan dan lahan serta gangguan lahan lainnya telah menempatkan Indonesia dalam urutan ketiga negara penghasil emisi CO2 terbesar di dunia. Indonesia berada di bawah Amerika Serikat dan

China dengan jumlah emisi yang dihasilkan mencapai dua miliar ton CO2 per

tahun atau menyumbang 10% dari emisi CO2 di dunia (Hairiah & Rahayu 2007).

Tumbuhan memerlukan sinar matahari, gas asam arang (CO2) yang

diserap dari udara, serta air dan hara yang diserap dari dalam tanah untuk kelangsungan hidupnya. Melalui proses fotosintesis, CO2 di udara diserap oleh

tanaman dan diubah menjadi karbohidrat, kemudian disebarkan ke seluruh tubuh tanaman dan akhirnya ditimbun dalam tubuh tanaman berupa daun, batang, ranting, bunga dan buah. Proses penimbunan C dalam tubuh tanaman hidup dinamakan proses sekuestrasi (C – sequestration). Dengan demikian mengukur jumlah C yang disimpan dalam tubuh tanaman hidup (biomassa) pada suatu lahan

(9)

dapat menggambarkan banyaknya CO2 di atmosfir yang diserap oleh tanaman

(Hairiah & Rahayu 2007).

Lebih lanjut Hairiah dan Rahayu (2007) mengatakan, tanaman atau pohon berumur panjang yang tumbuh di hutan maupun di kebun campuran (agroforestry) merupakan tempat penimbunan atau penyimpanan C (rosot C = C sink) yang jauh lebih besar daripada tanaman semusim. Oleh karena itu, hutan alami dengan keragaman jenis pepohonan berumur panjang dan serasah yang banyak merupakan gudang penyimpanan C tertinggi (baik di atas maupun di dalam tanah). Hutan juga melepaskan CO2 ke udara lewat respirasi dan dekomposisi

(pelapukan) serasah, namun pelepasannya terjadi secara bertahap, tidak sebesar bila ada pembakaran yang melepaskan CO2 sekaligus dalam jumlah yang besar.

Bila hutan diubah fungsinya menjadi lahan-lahan pertanian atau perkebunan atau ladang pengembalaan maka C tersimpan akan merosot. Berkenaan dengan upaya pengembangan lingkungan bersih, maka jumlah CO2 di udara harus dikendalikan

dengan jalan meningkatkan jumlah serapan CO2 oleh tanaman sebanyak mungkin

dan menekan pelepasan (emisi) CO2 ke udara serendah mungkin. Jadi,

mempertahankan keutuhan hutan alami, menanam pepohonan pada lahan-lahan pertanian dan melindungi lahan gambut sangat penting untuk mengurangi jumlah CO2 yang berlebihan di udara. Jumlah “C tersimpan” dalam setiap penggunaan

lahan tanaman, serasah dan tanah, biasanya disebut juga sebagai “cadangan C”. Jumlah C tersimpan antar lahan berbeda-beda, tergantung pada keragaman dan kerapatan tumbuhan yang ada, jenis tanahnya, serta cara pengelolaannya. Penyimpanan C suatu lahan menjadi lebih besar bila kondisi kesuburan tanahnya baik atau dengan kata lain jumlah C tersimpan di atas tanah (biomasa tanaman) ditentukan oleh besarnya jumlah C tersimpan di dalam tanah (bahan organik tanah) (Hairiah & Rahayu 2007).

Penebangan hutan akan menyebabkan terbukanya permukaan tanah terhadap radiasi dan cahaya matahari. Dampak langsungnya adalah meningkatnya suhu tanah dan turunnya kadar air tanah. Dampak langsung lainnya dari kegiatan penebangan hutan adalah menurunnya cadangan karbon atas permukaan ( above-ground carbon stocks) dan selanjutnya akan mempengaruhi penyusutan cadangan karbon bawah permukaan (below-ground carbon stocks) (Murdiyarso et al. 2004).

