• Tidak ada hasil yang ditemukan

SIFAT MEKANIKAL BAGI RENCAM KAYU – CFRP DI BAWAH PEMBEBANAN LENTURAN SHAMSUDIN BIN MAT ISA

N/A
N/A
Protected

Academic year: 2018

Membagikan "SIFAT MEKANIKAL BAGI RENCAM KAYU – CFRP DI BAWAH PEMBEBANAN LENTURAN SHAMSUDIN BIN MAT ISA"

Copied!
99
0
0

Teks penuh

(1)
(2)

SIFAT MEKANIKAL BAGI RENCAM KAYU – CFRP DI BAWAH PEMBEBANAN LENTURAN

SHAMSUDIN BIN MAT ISA

Laporan Projek ini dikemukakan sebagai memenuhi sebahagian daripada syarat penganugerahan

Ijazah Sarjana Muda Kejuruteraan Awam

Fakulti Kejuruteraan Awam Universiti Teknologi Malaysia

(3)
(4)
(5)

Buat ayahanda, bonda dan seisi keluarga yang tersayang, terima kasih atas segala sokongan dan bantuan yang dicurahkan selama ini

Buat insan yang tersayang kehadiran memberikan sumber inspirasi baru dalam perjuangan

Sesungguhnya dengan segala sokongan dan dorongan yang diberikan menguatkan lagi semangat dan iltizam untuk meneruskan perjuangan yang

(6)

PENGHARGAAN

Alhamdulillah, pertama-tamanya saya memanjatkan kesyukuran kehadrat Ilahi kerana dengan izin dan kasih sayang-Nya jua maka dapat juga saya menyiapkan Projek Sarjana Muda sesi 2005/2006 dalam jangka masa yang ditetapkan.

Jutaan terima kasih kepada Dr Suhaimi Abu Bakar selaku penyelia Projek Sarjana Muda ini. Bimbingan dan nasihat yang beliau berikan telah banyak membantu dalam menjalankan dan menjayakan Projek Sarjana Muda ini dengan baik dan sempurna.

Sekalung terima kasih diucapkan kepada PM Dr Abd Rahman Mohd Sam yang banyak memberikan dan menyumbang idea pendapat yang bernilai bagi menyiapkan laporan ini.

Terima kasih juga diucapkan kepada En Razali ( Makmal Struktur ), En Zailani ( Makmal Kayu ) dan semua kakitangan Makmal Struktur dan Bahan Fakulti Kejuruteraan Awam diatas bantuan dan pertolongan samaada berbentuk tenaga dan juga buah fikiran dalam usaha menyiapkan ujikaji.

(7)

ABSTRAK

Pada masa sekarang, jurutera dan arkitek mengguna dan menggabungkan pelbagai bahan seperti konkrit, keluli, kayu, plastik, kaca dan sebagainya dengan mudah berbanding dahulu. Bahan-bahan baru juga telah dibangunkan seperti gentian kaca berkekuatan tinggi, karbon, boron, aramid dan lain-lain. Penggunaan gentian berkekuatan tinggi ( HSF )- lapisan untuk diperbaiki, kekukuhan dan rupabentuk yang baru dalam pembinaan kayu ( termasuk sambungan ) membuka perspektif baru dalam rekabentuk. Suatu ujikaji makmal telah dilaksanakan untuk mengkaji kelakuan rasuk kayu yang diperkuatkan dengan polimer bertetulang gentian karbon

(8)

ABSTRACT

Nowadays, Engineer and architects use and combine many types of materials such as concrete, steel, wood, plastic, glass etc. New material is also such as high-performance fibres of glass, carbon, boron, aramide etc. The use of high-strength fibre ( HSF ) – laminates for repair, strengthening and new configurations of timbers constructions including joints contributes new era in design process. A laboratory investigation was conducted study reinforced wood beams strengthened with Carbon Fibre Reinforce Polymer ( CFRP ). This paper will present experimental results for two point load bending test carried out on 50 x 50 x 900 mm wood beams with three of them strengthened with CFRP. The beams were design and fabricated in the structural laboratory in the Faculty of Civil Engineering, University Technology Malaysia. The performance of the beams were observed base on load deflection characteristic upon loading, cracking and mode of failure. It is found that the

(9)

KANDUNGAN

BAB PERKARA MUKA SURAT

TAJUK ii

PENGESAHAN PENYELIA iii

PENGAKUAN PELAJAR iv

DEDIKASI v

PENGHARGAAN vi

ABSTRAK vii

ABCTRACT viii

KANDUNGAN ix

SENARAI RAJAH xiii

SENARAI JADUAL xvi

BAB 1 PENGENALAN

1.1 Pendahuluan 1

1.2 Pernyataan Masalah 3

1.3 Objektif Kajian 4

1.4 Skop Kajian 4

(10)

BAB 2 KAJIAN LITERATUR

2.4.4 Bahan Tambah atau Additives 16

2.5 Perkembangan FRP 17

2.6 Kegunaan FRP dalam Industri Pembinaan 18

2.7 Kajian-kajian Lepas 20

2.7.1 Aplikasi 1: Sebagai tetulang ( Reinforcement )

20

2.7.2 Aplikasi 2 : Sambungan 23

2.7.2.1 Ujikaji awalan dengan spesimen tegangan yang kecil.

24

(11)

2.8.2 Kelemahan Kayu 28 2.9 Penggunaan FRP Dalam Kejuruteraan Kayu 31

BAB 3 KAEDAH METODOLOGI DAN UJIAN MAKMAL

3.1 Pengenalan 33

3.2 Perbincangan awal 34

3.3 Kajian Literatur 34

3.4 Pengumpulan maklumat 34

3.5 Prosedur Ujikaji 35

3.5.1 Penyediaan sampel dan alatan makmal 36

3.5.2 Penyedian spesimen kayu 38

3.5.3 Penyediaan Permukaan 40

3.5.4 Penampalan helaian CFRP 42

3.5.5 Ujian kekuatan lenturan rasuk 44

BAB 4 KEPUTUSAN DAN PERBINCANGAN

4.1 Keputusan Ujian Pembebanan Titik 48

4.1.1 Keputusan ujikaji bagi ujian lenturan rasuk kayu padu

48

4.1.2 Keputusan ujikaji bagi ujian lenturan rasuk yang di perkuatkan dengan helaian CFRP

53 4.1.3 Ragam Kegagalan dan Bentuk Keretakan 57

4.1.4 Beban Muktamad 66

4.1.5 Pesongan 67

4.1.5.1 Analisi Graf 67

4.1.6 Perbincangan Keputusan Ujian Pembebanan Titik

75

4.1.6.1 Kelakuan Lenturan 75

(12)

BAB 5 KESIMPULAN DAN CADANGAN

5.1 Kesimpulan 78

5.2 Cadangan ujikaji selanjutnya 80

(13)

SENARAI RAJAH

Bil No. Rajah Tajuk Mukasurat

1. Rajah 2.1 Pengelasan bahan komposit 6

2. Rajah 2.2 Polimer Bertetulang Gentian Kaca ( GFRP 10 3. Rajah 2.3 Polimer Bertetulang jenis Karbon ( CFRP ) 12 4. Rajah 2.4 Penguatan bahagian bawah perentas Jambatan

Sg. Aare di Murgenthal ( Switzerland )

21

5. Rajah 2.5 Memperbaiki kapasiti beban stud bagi bangunan bersejarah di Switzerland

21

6. Rajah 2.6 Mempercepatkan pengawetan dengan

meningkatkan kekerasan melalui arus elektrik secara terus

23

7. Rajah 2.7 Ujikaji awal dengan specimen tegangan yang kecil dan bersih

24

8. Rajah 2.8 Ujian lenturan dan tegangan dengan glu-lapisan specimen

25

9. Rajah 2.9 Kebarangkalian penggunaan FRP dalam kejuruteraan kayu

31

10. Rajah 3.1 Peralatan ujikaji 37

(14)

permukaannya

14. Rajah 3.5 Mesin pengetam kayu elektrik 41 15. Rajah 3.6 Proses penampalan helaian CFRP pada rasuk

kayu

42

16. Rajah 3.7 Ujian kekuatan lenturan rasuk 46 17. Rajah 3.8 Set-up pengelok data untuk menjalankan ujian

lenturan

46

18. Rajah 3.9 Beban dikenakan pada rasuk dengan kadar 0.5kN

47

19. Rajah 4.0 Pembebanan dilakukan sehingga sampel mengalami kegagalan

47

20. Rajah 4.1 Nilai pesongan yang diambil bagi setiap sampel ujikaji bagi rasuk kayu padu

48

21. Rajah 4.2 Nilai pesongan setiap sampel bagi rasuk yang diperkuatkan dengan CFRP fabrik

53

22. Rajah 4.3 Rasuk kayu padu sebelum dikenakan beban 58 23. Rajah 4.4 Rasuk kayu padu melentur sedikit apabila

dikenakan beban.