(10)

Aliran karbon dari atmosfir ke vegetasi merupakan aliran yang bersifat dua arah, yaitu: pengikatan CO2 ke dalam biomasa melalui fotosintesis dan pelepasan

CO2 ke atmosfir melalui proses dekomposisi dan pembakaran. Diperkirakan

sekitar 60 Pg (1 Pg = 1 Gt) karbon mengalir antara ekosistem daratan dan atmosfir setiap tahunnya, dan sebesar 0,7 ± 1,0 Pg karbon diserap oleh ekosistem daratan. Alih guna lahan dan konversi hutan merupakan sumber utama emisi CO2 dengan

jumlah sebesar 1,7 ± 0,6 Pg karbon per tahun. Apabila laju konsumsi bahan bakar dan pertumbuhan ekonomi global terus berlanjut seperti yang terjadi pada saat ini, maka dalam jangka waktu 100 tahun yang akan datang suhu global rata-rata akan meningkat sekitar 1,7 - 4,50 C (Rahayu et al. 2007).

Kegiatan konversi hutan menjadi lahan pertanian melepaskan cadangan karbon ke atmosfir dalam jumlah yang cukup berarti. Namun jumlah tersebut tidak memberikan dampak yang berarti terhadap jumlah CO2 yang mampu diserap

oleh hutan dan daratan secara keseluruhan. Dampak konversi hutan ini baru terasa apabila diikuti dengan degradasi tanah dan hilangnya vegetasi, serta berkurangnya proses fotosintesis akibat munculnya hutan beton serta lahan yang dipenuhi bangunan-bangunan dari aspal sebagai pengganti tanah atau rumput. Meskipun laju fotosintesis pada lahan pertanian dapat menyamai laju fotosintesis pada hutan, namun jumlah cadangan karbon yang terserap lahan pertanian jauh lebih kecil. Selain itu, karbon yang terikat oleh vegetasi hutan akan segara dilepaskan kembali ke atmosfir melalui pembakaran, dekomposisi sisa panen maupun pengangkutan hasil panen. Masalah utama yang terkait dengan alih guna lahan adalah perubahan jumlah cadangan karbon. Pelepasan karbon ke atmosfir akibat konversi hutan berjumlah sekitar 250 Mg per ha C yang terjadi selama penebangan dan pembakaran, sedangkan penyerapan kembali karbon menjadi vegetasi pohon relatif lambat, hanya sekitar 5 Mg per ha C. Penurunan emisi karbon dapat dilakukan dengan cara, yaitu: (1) Mempertahankan cadangan karbon yang telah ada dengan: mengelola hutan lindung, mengendalikan deforestasi, menerapkan praktek silvikultur yang baik, mencegah degradasi lahan gambut, dan memperbaiki pengelolaan cadangan bahan organik tanah, (2) Meningkatkan cadangan karbon melalui penanaman tanaman berkayu, dan (3) Mengganti bahan bakar fosil dengan bahan bakar yang dapat diperbarui secara langsung maupun

(11)

tidak langsung (angin, biomasa, aliran air), radiasi matahari, atau aktivitas panas bumi (Rahayu etal. 2007).

Peningkatan penyerapan cadangan karbon dapat dilakukan dengan cara, sebagai berikut: (1) Meningkatkan pertumbuhan biomasa hutan secara alami, (2) Menambah cadangan kayu pada hutan yang ada dengan penanaman pohon atau mengurangi pemanenan kayu, dan (3) Mengembangkan hutan dengan jenis pohon yang cepat tumbuh. Karbon yang diserap oleh tanaman disimpan dalam bentuk biomasa kayu, sehingga cara yang paling mudah untuk meningkatkan cadangan karbon adalah dengan menanam dan memelihara pohon (Hairiah & Rahayu 2007).

Untuk memperoleh potensial penyerapan karbon yang maksimum perlu ditekankan pada kegiatan peningkatan biomasa di atas permukaan tanah bukan karbon yang ada dalam tanah, karena jumlah bahan organik tanah yang relatif lebih kecil dan masa keberadaannya singkat. Hal ini tidak berlaku pada tanah gambut (Rahayu et al. 2007).

Cadangan karbon pada suatu sistem penggunaan lahan dipengaruhi oleh jenis vegetasinya. Suatu sistem penggunaan lahan yang terdiri dari pohon dengan spesies yang mempunyai nilai kerapatan kayu tinggi, biomasanya akan lebih tinggi bila dibandingkan dengan lahan yang mempunyai spesies dengan nilai kerapatan kayu rendah. Biomasa pohon (dalam berat kering) dihitung menggunakan allometric equation berdasarkan pada diameter batang setinggi 1,3 m di atas permukaan tanah (Rahayu et al. 2007).