58

24. Rajah 4.5 Rasuk kayu padu yang telah mengalami kegagalan dan pada ketika ini jek hidraulik dilepaskan

59

25. Rajah 4.6 Mod kegagalan bagi ketiga-tiga sampel rasuk kayu padu

59

26. Rajah 4.7 Ragam kegagalan secara grafik dari tiga pandangan bagi rasuk padu sampel A ( tidak mengikut skala )

60

27. Rajah 4.8 Ragam kegagalan secara grafik dari tiga pandangan bagi rasuk padu sampel B ( tidak mengikut skala )

60

28. Rajah 4.9 Ragam kegagalan secara grafik dari tiga

(15)

( tidak mengikut skala )

29. Rajah 4.10 Rasuk yang diperkuatkan dengan CFRP melentur apabila dikenakan beban

63

30. Rajah 4.11 Rasuk yang diperkuatkan dengan CFRP patah secara tiba-tiba apabila mencapai beban muktamad

63

31. Rajah 4.12 Pandangan dekat rasuk kayu diperkuatkan dengan helaian CFRP yang mengalami kegagalan

64

32. Rajah 4.13 Ragam kegagalan secara grafik dari tiga pandangan bagi sampel A yang diperkuatkan dengan CFRP ( tidak mengikut skala )

64

33. Rajah 4.14 Ragam kegagalan secara grafik dari tiga pandangan bagi sampel B yang diperkuatkan dengan CFRP ( tidak mengikut skala )

65

34. Rajah 4.15 Ragam kegagalan secara grafik dari tiga pandangan bagi sampel C yang diperkuatkan dengan CFRP ( tidak mengikut skala )

65

35. Rajah 4.16 Gabungan graf beban lawan pesongan bagi sampel A ( rasuk padu )

67 36. Rajah 4.17 Gabungan graf beban melawan pesongan bagi

Sampel B ( rasuk padu )

68

37. Rajah 4.18 Gabungan graf geban melawan pesongan bagi Sampel C ( rasuk padu )

69 38. Rajah 4.19 Gabungan ketiga-tiga sampel bagi pesongan

maksimum pada beban muktamad

70

39. Rajah 4.20 Gabungan Ketiga-tiga Sampel Bagi Pesongan maksimum pada beban muktamad

( diperkuatkan dengan helaian CFRP )

72

40. Rajah 4.21 Purata bagi ketiga-tiga sampel antara rasuk yang dikawal dan rasuk yang diperkuatkan dengan helaian CFRP

(16)

SENARAI JADUAL

Bil No. Jadual Tajuk Mukasurat

1. Jadual 2.1 Sifat Mekanikal GFRP ( Sika, 2001 ) 11 2. Jadual 2.2 Sifat Mekanikal CFRP ( Miller, 1998 ) 13 3. Jadual 2.3 Sifat Mekanikal AFRP ( Miller, 1998 ) 14 4. Jadual 2.4 Kelakuan Resin Poliester ( Sika, 2001 ) 15 5. Jadual 2.5 Kelakunan Resin Epoksi ( Sika, 2001 ) 16 6. Jadual 2.6 Ciri-ciri Mekanikal 56 Kayu Tropika ( Keadaan

Udara Kering 11. Jadual 4.5 Kandungan lembapan ( % ) bagi sampel rasuk

yang diperkuat dengan CFRP

53

12. Jadual 4.6 Data ujikaji rasuk kayu yang diperkuatkan dengan CFRP fabrik bagi Sampel A

54

13. Jadual 4.7 Data ujikaji rasuk kayu yang diperkuatkan dengan CFRP fabrik bagi Sampel B

55

14. Jadual 4.8 Data ujikaji rasuk kayu yang diperkuatkan dengan CFRP fabrik bagi Sampel C

56

(17)

yang dikawal

16. Jadual 4.10 Ragam kegagalan bagi ketiga-tiga batang rasuk yang diperkuatkan dengan CFRP

62

17. Jadual 4.11 Beban muktamad bagi ketiga-tiga sampel rasuk yang diuji

66

18. Jadual 4.12 Perbandingan antara keenam-enam sampel dalam ujian pembebanan titik

(18)

BAB 1

PENGENALAN

1.1 Pendahuluan

Perkembangan industri pembuatan, contohnya dalam industri automotif, marin dan aero-angkasa masa kini telah masuk ke era yang mementingkan penjimatan dalam kos pembuatan di samping memberi beberapa faedah yang dianggap menguntungkan pihak pengguna seperti penjimatan terhadap penggunaan punca tenaga, kualiti kejuruteraan, keselesaan, keselamatan dan ergonomik.

Struktur yang menggunakan kayu ataupun konkrit sebagai bahan binaan akan mengalami kerosakan, retakan setelah lama digunakan. Keadaan ini menjadi lebih serius terutamanya apabila terdedah kepada keadaan cuaca pesekitaran yang tidak menentu. Contohnya, bangunan, jambatan dan infrastruktur lain yang dibina pada masa dahulu telah menjadi tidak selamat untuk digunakan kerana telah menghampiri jangka hayat perkhidmatan. Keadaan bertambah serius apabila infrastruktur tersebut perlu

menanggung pertambahan beban dan penggunaan untuk memenuhi pertambahan permintaan sekarang.

Dengan itu, bangunan, infrastruktur dan struktur yang usang dan lama haruslah diperbaiki untuk melanjutkan penggunaan supaya tidak membahayakan nyawa

(19)

alam sekitar, penggunaan, rupabentuk dan keadaan struktur yang hendak dibaiki. Salah satu teknik pemulihan yang ditemui pada awal 50 an adalah denga cara penampalan plat keluli di bahagian luar struktur tersebut untuk menambahkan kapasiti tanggungan struktur itu ( Raithby, 1980 ). Kaedah ini sangat senang dan mudah digunakan malah amatlah berkesan. Namun keluli akan mengalami pengaratan dan pengoksidaan apabila terdedah kepada keadaan yang basah, agresif, tindakan kimia dan pencairan ais kerana sifat keluli yang mudah dioksida dan dihakis ( Somboonsong Win, et al. 1998 ). Keadaan ini telah menyebabkan permukaan luar keluli perlu dicat terlebih dahulu. Kaedah tersebut pula tidak akan menjamin keberkesanannya sepanjang hayat perkhidmatan.

Pada masa kini, penggunaan bahan berteknologi canggih seperti bahan komposit telah dicadangkan untuk menggantikan kepingan keluli. Sejak sepuluh tahun dahulu, Polimer Bertetulang Fiber ( FRP ) yang mempunyai nilai tegangan yang tinggi mula diperkenalkan dalam industri pembinaan sebagai bahan penguat struktur.

FRP merupakan satu bahan yang ringan dan mempunyai kekuatan tegangan yang tinggi jika dibandingkan dengan keluli. Sifatnya sebagai penebat elektrik, haba dan magnet juga merupakan kelebihan bahan ini berbanding dengan keluli. Dengan keistimewaan ini, FRP semakin digemari dan diperluaskan penggunaannya.

Dalam penguatan sesuatu struktur kayu, kayu yang lemah akan diperkuatkan dengan FRP melalui salutan pada luar dan dalam kayu. Dalam kajian ini, struktur kayu dibebani dengan nilai beban tertentu tanpa FRP dan kayu tadi ditambah dengan FRP melalui ujian lenturan. Nilai beban yang tinggi mampu ditanggung oleh gentian ini sehingga ia mencapai kegagalan pada struktur kayu.

(20)

1.2 Pernyataan masalah

Pada masa kini, kaedah untuk menguatkan kayu telah ditemui dan diaplikasikan dalam pembinaan, tetapi ia masih lagi diperingkat awal. Teknik penguatan melalui bahan polimer ini mempunyai beberapa kelebihan dalam praktik kerana cara ini senang dipasang, ketinggian nisbah kekuatan berat, ketahanan yang tinggi, rintangan kepada kerosakan dan mempunyai sifat rayapan yang rendah. Dengan itu, pembaikan dan pembaik pulih amat diperlukan untuk menguatkan lagi struktur kayu dalam jangka masa yang panjang.

Sememangnya pelekatan FRP dengan permukaan struktur kayu yang sempurna akan memperbaiki keadaan kayu yang sedia ada. Sebaliknya, penanggalan plat FRP yang dilekat pula akan menyebabkan struktur tersebut mengalami beban berlebihan secara mengejut. Oleh yang demikian, keadaan lekatan FRP dengan kayu merupakan satu elemen yang memerlukan perhatian dalam penguatan struktur.

Kajian ini akan mengkaji kebolehlekatan glu dengan permukaan kayu disamping melihat dengan jelas berkaitan dengan bentuk kegagalan sampel dan nilai-nilai pesongan yang sebenar apabila dikenakan pembebanan. Disamping itu, kajian ini juga cuba

(21)

1.3 Objektif Kajian

Antara objektif kajian ini adalah seperti berikut :-

i. Membuat perbandingan antara kekuatan rasuk kayu padul dan rasuk kayu yang diperkuatkan dengan CFRP

ii. Menentukan corak ragam kegagalan pada rasuk kayu iii. Mengkaji kebolehlekatan antara CFRP dengan kayu

iv. Membuat perbandingan nilai pesongan antara sampel kayu padu dengan sampel kayu yang diperkuatkan dengan CFRP

1.4 Skop Kajian

Antara skop kajian ini adalah seperti berikut :-

i. Memberi fokus kepada satu jenis kayu tempatan sahaja iaitu kayu Keruing ii. Saiz sampel yang digunakan adalah 900 mm x 50 mm x 50 mm

iii. Bilangan sampel yang digunakan dalam kajian ini ialah enam sampel iv. Jenis FRP yang digunakan dalam ujikaji ini adalah jenis karbon ( CFRP )

v. Ujikaji yang dijalankan adalah berdasarkan BS 373

(22)

1.5 Kepentingan Kajian

Kepentingan kajian ini ialah untuk meningkatkan kekuatan lenturan kayu dengan melekatkan bahan CFRP ke permukaan kayu. Selain itu kajian ini juga dapat

meningkatkan penggunaan bahan berteknologi tinggi dalam pelbagai bidang

(23)

BAB 11

KAJIAN LITERATUR

2.1 Pengenalan

Bahan komposit adalah bahan yang terdiri daripada gabungan ataupun campuran sekurang-kurangnya dua atau lebih unsur yang berlainan dari segi bentuk dan komposisi kimia dengan syarat unsur tersebut tidak akan bergabung pada keadaan melebur.

Pengelasan bahan komposit ditunjukkan pada Rajah 2.1.

2.2 Pengelasan Bahan Komposit

Rajah 2.1 : Pengelasan bahan komposit

Komposit Matrik Berlogam ( MMC ) Komposit Matrik

Berpolimer ( PMC ) Komposit Matrik

Berseramik ( CMC )

(24)

2.2.1 Komposit Matrik Berseramik ( CMC )

Komposit jenis ini menggunakan seramik sebagai matrik dan diperkuatkan dengan keratan gentian pendek atau filamen yang diperbuat daripada silikon karboda dan boron nitrat. Komposit matrik berseramik ini boleh digunakan pada keadaan suhu yang amat tinggi.

2.2.2 Komposit Matrik Berpolimer ( PMC )

Bahan komposit ini paling biasa digunakan. Komposit jenis ini lebih dikenali sebagai Polimer Bertetulang Gentian ( FRP ). Bahan ini menggunakan resin sebagai matrik dan tetulangnya pula terdiri daripada bahan sama ada kaca, karbon dan aramid. Bahan ini akan dibincangkan dengan lebih lanjut pada bahagian seterusnya.