2.5 Potensi Stok Karbon di Hutan Alam Tropika

Hutan merupakan reservoir dari karbon yang cukup besar adalah sekitar 350 GTC (Giga Ton Carbon) dari 550 GTC yang ada di biota daratan. Rosot karbon di hutan akan berpengaruh terhadap perubahan neraca karbon hutan, yang pada akhirnya dapat mempengaruhi sumber karbon di hutan (Channel 1996, diacu dalam Junaedi 2007). Penyerapan karbon oleh hutan ditentukan melalui proses penangkapan dalam proses fotosintesis dan pelepasan karbon melalui respirasi. Karbon yang ditangkap dan dilepaskan akan mempengaruhi produktifitas ekosistem bersih (NEP). Menurut Johnsen et al. (2001) diacu dalam Junaedi (2007), besarnya NEP oleh hutan sebesar 5620 – 6780 pound karbon/ha/tahun.

(12)

Suhendang (2002) menyatakan bahwa sumberdaya hutan di Indonesia memiliki potensi tinggi dalam hal keanekaragaman hayati dan potensi penyerapan karbon. Diperkirakan hutan di Indonesia yang luasnya 120,4 juta hektar mampu menyerap dan menyimpan karbon sekitar 15,05 milyar ton karbon.

Lokasi utama cadangan karbon di hutan alam tropika, yaitu: di atas permukaan tanah (vegetasi hutan) dan di dalam permukaan tanah (Van Noordwijk et al. 1997). Lasco (2002) menyatakan bahwa cadangan karbon di hutan tropis asia berkisar antara 40 – 250 ton C/ha untuk vegetasi dan 50 – 120 ton C/ha untuk tanah. Sedangkan menurut Murdiyarso et al. (1994) bahwa hutan tropis di Indonesia diperkirakan mempunyai cadangan karbon berkisar antara 161 – 300 ton C/ha.

Akumulasi kandungan biomassa hutan dipengaruhi oleh teknik pemanenan kayu dan perlakuan silvikultur yang digunakan. Kandungan biomassa di hutan hujan tropika Asia Tenggara berkisar antara 400 – 500 ton/ha (berat kering oven) termasuk biomassa akar (Pinard & Putz 1997, diacu dalam Junaedi 2007).

Proses pelepasan cadangan karbon ke atmosfir dipengaruhi oleh beberapa faktor diantaranya intensitas pemanenan hutan dan proses dekomposisi (Ojima et al. 1996, diacu dalam Junaedi 2007). Hasil penelitian Van Noordwijk et al. (1997) menyatakan bahwa cadangan karbon di hutan alam Jambi dapat melebihi 50 kg/m2, dimana 80% cadangan karbon terdapat pada pohon, 10% pada pohon yang sudah mati dan 10% berada pada tanah. Sedangkan pada hutan sekunder 10 tahun, penurunan cadangan biomassa terlihat sangat nyata yang berakibat cadangan karbonnya semakin menurun drastis.

2.6 Sistem Informasi Geografis 2.6.1 Konsep Dasar

Sejak pertengahan 1970-an, telah dikembangkan sistem-sistem yang secara khusus dibuat untuk menangani masalah informasi yang bereferensi geografis dalam berbagai cara dan bentuk. Masalah-masalah tersebut mencakup pengorganisasian data dan informasi, menempatkan informasi pada lokasi tertentu, melakukan komputansi, memberikan ilustrasi keterhubungan satu sama lainnya (koneksi), beserta analisis-analisis spasial lainnya. Sebutan umum untuk sistem-sistem yang menangani masalah-masalah tersebut adalah Sistem Informasi

(13)

Geografis (SIG). SIG dipandang sebagai hasil dari perkawinan antara sistem komputer untuk bidang Kartografi (CAC: computer assisted cartografi) atau sistem komputer untuk bidang perancangan (CAD: computer aided design) dengan teknologi basis data (database) (Prahasta 2002).

Gambar 1 Model dunia nyata (Prahasta 2002).

Pada dasarnya, data geografi hanya disajikan di atas peta dengan menggunakan simbol, garis, dan warna. Sebuah peta menjadi media yang efektif baik sebagai alat presentasi maupun sebagai bank tempat penyimpanan data geografis. Namun, media peta masih mengandung kelemahan dan keterbatasan. Informasi-informasi yang tersimpan, diproses dan dipresentasikan dengan suatu cara tertentu, dan biasanya untuk tujuan tertentu pula. Tidak mudah untuk merubah bentuk presentasi ini. Sebuah peta selalu menyediakan gambar atau simbol unsur geografi dengan bentuk yang tetap (statik), meskipun diperlukan untuk berbagai kebutuhan yang berbeda. Bila dibandingkan dengan peta, SIG memiliki keunggulan inheren karena penyimpanan data dan presentasinya dipisahkan. Dengan demikian, data dapat dipresentasikan dalam berbagai cara dan bentuk (Prahasta 2002).

2.6.2 Pengertian

Menurut Prahasta (2002) pada dasarnya istilah sistem informasi goegrafis merupakan gabungan dari tiga unsur pokok, yaitu: sistem, informasi, dan geografis. Sistem Informasi Geografis adalah sistem berbasis komputer yang

(14)

terdiri atas perangkat keras komputer (hardware), perangkat lunak (software), data geografis dan sumberdaya manusia (brainware) yang mampu merekam, menyimpan, memperbaharui, menampilkan, dan menganalisis informasi yang bereferensi geografis (Jaya 2002). Menurut Aronoff (1989) diacu dalam Prahasta (2002), SIG adalah sistem yang berbasiskan komputer yang digunakan untuk menyimpan dan memanipulasi informasi-informasi geografi. SIG dirancang untuk mengumpulkan, menyimpan, dan menganalisis objek-objek dan fenomena dimana lokasi geografi merupakan karakteristik yang penting atau kritis untuk dianalisis. Dengan demikian, SIG merupakan sistem komputer yang memiliki empat kemampuan dalam menangani data yang bereferensi geografi, sebagai berikut: 1. Masukan

2. Manajemen data (penyimpanan dan pemanggilan data) 3. Analisis dan manipulasi data

4. Keluaran

2.6.3 Komponen Utama Sistem Informasi Geografis (SIG)

Menurut Prahasta (2002) SIG merupakan sistem kompleks yang biasanya terintegrasi dengan lingkungan sistem-sistem komputer yang lain di tingkat fungsional dan jaringan. Menurut Gistut (1994) diacu dalam Prahasta (2002), SIG terdiri dari beberapa komponen, sebagai berikut:

1. Perangkat keras

Pada saat ini, SIG tersedia untuk berbagai platform perangkat keras mulai dari PC desktop, workstations, hingga multi user host yang dapat digunakan oleh banyak orang secara bersamaan dalam jaringan 18able1818r yang luas, berkemampuan tinggi, memiliki ruang penyimpanan (harddisk) yang besar, dan mempunyai kapasitas memori (RAM) yang besar. Walaupun demikian, fungsionalitas SIG tidak terikat secara ketat terhadap karakteristik-karakteristik fisik perangkat keras ini sehingga keterbatasan memori pada PC-pun dapat diatasi. Adapun perangkat keras yang sering digunakan untuk SIG adalah 18able1818r (PC), mouse, digitizer, printer, plotter, dan scanner.

2. Perangkat lunak

Bila dipandang dari sisi lain, SIG juga merupakan 18able18 perangkat lunak yang tersusun secara modular dimana basis data memegang peranan kunci.

(15)

Setiap sub sistem diimplementasikan dengan menggunakan perangkat lunak yang terdiri dari beberapa modul, hingga tidak mengherankan jika ada perangkat SIG yang terdiri dari ratusan program (*.exe) yang masing-masing dieksekusi sendiri. 3. Data dan informasi geografi

SIG dapat mengumpulkan dan menyimpan data dan informasi yang diperlukan baik secara tidak langsung dengan cara mengimport-nya dari perangkat-perangkat lunak SIG yang lain maupun secara langsung dengan cara mendijitasi data spasialnya dari peta dan memasukkan data atributnya dari 19able-tabel dan laporan dengan menggunakan keyboard.

4. Manajemen

Suatu proyek SIG akan berhasil jika dimanage dengan baik dan dikerjakan oleh orang-orang yg memiliki keahlian yang tepat pada semua tingkatan.

2.6.4. Perangkat Lunak ArcGIS Desktop dan ArcView GIS 2.6.4.1 ArcGIS Desktop

Menurut Awaludin (2010) ArcGIS Desktop adalah sebuah solusi software aplikasi Sistem Informasi Geografis (SIG) yang integral. Di dalam ArcGIS desktop terdapat beberapa aplikas Sistem Informasi Geografis yang memiliki fungsi berbeda-beda, antara lain: ArcMap, ArcCatalog, dan ArcReader.