2.2.3 Komposit Matrik Berlogam ( MMC )

Bahan komposit jenis ini adalah jarang digunakan dalam industri pembinaan tetapi semakin popular digunakan dalam industri automotif. Bahan ini pula

menggunakan aluminium sebagai matrik manakala gentian seperti silikon karbit sebagai tetulang.

2.3 Pengenalan Polimer Bertetulang Gentian ( FRP )

(25)

dengan menghasilkan bahan yang mempunyai gabungan sifat yang tersendiri yang tidak dimiliki oleh bahan-bahan tradisional yang lain. Pada amnya gabungan komposit ini akan memberikan kekuatan dan ketahanan yang tinggi pada bahan ini.

Dengan memperkenalkan gentian dalam polimer matrik dalam kawasan yang bertegasan tinggi dengan susunan, arah dan isipadu yang tertentu dapat menigkatkan darjah pengukuhan bahan dengan berkesan. Kelakunan FRP juga lebih menyenangkan jurutera dalam merekabentuk sistem penguat untuk menampung beban tambahan.

Secara amnya, FRP juga mempunyai kelebihan lain seperti nisbah kekuatan kepada berat yang tinggi, tahan hakisan, lutcahaya dan lebih ringan jika dibandingkan dengan bahan yang lain. Tetulang gentian dalam komposit ini mempunyai sifat elastik, manakala matrik pula bersifat plastik. Disebabkan keseluruhan bahan ini dikuasai oleh gentian maka FRP akan berubah secara elastik apabila dikenakan beban sehingga

kekuatan muktamad. FRP akan mengalami kegagalan mengejut, rapuh dan patah apabila dikenakan tegasan berlebihan.

2.4 Komposisi Bahan Komposit ( FRP )

Secara amnya, FRP terdiri daripada tetulang gentian dan matrik resin. Bahan ini juga mengandungi bahan tambahan dalam kuantiti yang amat kecil.

2.4.1 Bahan Tetulang ( Reinforcement )

(26)

memberikan kekuatan dan kekukuhan dalam satu arah, gentian itu dapat direka supaya dapat menanggung beban pada arah yang dikehendaki.

Sebenarnya, jenis tetulang yang digunakan adalah pelbagai dan secara amnya boleh dikelaskan kepada sama ada ia diabstrak semulajadi ataupun dihasilkan oleh manuisa. Sesetengah gentian seperti selulosa yang diabstrak dari kayu adalah bahan semulajadi. Walaubagaimanapun, jenis yang paling luas dihasil dan digunakan dalam industri kejuruteraan awam adalah fiber kaca yang dihasilkan melalui pemprosesan di kilang.

Bahan tetulang komposit lain yang digunakan termasuklah karbon, aramid, UHMV ( ultra high molecular weight ) polyethylene, polypropylene, polyester dan nylon. Terdapat juga bahan tetulang lain yang digunakan khusus utnuk kekuatan tinggi dan suhu yang tinggi seperti logam dan logam oksida yang kini digunakan pada kapal terbang dan kegunaan aero-angkasa.

Semasa penghasilan FRP, tetulang-tetulang gentian ini akan dikumpulkan bersama supaya menjadi gentian halus yang dipanggil roving. Tetulang-tetulang dalam bentuk ini kemudiannya akan diproses membentuk kepingan atau fabric.

2.4.1.1Gentian Kaca

(27)

Rajah 2.2 : Polimer Bertetulang Gentian Kaca ( GFRP )

Gentian kaca mempunyai sifat yang sangat stabil dibawah suhu sejuk dan pada keadaan yang lembab. Selain itu, gentian kaca adalah satu bahan yang tidak cenderung untuk menyerap air. Dengan itu gentian kaca sangat sesuai untuk struktur yang dibina ditempat yang berkeadaan basah. Gentian ini merangkumi kaca A, E, C, S, D dan L yang mempunyai sifat dan kegunaan yang berlainan (Sika, 2001). Setiap jenis gelas gentian ini dihasilkan untuk kegunaan khusus seperti ditunjukkan di bawah :-

Kaca jenis A - Kaca soda-lime-silica; digunakan untuk botol minuman dan makanan, bahan penebat dan sebagainya.

Kaca jenis AR -Zirconia-glass;digunakan untuk struktur yang memerlukan Rintangan terhadap alkali.

Kaca jenis C - Glass sodium borosilicate; rintangan tehadap bahan kimia

Kaca jenis E - glass alumino-borosilicate; jenis kaca yang paling biasa digunakan bagi rintangan elektrik.

(28)

modulus yang tinggi. Biasanya digunakan dalam bidang aero-angkasa dan kegunaan khusus.

Kaca jenis D - Low dielectric glass

Dua jenis kaca yang paling banyak digunakan dalam aplikasi struktur adalah dari jenis S dan jenis E. Pengeluaran kaca jenis E adalah lebih kurang 1.2 ribu juta pound setahun. Kelakuan filamen untuk kedua-dua jenis gentian ditunjukkan dalam Jadual 2.1 seperti berikut :-

Jadual 2.1: Sifat Mekanikal GFRP ( Sika, 2001 )

Kelakuan Kaca jenis E Kaca jenis S

(29)

Rajah 2.3 : Polimer Bertetulang jenis Karbon ( CFRP )

Gentian karbon menunjukkan rintangan terhadap asid, bes dan sangat tahan terhadap haba. Laminate karbon-epoksi baik dalam rintangan keletihan, tidak senang berlaku rayapan dan sangat baik dalam rintangan tegasan patah dan tegasan hakisan.

(30)

Jadual 2.2: Sifat Mekanikal CFRP ( Miller, 1998 )

Kelakuan Kekuatan tinggi Modulus tinggi Ultra-Tinggi Modulus

Kekuatan Tegangan MPa 2480 1790 1030-1310

Modulus Tegangan GPa 230 370 520-620

Pemanjangan % 1.1 0.5 0.2

2.4.1.3Gentian Aramid

Gentian aramid adalah bahan organik yang dihasilkan oleh manusia. Gentian ini mempunyai sifat mekanik yang amat baik dan berketumpatan rendah. Tegasan tegangan gentian aramid adalah lebih tinggi daripada gentian kaca dan mempunyai nilai modulus 50 peratus lebih tinggi daripada gentian kaca. Bahan ini juga merupakan penebat kepada arus elektrik dan haba. Tambahan pula ia juga lebih tahan kepada bahan organik seperti minyak dan solvent. Secara keseluruhannya mampatan gentian aramid adalah lebih kurang berbanding dengan gentian kaca dan gentian karbon. Gentian aramid sangat tahan dan digunakan sebagai kabel dan tali.

(31)

Jadual 2.3 : Sifat Mekanikal AFRP ( Miller, 1998 )

Kelakuan Kelvar 29 Kelvar 49

Ketumpatan 1.44 1.44

Kekuatan Tegangan MPa 2270 3600

Modulus Tegangan GPa 83/100 124

Tensile Elongation % 2.8 2.5

2.4.2 Matrik ( Resin )

Resin merupakan salah satu bahan utama dalam komposit FRP. Kegunaan utama resin dalam FRP komposit adalah untuk menghantar tegasan antara tetulang gentian, bertindak sebagai pelekat untuk mengikat gentian-gentian dan melindungi gentian daripada kerosakan akibat tindakan mekanikal dan alam sekitar.

Resin secara keseluruhannya lebih lemah daripada tetulang gentian. Resin berubah bentuk pada tindakan suhu yang rendah, senang dipengaruhi oleh tindakan air, kelembapan udara dan bes. Matrik ini juga lebih cenderung mengalami keadaan rayapan bagi penggunaan jangka masa panjang dan akan menyebabkan berlakunya perubahan fizikal pada resin.

Secara umumnya, jenis resin yang digunakan boleh dibahagikan kepada dua iaitu thermoset dan thermoplastic. Thermoplastic resin akan menjadi lembut apabila ditindaki haba dan boleh dibentuk dengan acuan semasa keadaan separa cecair dan akan menjadi tegar apabila sejuk. Thermoset pula selalunya pada keadaan cecair ataupun jasad yang bertakad lebur rendah pada keadaan mulanya. Selepas thermoset diawet, ia tidak akan bertukar balik pada keadaan cecair seperti sebelumnya. Memandangkan pemilihan resin berhubungkait dengan kekuatan FRP, pereka haruslah membiasakan diri dengan

(32)

Polimer thermoset yang digunakan dalam industri adalah polyester dan epoksi. Manakala terdapat banyak thermoplastic resin yang digunakan dalam menghasilkan komposit seperti polyolefines, polyamides, vinylic polymer, polyacetals, polysulphones, polycarbonates, polyphenylenes dan polyimides.

Polyester Poliester memainkan peranan yang penting dalam industri komposit dan lebih kurang 65 % resin yang digunakan hari ini merupakan resin jenis polyester. Resin ini terhasil daripada proses kondensasi polimerisasi antara asid kaboksilik dan glycol, polyester tergolong dalam resin thermostat. Sifat polyester tidak akan dipengaruhi oleh tindakan asid tetapi sebaliknya kepada tindakan bes. Resin ini juga akan dipengaruhi oleh perubahan suhu pada air yang bertindak keatasnya. Jadual 2.4 menunjukkan sifat-sifat mekanikal bagi resin polyester.

Jadual 2.4: Kelakuan Resin Poliester ( Sika, 2001 )

Sifat-sifat Nilai

Kekuatan Tegangan MPa 35 – 104

Modulus Tegangan GPa 2.1 – 4.1

Pemanjangan % < 5.0

Ketumpatan ( g/cm3 ) 1.10 – 1.46

(33)

Epoksi Epoksi banyak digunakan dalam pelbagai bidang termasuklah bahagian komposit, struktur dan pembaikan konkrit. Antara kelebihan epoksi berbanding komposit lain ialah epoksi

mengecut dan berubah pada kadar yang amat rendah. Kekuatan resin ini juga sangat tinggi, melekat dan merintang pada

bahan kimia dan kelesuan. Epoksi selalunya diawet dengan menggunakan pengeras ( hardner ) dan anhidrat. Jenis pengeras

an juga kuantiti yang berbeza memerlukan cara pengawetan yang berlainan dan akan menghasilkan sifat-sifat yang berbeza pada komposit yang dihasilkan. Jadual 2.5 menunjukkan sifat- sifat mekanikal bagi epoksi.