ArcGIS dikembangkan oleh ESRI (Environmental System Research Institute), sebuah perusahaan yang memfokuskan diri pada solusi pemetaan digital terintegrasi. ArcGIS Desktop adalah salah satu dari sekian banyak produk yang saling terkait di bidang pemetaan digital yang dikembangkan oleh ESRI (Awaludin 2010).

2.6.4.2 ArcView GIS

ArcView merupakan sebuah software pengolah data spasial. Software ini memiliki berbagai keunggulan yang dapat dimanfaatkan oleh kalangan pengolah data spasial. ArcView memiliki kemampuan dalam pengolahan atau editing arc, menerima atau konversi dari data digital lain seperti CAD, atau dihubungkan dengan data image seperti format JPG, TIFF, atau image gerak.

(16)

Budiyanto (2002) ArcView terdapat beberapa proyek yang masing-masing isi dari proyek tersebut saling terkait namun memiliki fungsi dan peran yang berbeda.

2.6.5 Aplikasi Sistem Informasi Geografis (SIG)

Menurut Jaya (2002) pada bidang kehutanan, SIG sangat diperlukan guna mendukung pengambilan keputusan untuk memecahkan masalah keruangan (spasial) mulai dari tahap perencanaan, pengelolaan sampai dengan pengawasan. SIG sangat membantu memecahkan permasalahan yang menyangkut luasan (polygon), batas (line atau Arc) dan lokasi (point). Data spasial (peta) yang umum digunakan di bidang kehutanan, sebagai berikut:

1. Peta Rencana Tata Ruang, 2. Peta Tata Guna Hutan, 3. Peta Rupa Bumi (kontur), 4. Peta Jaringan Jalan, 5. Peta Jaringan Sungai, 6. Peta Tata Batas,

7. Peta Batas Unit Pengelolaan Hutan, 8. Peta Batas Administrasi Kehutanan, 9. Peta Tanah,

10. Peta Iklim, 11. Peta Geologi,

12. Peta Vegetasi (turunan dari foto udara atau citra satelit),

13. Peta Potensi Sumberdaya Hutan (volume kayu, jenis, kelas umur, dsb).

Data spasial tersebut pada umumnya sangat terkait dengan data deskriptif (tabular) yang diperlukan dalam melakukan analisis suatu permasalahan. Mengingat kemampuan SIG yang cukup handal dalam menganalisis data spasial, penggunaan SIG di bidang kehutanan berkembang sedemikian pesat.

Gambar

Tabel 1  Persamaan allometrik untuk menduga biomassa di hutan alam tropis                 berdasarkan zona iklim

Referensi

Dokumen terkait

Berdasarkan pembahasan sebelumnya, maka dapat ditarik kesimpulan sebagai berikut: Faktor penyebab rendahnya motivasi pendidikan di Kelurahan Ompo Kabupaten Soppeng karena

Semakin tinggi tingkat EC larutan nutrisi yang diberikan maka kandungan unsur hara yang terkandung dalam larutan nutrisi semakin meningkat dan dapat diserap

Bila sapi jantan itu telah berumur 6-8 bulan, maka haruslah sudah diberi lubang pada hidungnya dan dipasang sebuah cincin logam yang ringan yang mempunyai diameter 3,75 cm dan

Malaysia dengan Menara Imara Wakaf sebuah bangunan komersial untuk disewakan, Turki dengan wakaf uangnya, di mana masyarakat dapat meminjam uang dari dana tersebut, Mesir

Teknik analisis data yang digunakan adalah analisis statistik deskriptif, analisis regresi berganda dengan terlebih dahulu melakukan uji asumsi klasik yang terdiri

Keluaran/output yang akan dicapai dalam program tersebut adalah (1) varietas jagung unggul berbiji putih (bersari bebas) dari populasi promising MS2

Berdasarkan hasil pengujian dan analisis data yang dilakukan, maka dapat disimpulkan bahwa kandungan protein nira aren sedikit bervariasi dalam satu pohon tetapi cukup bervariasi

Meskipun tidak ada hasil pengaruh langsung yang signifikan dari variabel reputasi, keamanan transaksi, dan komunikasi terhadap variabel niat beli tanpa melalui variabel