Jadual 2.5: Kelakunan Resin Epoksi ( Sika, 2001 )

Kelakunan Nilai

Kekuatan Tegangan MPa 55 – 130

Modulus Tegangan GPa 2.8 – 4.1

Pemanjangan ( % ) 3.0 – 10.0

Ketumpatan ( g/cm3 ) 1.2 – 1.3

(34)

2.4.3 Pengisi

Kegunaan pengisi dalam komposit semakin meluas hari ini memandangkan penggunaan pengisi dapat mengurangkan jumlah kos dan menigkatkan sifat komposit. Pengisi dapat meningkatkan sifat-sifat mekanikal seperti meningkatkan rintangan terhadap haba dan asap. Antara pengisi yang digunakan adalah seperti Kaolin, Kalsium Karbonat, Kalsium Sulfat dan Alumina Trihydrate.

2.4.4 Bahan Tambah atau Additives

Pelbagai jenis bahan tambah digunakan sama ada untuk memperbaiki sifat bahan mahupun dihasilkan untuk mencapai tujuan tertentu. Walaupun kuantiti bahan tambah yang digunakan amatlah sedikit berbanding resin, tetulang gentian dan pengisi tetapi fungsinya amat kritikal.

Pertambahan bahan tambah dalam thermostat atau pun thermoplastik dapat mengurangkan pengecutan, meningkatkan rintangan terhadap api, melepaskan udara, mengalir elektrik, meningkatkan kekuatan komposit dan banyak lagi mengikut keadaan, tujuan dan kegunaan komposit.

2.5 Perkembangan FRP

(35)

Selepas perang dunia kedua, perindustrian Amerika Syarikat mula menghasilkan bahan komposit gentian kaca dan damar polister sebagai bahan pembuatan badan kapal dan pencegah radar. Oleh kerana sifat-sifat komposit gentian fiber yang istimewa dan mempunyai potensi yang tinggi dalam pasaran, banyak kajian telah dilakukan untuk meningkatkan sains dan teknik penghasilan bahan ini. Antara dua teknik pembuatan komposit ialah kaedah belitan berfilamen dan kaedah pultrasion.

Sehingga sekarang, penggunaan komposit telah merangkumi pelbagai bidang industri. Dalam bidang aeroangkasa, bahan komposit digunakan bagi pembuatan pressure vessel dan container. Tentera laut Amerika Syarikat juga mendapat faedah daripada bahan komposit ini dengan menggunakan bahan ini dalam anggota kapal selam, badan kapal dan mine sweeping vessel. Penggunaan domestic pula mula memasang tangki mandi komposit, pagar, tangki air, tangga dan alat elekromik komposit. Selain itu, bahan komposit juga mempunyai permintaan yang tinggi dalam peralatan rekreasi seperti tali pancing, raket badminton dan tennis. Dalam bidang kejuruteraan awam, bahan komposit pertama kali diperkenalkan dalam pembinaan struktur kubah di Benghazi pada tahun 1968. penggunaan bahan komposit bagi struktur lain dalam bidang kejuruteraan awam telah berkembang beransur-ansur selepas itu. ( Benjamin Tang, 1997 )

2.6 Kegunaan FRP dalam Industri Pembinaan

(36)

FRP merupakan satu bahan yang ringan dan mempunyai kekuatan tegangan yang tinggi. Sifat-sifatnya yang menebat elektrik, haba dan magnet juga merupakan kelebihan bahan ini berbanding dengan keluli. Dengan keistimewaan ini, FRP secara beransur-ansur telah menggantikan keluli sebagai bahan untuk pemulihan struktur.

Polimer Bertetulang Gentian juga boleh dihasilkan melalui proses yang berlainan untuk membentuk pelbagai jenis bentuk dan kegunaan. Biasanya, FRP digunakan dalam bentuk rod sebagai bahan bertetulang konkrit, tendon prategasan, kepingan, gentian dan sebagainya.

Biasanya, rod FRP diletakkan di dalam ataupun berdekatan dengan permukaan untuk menguatkan tetulang konkirt. Dengan menggunakan rod FRP dalam rasuk atau papak ia akan mengurangkan rayapan pada struktur tersebut. Perletakan rod FRP di sisi ataupun tepi struktur pula akan mengurangkan daya ricihan. Selain itu, tendon FRP pula digunakan sebagai kabel pra-tegangan mahupun pasca-tegangan dalam penghasilan konkrit pra-tegasan. Kepingan FRP yang biasa dilekat pada permukaan luar struktur digunakan untuk memperbaiki kekuatan struktur yang sedia ada. Contoh penggunaan kepingan FRP ini ialah dalam menguatkan struktur pada kayu. Ia dapat meningkatkan kekuatan kayu samaada dari segi kekuatan ricih ( shear strength ) mahupu kekuatan tegangan ( tensile strength ).

Kelebihan utama penggunaan kepingan FRP sebagai bahan penguat adalah disebabkan cepat dan senang digunakan. Tambahan pula dalam proses pemulihan tersebut akan menjimatkan kos buruh dan dapat mengelakkan daripada meruntuhkan bangunan yang sedia ada. Kemungkinan jumlah kos dan penggunaan bahan lain untuk proses pemulihan adalah lebih mahal dan kompleks.

Pada masa kini banyak jambatan pejalan kaki di Amerika Syarikat telah dibina dengan penggunaan bahan berbentuk pultruded komposit. Di kawasan yang

(37)

diperkuat dengan komposit belitan filamen. Keadaan ini dapat meningkatkan tahap kemuluran struktur tersebut. Cerucuk pra-tegasan yang diperbuat daripada komposit juga diperkenalkan dalam struktur kejuruteraan awam dan marin di beberapa negeri di Amerika Syarikat ( Benjamin Tang, 1997 ).

2.7 Kajian-kajian Lepas

2.7.1 Aplikasi 1: Sebagai tetulang

Peningkatan struktur bagi beban kerja yang tinggi atau pemulihan kekuatan rekabentuk semulajadi merupakan keperluan kejuruteraan bagi struktur pelbagai bahan. Sebelum HSF ( high-strength fiber ) digunakan, keluli merupakan bahan yang

digunakan dengan pelbagai tujuan. Lekatan plat besi pada konkrit digunakan dengan jayanya di pusat pengujian bahan dan kajian ( EMPA ) dalam era 70an. Dalam awal 80an plat keluli mula digantikan dengan CFRP. Sekarang teknik ini mula dibuktikan melalui rekabentuk dan aplikasi dalam struktur kayu. Ia digunakan dengan jayanya hampir 400 struktur di seluruh dunia.

(38)

Rajah 2.4 : Penguatan bahagian bawah perentas Jambatan Sg. Aare di Murgenthal, Switzerland

(39)

FRP – Tetulang mengandungi bahagian yang bersambung ( jalur, plat atau rod HSF yang tertanam dalam matrik polimer ) dan agen ikatan ( glu, mortar atau casting

compound ). Bahagian sambungan boleh dibuat sama ada :

i. Bahagian tepi anggota kayu, yang mana bilangan sukar dinyatakan, tetapi memberi kebaikan, tidak ketara, tahan api dan lain-lain atau,

ii. Di luar, yang mana kes yang biasa untuk kerja tetulang bagi struktur yang tertutup.

Semasa lekatan bagi lapisan struktur komposit, ianya mesti dilakukan dengan hati-hati, antara yang perlu diberi perhatian ialah :-

i. Permukaan kayu mesti rata, bersih

ii. Permukaan yang diglu dengan FRP – mesti bersih iii. Permukaan kayu mesti kering semasa glu

iv. Aplikasi lekatan lapisan mesti ditempatkan pada suhu > 10oC, tiada tekanan pada glu semasa pengerasan lapisan.

(40)

Rajah 2.6 : Mempercepatkan pengawetan dengan meningkatkan kekerasan melalui arus elektrik secara terus.

2.7.2 Aplikasi 2 : Sambungan

(41)

2.7.2.1 Ujikaji awalan dengan specimen tegangan yang kecil.

Pada peringkat awal ujikaji tegangan dengan specimen FRP yang kecil yang ditambatkan kedua-dua hujungnya ( Rajah 2.7 ) dilakukan bagi menentukan kesan pelbagai parameter seperti jenis perekat, ketebalan gluline, panjang tambat dan lapisan FRP secara urutan, kobolehkerjaan dan juga lekatan glu pada bahagian sambungan. Pada peringkat utama ini gentian karbon digunakan sebagai bahan penguat ( reinforcing )

(42)

2.7.2.2 Ujian lenturan dan tegangan dengan glu-lapisan spesimen

Peringkat ke dua dengan pertimbangan bilangan ujian tegangan ianya dilakukan menggunakan glu-lapisan spesimen yang besar ( keratan rentas 100 x 110 mm2 ), dalam kebanyakan kes, tambatan dengan plat gentian kaca bertetulang plastik seperti Rajah 2.8. Kebiasaanya parameter-parameter yang dikaji adalah seperti jenis lapisan, panjang sambungan plat, bilangan dan jarak plat, kelakuan plat, keratan rentas tetulang ( gantian tegangan melintang ), bentuk alur bagi plat, dedahan suhu dan lain-lain.

Rjah 2.8 : Ujian lenturan dan tegangan dengan glu-lapisan spesimen

(43)

2.8 Sifat Kayu

Dalam mengkaji sifat-sifat mekanik atau kekuatan sesuatu bahan, adalah penting diketahui secara umum tentang struktur dan juzuknya. Sifat-sifat kayu adalah

dipengaruhi oleh sifat juzuknya iaitu sel-sel kayu, gelang tumbesaran, ira dan teras muda serta kayu keras.

2.8.1 Juzuk-juzuk kayu

2.8.1.1Ira

Umur pokok lazimnya ditentukan dengan mengira bilangan lilit pada pokok. Ukur lilit ini lebih dikenali sebagai ira pokok. Secara biologi, pokok mempunyai sistem pemakanannya yang tersendiri. Daun-daun pokok yang bertindak sebagai kilang

memproses makanan akan menghantar makanan tersebut melalui batang pokok. Batang juga mempunyai sistem talian saluran dua hala yang menghantar zat-zat kimia dan cairan kepada daun yang kemudiannya menyalurkan makanan yang terhasil untuk membantu tumbesaran tisu-tisu kayu. Dengan ini pokok tersebut akan membesar seiring dengan pertambahan sel-selnya. Dari sinilah ira akan kelihatan mengikut bilangan tahun pokok tersebut kerana pertambahan umur kayu berkait rapat dengan bilangan lilitan ira tersebut.

2.8.1.2Susunan Ira

(44)

pembesaran yang sihat pada kayu tersebut. Ira yang berkedudukan rapat pula

menunjukkan pembesaran pokok itu semakin merosot, ini banyak terjadi pada pokok yang sudah tua. Pembesaran sesuatu kayu menjadi tidak sekata berdasarkan faktor-faktor seperti berikut iaitu jenis tanah, cuaca, penjagaan dan persekitaran.

2.8.1.3Jenis-jenis Ira

Terdapat enam jenis ira iaitu ira lurus, ira lintang, ira serong, ira pusar, ira kait punca dan ira gelombang. Ira lurus adalah serat-seratnya selari dengan arah paksi pugak sesuatu balak. Ira yang lurus akan menyenangkan kayu itu digergaji. Kayu yang seratnya berubah atau condong arahnya dari paksi pugak kayu dikatakan mempunyai ira

melintang. Keadaan ini biasanya berlaku di kawasan buku kayu dan bengkak kayu. Ira serong pula adalah kesan penggergajian di mana kayu itu berira lurus dipotong supaya seratnya tidak selari denga paksi pugak kayu. Ira pusar terjadi apabila seratnya

mengikuti suatu laluan berlengkar sewaktu pokok itu belum ditebang.

(45)

2.8.1.4Kecerunan Ira

Sebagai salah satu komponen kekuatan kayu, pengaruh ira sebenarnya

bergantung kepada kecerunan ira tersebut tanpa bergantung sama ada ianya ira lintang, ira serong dan ira pusar. Kecerunan ira dinyatakan dengan nisbah 1 : n iaitu 1 ialah jarak dalam arah tegak kepada tepi kayu dan n ialah jarak dalam arah selari dengan tepinya. Daya yang bertindak ke atas kayu yang berira condong akan menyebabkan terhasilnya komponen tindakan daya dalam arah melintang iranya, sedangkan kekuatan kayu adalah rendah dalam arah melintang ira iaitu bergantung pada jenis kekuatan yang terlibat. Daripada ujian yang dijalankan sebelum ini, kekuatan mempatan kayu akan berkurangan jika kecerunan ira melebihi 1 : 10.

2.8.2 Kelemahan Kayu

Kayu yang digunakan dalam industri pembinaan juga mempunyai beberapa kelemahan yang mana kelemahan ini boleh diatasi melalui kajian penggunaan FRP terhadap kayu. Antara kelemahan yang dapat dilihat adalah seperti berikut:-

i. Kayu boleh mengecut disebabkan sifat higroskopik yang wujud pada kayu. Apabila wujud perubahan kandungan lembapan, kayu boleh meleding dan akan menyukarkan kerja.

ii. Terdapat kecacatan-kecacatan semulajadi dalam kayu seperti buku, hati, berongga dan bergerigis.

iii. Kayu mudah diserang serangga dan cendawan perosak. Sebagai contoh,

(46)

Jadual 2.6:

Ciri-ciri Mekanikal 56 Kayu Tropi

(47)

Jadual 2.6:

( Sam

(48)

2.9 Penggunaan FRP Dalam Kejuruteraan Kayu

Rajah 2.9 : Kebarangkalian penggunaan FRP dalam kejuruteraan kayu

Dalam industri pembinaan hari ini penggunaan FRP telah mendapat keyakinan para pereka untuk memasarkan hasilnya untuk diaplikasikan dalam pembinaan struktur bangunan seperti keluli, besi, konkrit dan yang diutamakan adalah FRP dalam struktur kayu. Jika dilihat penggunaan FRP dalam struktur kayu masih lagi kurang dalam industri pembinaan di Malaysia. Ianya banyak digunakan di negara-negara seperti Amerika Utara dan sebelah Eropah.

(49)

Antara penggunaan FRP dalam kayu adalah untuk meningkatkan kekuatan kayu, mengurang kadar pesongan ( deflection ) pada rasuk bila dikenakan beban dan

(50)

BAB III

KAEDAH METODOLOGI DAN UJIAN MAKMAL

3.1 Pengenalan

Kaedah metodologi merupakan cara, kaedah atau pendekatan yang digunakan bagi mencapai objektif kajian. Kaedah-kaedah yang dilakukan ini adalah bertujuan bagi memudahkan proses pencarian maklumat dan juga memastikan setiap maklumat yang diperolehi adalah berkaitan dengan objektif kajian.

Antara kaedah-kaedah yang digunakan untuk melaksanakan kajian ini adalah seperti berikut : -

1. Perbincangan awal 2. Kajian literatur

3. Pengumpulan maklumat 4. Ujikaji

(51)

3.2 Perbincangan awal

Perbincangan awal adalah penting bagi mendapatkan gambaran secara kasar tentang tajuk kajian serta bagaimana mendapatkan maklumat yang diperlukan bagi melakukan kajian ini. Perbincangan awal bersama Dr. Suhaimi Abu Bakar selaku penyelia bagi kajian ini telah banyak membantu memberi cadangan dan nasihat meliputi pelbagai aspek seperti turutan kerja yang harus dilakukan dan sumber-sumber maklumat yang boleh didapati.

3.3 Kajian Literatur

Bagi menambahkan lagi kefahaman mengenai tajuk kajian,

maklumat-maklumat perlu dicari daripada pelbagai sumber untuk menjelaskan lagi tajuk kajian. Antaranya adalah mendapatkan maklumat daripada sumber rujukan seperti buku, artikel dan jurnal. Selain itu juga ada maklumat yang berjaya diperolehi melalui pengkalan data

( database ) Perpustakaan Sultanah Zanariah ( PSZ ).

3.4 Pengumpulan maklumat

(52)

3.5 Prosedur Ujikaji

Dalam kajian yang dilakukan ini ujikaji yang terlibat adalah Ujian Kekuatan Lenturan rasuk yang dikawal dan diperkuatkan dengan baham polimer FRP. Berikut merupakan ringkasan ujikaji yang akan dilakukan seperti yang ditunjukkan carta alir di bawah :-

Penyediaan Sampel ( alat makmal )

Penyediaan spesimen kayu

pelekatan CFRP pada kayu Pelicinan permukaan kayu

Ujian Lenturan

Analisis Data

(53)

3.5.1 Penyediaan sampel dan alatan makmal

Dalam ujikaji yang dijalankan ini terdapat beberapa peralatan yang diperlukan bagi memastikan perjalanan ujikaji ini adalah terbaik. Di antara peralatan yang akan

digunakan dalam ujikaji ini adalah seperti berikut :-

i. Enam sampel kayu keruing yang siap dipotong dengan panjang 900 mm dan 50 mm x 50mm ( tinggi x lebar )

ii. Mesin pemotong kayu elektrik iii. Mesin pengetam kayu elektrik iv. Pengelok Data

v. Tiga alat Tranduser untuk mengambil bacaan pesongan vi. Kerangka Magnus untuk ujian lenturan

vii. FRP jenis karbon ( 85 mm x 30 mm x 3 sampel )

(54)

(i) Sampel ujikaji ( Kayu Keruing ) (ii) Jek Hidraulik

(iii) Pengelok Data (iv) Sikadur 330 A dan Sikadur 330 B

(55)

3.5.2 Penyediaan spesimen kayu

Dalam kajian yang dilakukan sebanyak enam sampel kayu keruing diperlukan. Kayu keruing yang asal akan dipotong mengikut ukuran yang telah ditetapkan dengan menggunakan mesin pemotong. Pemotongan kepada saiz sampel yang akan diuji dibuat setelah penentuan saiz dilakukan. Saiz ataupun ukuran rasuk yang dibuat adalah seperti di bawah :

Panjang : 900 mm Tinggi : 50 mm Lebar : 50 mm

(56)

Rajah 3.3 : Mesin Pemotong Kayu Elektrik

(57)

Rajah 3.4 : Sampel yang telah siap dipotong dan diratakan permukaannya

3.5.3 Penyediaan Permukaan

Bagi menghasilkan satu permukaan yang rata dan cantik permukaan kayu akan dikemaskan dengan menggunakan kertas pasir kasar. Kesan pemotongan dan permukaan yang tidak rata akan dikemaskinikan bagi mendapatkan permukaan yang rata dan

(58)
(59)

3.5.4 Penampalan helaian CFRP

Perekat epoksi Sikadur 330 component A dicampurkan dengan Sikadur 330 component B pada nisbah 4 : 1. Kedua-dua campuran ini akan digaulkan selama lima minit bagi mendapatkan campuran yang sebati sebelum dilekatkan pada permukaan rasuk kayu. Apabila campuran ini telah benar-benar sebati, kerja-kerja menyapu epoksi pada permukaan kayu dilakukan. Epoksi yang dicampur ini disapukan mengikut ukuran saiz bahan polimer CFRP dan penampalan helaian CFRP dilakukan.

Semasa kerja-kerja penampalan helaian CFRP dilakukan adalah penting

memastikan helaian ini betul-betul melekat dan tidak ada serat-serat yang terkeluar dari lokasi yang ditandakan. Kerja penggelekan dengan menggunakan penggelek besi akan dilakukan bagi memastikan helaian CFRP tadi mempunyai lekatan yang baik dengan permukaan kayu. Setelah kesemuanya siap, bahan tadi akan dibiarkan kering pada suhu bilik biasa selama seminggu supaya epoksi tadi dapat mencapai kekuatannya. Rajah 3.6 menunjukkan prosedur bagi penyediaan epoksi dan kerja-kerja penampalan.

(a) Sikadur330 A dan B dicampur kadar 4 : 1 (b) Penyapuan epoksi pada kayu

(60)

mpalan helaian CFRP (d) Menekan dan meratakan

(e) Helaian CFRP yang telah siap ditampal

Rajah 3.6 : Proses penampalan helaian CFRP pada rasuk kayu ( sambungan ). (c) Pena

(61)

3.5.5 Ujian kekuatan lenturan rasuk

Untuk kaedah ini sampel kayu perlu disokong bebas pada kedua-dua hujungnya dan berupaya melentur tanpa sebarang halangan seperti geseran dan sebagainya.

Anggaran kekuatan kayu Keruing secara teori dapat ditunjukkan di bawah :

Kayu Keruing ( Dipterocarpus bandii )

² 739

cm kg p=

σ Tegasan had perkadaran ( stress proportional limit )

lenturan statik. Rujuk Jadual 2.6

(62)

Semua rasuk kayu yang hendak dilakukan ujian lenturan diratakan permukaan dengan menggunakan kertas pasir yang kasar bagi mendapatkan permukaan yang rata bagi memudahkan pengesanan keretakan yang berlaku. Ujian lenturan rasuk dilakukan pada tiga sampel yang dikawal terlebih dahulu bagi memepercepatkan ujikaji

manakala rasuk yang diperkuatkan dengan helaian CFRP akan diuji selepas perekat epoksi yang melekatkan helaian CFRP pada rasuk telah kering. Tempoh bagi

mendapatkan lekatan yang baik antara lekatan helaian CFRP dengan rasuk ialah satu minggu. Selepas itu ia akan diuji.

Semasa ujian dilakukan dengan menggunakan struktur kerangka Magnus, terdapat beberapa alat yang digunakan di dalam ujikaji ini dan diantaranya ialah :

i. Jek Hidraulik : Mengenakan beban ke atas rasuk

ii. Sel beban : Membaca beban yang dikenakan ke atas rasuk iii. Transduser : Mengukur pesongan rasuk

iv. Magnetic stand : Memegang transduser pada kedudukan yang tetap v. Pengelok data : Mengumpul bacaan transduser dan sel beban

Jek Hidraulik akan diletakkan tergantung pada struktur kerangka Magnus dan hujung jek akan ditumpukan ditengah-tengah pembahagi beban untuk mewujudkan dua beban tumpu dengan jarak yang sama dari tengah rentang. Penyokong rasuk pula terdiri daripada dua rod yang mempunyai ketinggian yang sama.

(63)

Selepas semua alat dipasang beban mula dikenakan dan bacaan akan diambil untuk setiap pembebanan sebanyak 0.5 kN sehingga keretakan pertama dikenalpasti. Pembebanan akan diteruskan sehingga rasuk mencapai kegagalan pada had beban muktamad. Selepas rasuk mengalami kegagalan, bentuk keretakan pada rasuk diambil dan dibuat lakaran bagi mengenalpasti keretakannya.

Tranduser

Rajah 3.7 : Ujian kekuatan lenturan rasuk

(64)

Rajah 3.9 : Beban dikenakan pada rasuk dengan kadar 0.5kN

(65)

BAB IV

KEPUTUSAN DAN PERBINCANGAN

4.1 Keputusan Ujian Pembebanan Titik

Hasil yang diperolehi daripada kajian ini akan dianalisis dan dibincang bagi

memperolehi data dan maklumat yang terbaik untuk dianalisis. Rajah 4.1 menunjukkan

nilai pesongan yang diambil bagi setiap rasuk kayu padu sewaktu pembebanan

dilakukan

4.1.1 Keputusan ujikaji bagi ujian lenturan rasuk kayu padu

P/2 P/2

Pesongan Pesongan Pesongan

1

2

3

(66)

Sebelum melakukan ujian lenturan, jisim ketiga-tiga sampel akan diambil dan

dicatatkan bacaan seperti dinyatakan di bawah iaitu sampel A = 1.845 kg, sampel B =

1.975 kg dan sampel C = 2.090 kg. Kandungan lembapan bagi setiap sampel juga

diambil sebelum dan selepas ujikaji. Keputusan ujian bagi tiga rasuk kayu padu

ditunjukkan oleh Jadual 4.1, 4.2, 4.3, dan 4.4.

Jisim kayu sebelum ujikaji

Sampel A = 1.845 kg

Sampel B = 1.975 kg

Sampel C = 2.090 kg

Jadual 4.1: Kandungan lembapan ( % ) bagi sampel rasuk kayu padu

Jenis Sampel Sebelum ( kg ) Selepas ( kg ) %

A 0.085 0.075 11.8

B 0.090 0.080 11.1

(67)

Jadual 4.2: Data ujikaji rasuk kayu padu bagi Sampel A

(68)

Jadual 4.3 : Data ujikaji rasuk kayu padu bagi Sampel B

(69)

Jadual 4.4 : Data ujikaji rasuk kayu padu bagi Sampel C

(70)

4.1.2 Keputusan ujikaji bagi ujian lenturan rasuk yang di perkuatkan dengan helaian CFRP

P/2 P/2

Pesongan Pesongan Pesongan

1

2

3

Rajah 4.2: Nilai pesongan setiap sampel bagi rasuk yang diperkuatkan dengan CFRP fabrik

Proses yang sama juga dibuat bagi sampel kayu yang diperkuatkan dengan CFRP

fabrik di mana jisim sampel A = 1.880 kg, sampel B = 1.945 kg dan sampel C =

1.8654kg. Kandungan lembapan bagi setiap sampel juga diambil sebelum dan selepas

ujikaji. Keputusan ujian bagi tiga rasuk kayu yang diperkuatkan dengan CFRP fabrik

ditunjukkan oleh Jadual 4.5.

Jadual 4.5: Kandungan lembapan ( % ) bagi sampel rasuk yang diperkuat dengan CFRP

Jenis Sampel Sebelum ( kg ) Selepas ( kg ) %

A 0.075 0.065 13.3

B 0.065 0.055 15.4

(71)

Jadual 4.6 : Data ujikaji rasuk kayu yang diperkuatkan dengan CFRP fabrik bagi Sampel A

Pesongan ( mm ) Beban ( kN )

∆1 ∆2 ∆3

0 0 0 0

1 1.29 2.67 1.31

2 2.68 3.26 2.69

3 4.21 4.94 4.14

4 5.68 6.61 5.58

5 7.11 8.23 6.97

6 8.63 9.87 8.40

7 10.28 11.74 10.02

8 12.29 13.90 11.86

9 14.79 16.60 14.20

10 18.53 20.50 17.60

(72)

Jadual 4.7 : Data ujikaji rasuk kayu yang diperkuatkan dengan CFRP fabrik bagi Sampel B

Pesongan ( mm ) Beban ( kN )

∆1 ∆2 ∆3

0 0 0 0

1 1.82 2.54 2.22

2 2.97 3.63 3.32

3 4.29 4.85 4.31

4 5.57 6.12 5.85

5 6.81 7.31 7.08

6 8.35 9.21 8.54

7 9.58 10.01 9.72

8 11.15 11.73 11.22

9 13.05 14.25 13.01

10 15.32 16.74 15.15

11 21.05 23.52 20.86

(73)

Jadual 4.8 : Data ujikaji rasuk kayu yang diperkuatkan dengan CFRP fabrik bagi Sampel C

Pesongan ( mm ) Beban ( kN )

∆1 ∆2 ∆3

0 0 0 0

1 1.43 1.60 1.37

2 2.72 2.99 2.62

3 4.22 4.66 4.04

4 5.56 6.15 5.31

5 7.05 7.82 6.80

6 8.49 9.43 8.15

7 10.19 11.27 9.77

8 11.84 13.08 11.31

9 14.07 15.49 13.42

10 18.82 20.49 17.75

11 19.01 23.42 19.17

(74)

4.1.3 Ragam Kegagalan dan Bentuk Keretakan

Bentuk dan ragam kegagalan sampel-sampel yang diuji adalah seperti

disimpulkan dalam Jadual 4.9 dan Jadual 4.10

Jaduan 4.9 : Ragam kegagalan bagi ketiga-tiga batang rasuk kayu padu

Sampel Ragam Kegagalan

A

Kegagalan tempatan di bahagian atas rasuk dengan sedikit lengkokan sisi..

Kegagalan pada bahagian atas menunjukkan sampel ini mengalami

kegagalam mampatan. Didapati juga semasa beban muktamad kegagalan

mula berlaku pada bahagian bawah rasuk dan ini di andaikan rasuk

mengalami kegagalan tegangan.

B

Pada bahagian atas rasuk didapati tiada keretakan berlaku dan keretakan

hanya didapati pada bahagian sisi dan bawah rasuk sahaja. Bentuk

kegagalan pada bahagian bawah ( pandangan sisi ) adalah kurang dan

rasuk ini telah mengalami kegagalan tegangan.

C

Sampel ini semakin melentur dan patah secara tiba-tiba di tengah rentang

apabila mencapai beban muktamad. Antara lokasi keretakan yang

dikenalpasti ialah pada tengah rentang pada bahagian atas, pecah pada

bahagian bawah ditengah rentang pada kedudukan sisi. Kegagalan pada

bahagian bawah rasuk menunjukkan sampel mengalami kegagalan

(75)

Rajah 4.3 : Rasuk kayu padu sebelum dikenakan beban

(76)

Rajah 4.5 : Rasuk kayu padu yang telah mengalami kegagalan dan pada ketika ini jek hidraulik dilepaskan.

(77)

Pandangan dari atas

Pandangan hadapan sisi yang menghala kamera seperti dalam Rajah 4.5

Pandangan bawah

Rajah 4.7 : Ragam kegagalan secara grafik dari tiga pandangan bagi rasuk padu sampel A ( tidak mengikut skala )

Pandangan dari atas

Pandangan hadapan sisi yang menghala kamera seperti dalam Rajah 4.5

Pandangan bawah

Rajah 4.8 : Ragam kegagalan secara grafik dari tiga pandangan bagi rasuk padu B

(78)

Pandangan dari atas

Pandangan hadapan sisi yang menghala kamera seperti dalam Rajah 4.3

Pandangan bawah

(79)

Jadual 4.10 : Ragam kegagalan bagi ketiga-tiga batang rasuk yang diperkuatkan dengan CFRP fabrik

Sampel Ragam Kegagalan

A

Pada bahagian atas rasuk didapati tiada keretakan berlaku dan keretakan

hanya didapati pada bahagian sisi dan bawah rasuk sahaja dan helaian

CFRP didapati terkoyak sedikit pada bahagian tengah. Kegagalan pada

bahagian bawah menunjukkan sampel mengalami kegagalan tegangan

B

Kegagalan tempatan di bahagian atas rasuk dengan sedikit lengkokan sisi.

Sampel ini melentur dengan penambahan beban dan berlaku kopakan pada

kayu secara tiba-tiba. Kegagalan hanya berlaku pada sisi kayu yang tidak

dilekatkan dengan CFRP. CFRP tertanggal sedikit dan kegagalan sampel

ini mengalami kegagalan mampatan

C

Sampel ini semakin melentur dan patah secara tiba-tiba di tengah beban

tumpu iaitu 30 cm dari sokong apabila mencapai beban muktamad.

Helaian CFRP tertanggal dan terkoyak ketika kegagalan berlaku.

Kegagalan dibahagian bawah rasuk menunjukkan sampel ini mengalami

(80)

Rajah 4.10: Rasuk yang diperkuatkan dengan CFRP melentur apabila dikenakan beban

(81)

Rajah 4.12 : Pandangan dekat rasuk kayu diperkuatkan dengan helaian CFRP yang mengalami kegagalan

Pandangan dari atas

Pandangan hadapan sisi yang menghala kamera seperti dalam Rajah 4.10

Pandangan bawah

(82)

Pandangan dari atas

Pandangan hadapan sisi yang menghala kamera seperti dalam Rajah 4.10

Pandangan bawah

Rajah 4.14: Ragam kegagalan secara grafik dari tiga pandangan bagi sampel B yang diperkuatkan dengan CFRP ( tidak mengikut skala )

Pandangan dari atas

Pandangan hadapan sisi yang menghala kamera seperti dalam Rajah 4.11

Pandangan dari bawah

(83)

4.1.4 Beban Muktamad

Hasil daripada ujikaji, beban muktamad bagi sampel-sampel yang diuji

ditunjukkan dalam Jadual 4.11

Jadual 4.11: Beban muktamad bagi ketiga-tiga sampel rasuk yang diuji

Sampel Keadaan sampel Beban muktamad ( kN )

A ( rasuk padu ) Rasuk segiempat sama kayu - padu 9.5

B ( rasuk padu ) Rasuk segiempat sama kayu – padu 10.0

C ( rasuk padu ) Rasuk segiempat sama kayu – padu 11.0

A( FRP ) Rasuk segiempat sama kayu diperkuatkan

dengan helaian CFRP 12

B( FRP ) Rasuk segiempat sama kayu diperkuatkan

dengan helaian CFRP 12

C( FRP ) Rasuk segiempat sama kayu diperkuatkan

(84)

4.1.5 Pesongan

Perbandingan graf beban melawan pesongan bagi ketiga-tiga sampel ujikaji

rasuk padu ditunjukkan dalam Rajah 4.16 - 4.19 manakala perbandingan graf beban

melawan pesongan bagi rasuk yang diperkuatkan dengan helaian CFRP ditunjukkan

dalam Rajah 4.20 – 4.21.

Rajah 4.16: Gabungan graf beban lawan pesongan bagi sampel A ( rasuk padu )

4.1.5.1 Analisis Graf

Berdasarkan Rajah 4.16, perbandingan dibuat berdasarkan gabungan ketiga-tiga

titik pesongan yang dinyatakan dalam graf iaitu pesongan 1, pesongan 2 dan pesongan 3

(85)

Rajah 4.16

Berpandukan Rajah 4.16 didapati hubungan beban dan pesongan adalah berkadar

terus. Apabila dikenakan beban pada kadar 0.5 kN di dapati pesongan pada tengah

rentang semakin besar dengan peningkatan beban. Perubahan pada pesongan 1 dan

pesongan 2 dapat dilihat pada beban 1.0 kN hingga beban 8.0 kN menghasilkan

pesongan sebanyak 2mm hingga 17 mm. Secara teorinya apabila beban titik dikenakan

pesongan 1 dan 2 adalah berada pada nilai yang sama ataupun sedikit anjakan dan ini

bergantung kepada teknik pembebanan dan kedudukan alat transduser semasa ujikaji.

0

(86)

Rajah 4.17

Bagi Rajah 4.17 pula, didapati kadar pesongan 1 dan pesongan 3 hampir sama

dan perubahan pada graf mula berlaku pada beban 4.0 kN sehingga beban 8.0 kN.

Pesongan 2 pada pertengahan rentang adalah lebih besar daripada pesongan 1 dan

pesongan 3 dan ini menunjukkan lenturan maksimum berlaku pada pertengahan rentang.

0

(87)

Rajah 4.18

Rajah 4.18 menunjukkan nilai pesongan 1 dan pesongan 3 adalah sama sehingga

sampel mencapai kegagalan pada beban muktamad. Sampel C menunjukkan perbezaan

yang ketara jika dibandingkan dengan sampel A dan sampel B di mana pemindahan

beban dianggap sekata kerana nilai pesongan 1 dan pesongan 3 adalah sama manakala

lenturan maksimum bagi pesongan 2 adalah yang lebih besar dari pesongan 1 dan

pesongan 3.

Beban Maksimum P = 11.0 kN

Beban Maksimum P

= 10.0 kN

Beban Maksimum P = 9.5 kN

Rajah 4.19: Gabungan ketiga-tiga sampel bagi pesongan maksimum pada beban

(88)

Daripada Rajah 4.19, perbandingan dapat dibuat antara ketiga-tiga jenis sampel

iaitu sampel A, B dan C. Pada pertengahan rentang atau di bawah beban tumpu, nilai

pesongan maksimum dicapai pada had yang tertentu bergantung kepada kekuatan rasuk

kayu. Bagi sampel A, pada beban muktamad 9.5 kN pesongan maksimum yang

dihasilkan ialah 32.08 mm. Bagi sampel B pula, pada beban muktamad 10.0 kN

menghasilkan pesongan sebanyak 18.34 mm dan sampel C pada beban muktamad 11.0

kN menghasilkan pesongan 21.28 mm.

Daripada ketiga-tiga sampel yang ditunjukkan dalam rajah di atas didapati

sampel A mengalami pesongan yang besar iaitu 32.08 mm berbanding dengan sampel B

dan C. Keadaan ini menunjukkan bahawa kadar pesongan rasuk bergantung kepada

jumlah beban yang dikenakan dan juga keadaan struktur kayu. Nilai pesongan yang

besar bagi sampel A menunjukkan sampel ini mempunyai kelemahan dalam struktur

kayu dan ianya tidak sesuai jika digunakan dalam pembinaan. Dalam pembinaan rasuk

kayu, nilai pesongan yang terkecil dan mampu menanggung beban yang besar adalah

yang terbaik dalam rekabentuk. Bagi sampel A dan B adalah mempunyai kekuatan pada

struktur kayu yang boleh menanggung beban yang besar dari sampel A di mana ianya

(89)

0

Rajah 4.20: Gabungan ketiga-tiga sampel bagi pesongan maksimum pada beban

muktamad yang diperkuatkan dengan helaian CFRP

Bagi rasuk yang diperkuatkan dengan CFRP kadar beban yang dikenakan ialah pada

kadar 1.0 kN pada setiap kali pembebanan dilakukan. Daripada Rajah 4.20, dapatlah

disimpulkan dan dibuat perbandingan bagi ketiga-tiga sampel yang diperkuatkan dengan

CFRP. Kegagalan sampel A berlaku sehingga beban muktamad 11.0 kN dan

menghasilkan pesongan maksimum 20.5 mm. Bagi sampel B dan sampel C kegagalan

berlaku pada beban 12.0 kN masing-masing menghasilkan pesongan 23.52 mm dan

23.42 mm.

Daripada ketiga-tiga sampel di atas, sampel B dan sampel C menghasilkan pesongan

(90)

0

Rajah 4.21: Purata bagi ketiga-tiga sampel antara rasuk yang dikawal dan rasuk yang diperkuatkan dengan helaian CFRP.

Jika dilihat pada Rajah 4.21, pada awal pembebanan sehingga akhir pembebanan

sampel yang diperkuatkan dengan CFRP adalah lebih tinggi kekuatan jika dibandingkan

dengan rasuk kayu padu.

Daripada hasil yang ditunjukkan dalam graf diatas, terdapat perbezaan antara

rasuk kayu padu dan sampel yang diperkuatkan dengan CFRP. Apabila dikenakan beban

yang sama iaitu pada beban 8.0 kN pada kedua-dua sampel, didapati terdapat perbezaan

dari segi pesongan. Pada beban 8.0 kN nilai pesongan bagi sampel yang diperkuatkan

dengan CFRP adalah 11.0 mm manakala pada beban yang sama nilai pesongan bagi

(91)

Daripada keputusan ini dapatlah disimpulkan bahawa dengan penambahan

bahan polimer seperti CFRP pada rasuk kayu ianya memberikan nilai pesongan yang

lebih kecil berbanding sampel rasuk kayu biasa apabila dikenakan pada beban yang

sama. Didapati juga peratus perbezaan bagi pesongan kedua-dua sampel adalah

(92)

4.1.6 Perbincangan Keputusan Ujian Pembebanan Titik

4.1.6.1 Kelakuan lenturan

Rasuk kayu padu (A1, B1 dan C1) melentur dengan keadaan beban yang

dikenakan berkadar langsung dengan pesongan dan terikannya sehingga sampel ini

mengalami kegagalan tempatan pada bahagian bawah rasuk. Dengan kata lain, rasuk ini

mengalami kegagalan dan daya tegangan yang dikenakan pada atas paksi neutralnya.

Beban muktamad bagi sampel A1 = 9.5 kN, B1 = 10.0 kN dan C1 = 11.0 kN. Manakala

pesongan maksimum ketika kegagalan berlaku ialah sampel A1 = 32.08 mm, B1 = 18.34

mm dan C1 = 21.28 mm.

Bagi sampel yang diperkuatkan dengan helaian CFRP pula, kelakuan

lenturannya adalah berlainan sedikit dengan sampel yang dikawal. Sampel C2 ( CFRP )

patah secara tiba-tiba pada beban muktamadnya, iaitu 11.0 kN. Manakala sampel yang

lain iaitu A2 ( CFRP ) = 12.0 kN dan B2 ( CFRP ) = 12.0 kN juga melentur sebelum

kegagalan berlaku dan keadaan beban yang dikenakan berkadar terus dengan pesongan

yang dialaminya. Pesongan maksimum ketika beban muktamad sebelum sampel C2

( CFRP ) patah ialah 23.42 mm, sampel A2 ( CFRP ) = 20.5 mm dan sampel B2 ( CFRP )

= 23.52 mm.

Dari keputusan ujian pembebanan titik bagi sampel yang dikawal iaitu A1, B1

dan C1, maka dapatlah dirumuskan bahawa rasuk adalah lemah pada bahagian tegangan

( bahagian bawah paksi neutralnya ) daripada mampatan. Bagi rasuk yang diperkuatkan

dengan helaian CFRP pula, kekuatan pada bahagian mampatan adalah lemah jika

dibandingkan dengan bahagian tegangan.Dengan kata lain, rasuk yang diperkuatkan

(93)

Jadual 4.12 : Perbandingan antara keenam-enam sampel dalam ujian pembebanan dua

4.1.6.2 Kesan Penguatan Helaian CFRP

Jadual 4.12 menunjukkan perbandingan di antara rasuk kayu padu dan rasuk

yang diperkuatkan dengan CFRP. Jika dilihat dari segi kekuatan bahan ini, penguatan

oleh CFRP menunjukkan kadar peningkatan beban yang dikenakan pada rasuk.

Keputusan yang diperoleh dalam sampel A dan A ( CFRP ) menunjukkan perbezaan

dimana banyak faktor yang boleh dibincangkan dan diambil kira bagi menunjukkan

bahan CFRP mampu meningkatkan kadar kekuatan rasuk.

Secara purata beban muktamad bagi ketiga-tiga sampel A, B, dan C bagi rasuk

kayu padu adalah 10.2 kN. Beban muktamad yang dicapai bagi sampel ini adalah lebih

rendah jika dibandingkan dengan sampel yang diperkuatkan dengan CFRP iaitu 11.7 kN.

Ini dapat disimpulkan bahwa helaian CFRP dapat menguatkan rasuk yang lebih kuat

pada bahagian mampatan. Kegagalan yang berlaku dalam rasuk kayu padu lebih kepada

(94)

Dari segi pesongan pula, kadar pesongan sampel yang diperkuatkan dengan

CFRP adalah lebih kecil daripada pesongan rasuk kayu padu seperti yang ditunjukkan

dalam Rajah 4.21 dengan perbezaan sebanyak 17.3 %. Keadaan ini menunjukkan

bahawa helaian CFRP berupaya mengurangkan pesongan rasuk pada awal pembebanan

sehingga sampel mencapai kegagalan.

Jika dilihat dari segi bentuk keretakan dan kegagalan sampel pula, rasuk kayu

padu menunjukkan banyak keretakan yang berlaku pada bahagian bawah jika

dibandingkan dengan sampel yang diperkuatkan dengan helaian CFRP. Bentuk

keretakan yang berbeza adalah disebabkan oleh kehadiran bahan penguat bagi kayu iaitu

CFRP. Keretakan bagi sampel yang diperkuatkan dengan CFRP dan rasuk kayu padu

adalah hampir sama bagi ketiga-tiga jenis sampel yang mana kesemuanya gagal pada

pertengahan beban titik.

Pada beban muktamad bagi sampel CFRP iaitu sampel C rasuk patah secara

tiba-tiba dan berlaku penanggalan pada helaian CFRP seperti dalam Rajah 4.11.Bagi

(95)

BAB V

KESIMPULAN DAN CADANGAN

5.1 Kesimpulan

Kajian terhadap rasuk-rasuk kayu bagi penentuan kesan tampalan CFRP bagi ujian pempebanan 2 titik telah menghasilkan data yang dapat dirumuskan seperti berikut:-

1) Rasuk yang diperkuatkan dengan plat CFRP mampu menanggung beban muktamad yang lebih besar daripada rasuk kawalan.

2) Rasuk yang diperkuatkan dengan plat CFRP memberikan nilai pesongan relatif yang rendah.

(96)

4) Penggunaan plat CFRP sebagai penguat bagi rasuk yang berentang panjang dalam menghalang pesongan disamping menguatkan rasuk sehingga mampu menanggung beban muktamad yang lebih tinggi.

5) Kegagalan yang berlaku pada rasuk yang diperkuatkan dengan plat CFRP berlaku pada bahagian yang lemah yang tidak disaluti dengan plat CFRP iaitu di tengah beban titik.

6) Corak kegagalan bagi kedua-dua sampel adalah berbeza di mana retak yang dihasilkan oleh rasuk yang dikawal adalah banyak berbanding rasuk yang diperkuatkan dengan plat CFRP

7) Lekatan bahan epoksi didapati kurang baik kerana tidak menunjukkan lekatan ataupun pengerasan di mana bahan tersebut masih lagi berada dalam keadaan melekit sewaktu ujikaji dijalankan

(97)

5.2 Cadangan ujikaji selanjutnya

Corak dan kemunculan retakan pada sampel perlu direkodkan kerana kelakuan plat banyak dipengaruhi oleh perkembangan retakan. Parameter seperti lebar, kedalaman dan selang setiap retak perlu dicatatkan dengan lebih terperici. Kajian kebolehkhidmatan epoksi juga dapat menghasilkan garis panduan mengenai kadar campuran, tempoh pengawetan dan penyenggaraan yang baik

Disamping itu, ciri-ciri epoksi yang digunakan sebagai adhesif juga perlu diberi perhatian kerana keberkesanan penampalan dan lekatan di antara plat CFRP dan

permukaan kayu penting dalam memastikan penguatan menggunakan CFRP.

Kajian penampalan pada keseluruhan permukaan kayu pada rasuk perlu dilakukan dengan lebih mendalam supaya bahan ini dibalut pada kesemua permukaan kayu kerana kegagalan didapati berlaku pada bahagian yang tidak ditampal dengan CFRP.

(98)

RUJUKAN

Aprile A., Spacone E., Suchart Limkatanyu ( 2001 ). “ Role of Bond in RC Beams Strengthened with Steel and FRP Plates” Journal of structural Engineering. 1445-1452

Benjamin A. Jayne (1972), “Theory And Design Of Wood And Fiber Composite Materials”, First Edition, Syracuse University Press, New York, pp. 1-21.

Gill, R.M. ( 1972 ). “ Carbon Fibres in Composites Materials.” London: Iliffe Books For The Plastics Institute.

H. E. Desch (1948), “Timber Its Structure And Properties”, Second Edition, Macmillan and Co. Ltd, London, pp. 9-16.

Hollaway, L.C and Head, P.R ( 2001 ). “ Advanced Polymer Composites and Polymer in the Civil Infrastructure.” Oxford: Elsevier Science Ltd ( UK )

Keble, J. ( 1999 ). “ Alternative Structural Strengthening with Advanced Composites” Conference on Composites and Plastic in Construction. Shawbury: Rapra technology.paper 18

(99)

Mahyuddin Ramli. “ Pengujian Bahan & Struktur. M.Sc Construction Engineering ( Leeds ). B.C.Hon. Civil Engineering ( UTM ). Muka surat 109-113

Robert, M.J. ( 1993 ). “ Mekanik Bahan Rencam” diterjemahkan oleh Daud Abd. Rahman, Unit Penerbitan Akademik UTM, pp. 1-2

S. R. Reid and G. Zhou (1987), “Impact Behaviour Of Fibre-Reinforced Composit Materials and Structures”, Third Edition, Woodhead Publishing Limited, London, pp. 1- 5

Steiner, W. ( 1998 ) “ Desig of Strengthening Structures with Carbon Fibre Reinforced Polymer ( CFRP ) Laminates.” Kuala Lumpur : IEM, 1-41

Steiger R., Widman R., ( 2002 ): Fiber Reinforce Plastic in Timber Structures. A survey of possible applications. ( in German, with English summary ) Research Report of the EMPA Wood Department, in preparation

Tewary, V.K ( 1998 ) “ Mechanics of Fibre Composites.” New York: John Wiley & Sons, Inc.

Timmermann K., Meierhofer U.A., 1992 : “ Fibre reinforce plastics in timber structures Investigation and development to enlarge the field of application: I. Contemplation of status quo and of possible applications and developments ( in German ). Research Report Nr. 115/23 of the EMPA Wood Department

Referensi

Dokumen terkait

Damar Abadi Pontianak pengolahan data transaksi seperti pencatatan penjualan dan pembayaran, serta penghitungan laporan keuangan masih menggunakan sistem manual

Prestasi akademik yang akan diambil adalah Nilai blok 3.2, karena penelitian ini mengidentifikasi sampel yang mengalami gangguan tidur sejak satu bulan lebih dan

Berdasarkan hasil penelitian yang dilakukan maka dapat diambil simpulan bahwa, antara kematangan beragama dengan karakter Al- Ḥ ir ṣ mahasiswa PGMI Fakultas Tarbiyah IPMAFA

Tujuan penelitian ini adalah merancang sebuah media pembelajaran interaktif dalam pengucapan dan penghafalan bahasa inggris untuk siswa sekolah dasar sehingga media

Pada pertemuan I, mahasiswa menyimak penjelasan dosen mengenai problem based learning (PBL). Materi yang dijelaskan berisi tentang gambaran mengenai problem based

Struktur data ISDN dibentuk karena beberapa channel yang terhubung menjadi satu dan terintegrasi menjadi satu system. Pipa digital antar kantor pusat dan pemakai ISDN

Puji syukur kepada Tuhan Yesus Kristus, karena atas anugerah dan kasih-Nya maka Penulis dapat menyelesaikan laporan skripsi yang berjudul “ Aplikasi Tepung Garut

Manajemen harus dapat menentukan komposisi yang tepat antara besarnya laba yang akan diberikan kepada pemegang saham dalam bentuk dividen dan digunakan untuk membeli