• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:OTHER:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:OTHER:"

Copied!
8
0
0

Teks penuh

(1)

23 11

Article 11.5.6

Journal of Integer Sequences, Vol. 14 (2011), 2

3 6 1 47

A Formula for the Generating Functions of

Powers of Horadam’s Sequence with Two

Additional Parameters

Emrah Kılı¸c

TOBB University of Economics and Technology

Mathematics Department

06560 Ankara

Turkey

[email protected]

ucel T¨

urker Uluta¸s and Ne¸se ¨

Om¨

ur

Kocaeli University

Mathematics Department

41380 ˙Izmit Kocaeli

Turkey

[email protected]

[email protected]

Abstract

In this note, we give a generalization of a formula for the generating function of pow-ers of Horadam’s sequence by adding two parametpow-ers. Thus we obtain a generalization of a formula of Mansour.

1

Introduction

Horadam [1,2] defined the second-order linear recurrence sequence{Wn(a, b;p, q)},or briefly

{Wn},as follows:

(2)

wherea, bandp, q are arbitrary real numbers forn >0 . The Binet formula for the sequence

{Wn} is

Wn=

Aαnn

α−β ,

where A =b−aβ and B =b−aα. When a = 0, b = 1, and, a = 2, b = 1, denote Wn by

Un and Vn, respectively. If we takep= 1, q= 1, then Un=Fn (nth Fibonacci number) and

Vn=Ln (nth Lucas number).

Kılı¸c and Stanica [8] showed that for r > 0, n > 0, the sequence {Wn} satisfies the

following recursion

Wr(n+2) =VrWr(n+1)−(−q)rWrn.

Riordan [4] found the generating function for powers of Fibonacci numbers. He proved that the generating function Sk(x) =Pn≥0Fnkxn satisfies the recurrence relation

1−akx+ (−1)kx2

Sk(x) = 1 +kx

[k/2] X

j=1

(−1)j akj

j Sk−2j

(−1)jx,

for k ≥ 1, where a1 = 1, a2 = 3, as = as−1 + as−2 for s ≥ 3, and (1−x−x2) −j

= P

k≥0akjxk

−2j. Horadam [2] gave a recurrence relation for H

k(x) (see also [5]). Haukkanen

[6] studied linear combinations of Horadam’s sequences and the generating function of the ordinary product of two of Horadam’s sequences.

Mansour [3] studied about the generating function for powers of Horadam’s sequence given by Hk(x;a, b, p, q) = Hk(x) = Pn≥0Wnkxn. Then he showed that the generating

function Hk(x) can be expressed the ratio of two k by k determinants as well as he gave

some applications for the generating functionHk(x).

In this study, we consider the generating function for powers of Horadam’s sequence defined by

ℜk,t,r(x;a, b, p, q) = ℜk,t,r(x) =

X

n≥t

Wrnkxn.

We shall derive a ratio to express the generating function ℜk,t,r(x) by using the method of

Mansour. Moreover, we give applications of our results.

2

The Main Result

Firstly, we define two k by k matrices, in order to express the ℜk,t,r(x) as a ratio of two

(3)

∆k,r(p, q)

nxn.Considering Stanica’s result, we give the following result for the generating

func-tion

as the following Lemma1.

(4)

and for even k,

Proof. The proof easily follows from [7].

For further use, we define a family {Ak,d,t,r}kd=1 of generating functions by

Ak,d,t,r(x) =

Now, we give two relations between the generating functions Ak,d,t,r(x) and ℜk,t,r(x).

Lemma 2. For k ≥1, positive integer r and non-negative integer t,

Proof. Using the binomial theorem, we get

(5)

Lemma 3. For any k ≥1, positive integer r, non-negative integer t, and d≥t+ 1, Ak,d,t,r(x)−xt+1Wrtk−dWrd(t+1) = xVrd ℜk,t,r(x)−xtWrtk

+x

d

X

j=1

d j

(−(−q)r)jVd−j

r Ak,k−j,t,r(x).

Proof. Using the binomial theorem, we have

Wk−d

rn Wrd(n+1) = Wrnk−d VrWrn−(−q)rWr(n−1) d

= Wk−d rn

d

X

j=0

d j

Vd−j

r (−(−q) r

)jWd−j rn W

j r(n−1).

Multiplying by xn+1 and summing over all nt+ 1, we obtain the claimed result:

Ak,d,t,r(x)−xt+1Wrtk−dWrd(t+1) =xVrd ℜk,t,r(x)−xtWrtk

+x

d

X

j=1

d j

(−(−q)r)jVd−j

r Ak,k−j,t,r(x).

Now, we shall mention our main result:

Theorem 4. For any k ≥1, positive integer r, non-negative integer t, the generating func-tion ℜk,t,r(x) is

det (δk,t,r)

det (∆k,r)

. (3)

Proof. By using Lemma 1 and Lemma2, we obtain

∆k,r[ℜk,t,r(x), Ak,k−1,t,r(x), Ak,k−2,t,r(x), ...Ak,1,t,r(x)]T =υk,t,r,

where υk,t,r is given by

h

Wrtkxt+ Wrk(t+1)−VrkWrtk

xt+1,WrtWrk(t+1)1 −Vrk−1Wrtk

xt+1,

Wrt2Wk−2

r(t+1)−V

k−2

r Wrtk

xt+1, ..., Wk−1

rt Wr(t+1)−VrWrtk

xt+1i.

Hence the solution of the above equation gives the generating function

(6)

3

Applications

We state some applications of our main result by the following tables:

Table 1: The generating function for the powers of Fibonacci numbers

k t r The generating function ℜk,t,r(x; 0,1,1,1)

1 1 2 1

1−3x+x2

2 1 2 (1x)(11+x7x+x2)

3 1 2 1+6x+x2

1−21x+56x221x3+x4

4 1 2 (1x16+1712)(134xx++1712x2)(1x21154+17xx3+x2)

Table 2: The generating function for the powers of Lucas numbers

k t r The generating function ℜk,t,r(x; 2,1,1,1)

1 1 2 3−2x

1−3x+x2

2 1 2 9−23x+4x2

(1−x)(1−7x+x2)

3 1 2 27−224x+141x2

−8x3

1−21x+56x221x3+x4

4 1 2 81−2054x+452913226x2

−78298x3

−2864x4

(1−x)(1−7x+x2)(147x+x2)

Table 3: The generating function for the powers of Pell numbers

k t r The generating function ℜk,t,r(x; 0,1,2,1)

1 1 2 x226x+1

2 1 2 (1x)(14+434xx+x2

)

3 1 2 8(1+12x+x

2

) 1−204x+1190x2

−204x3

+x4

4 1 2 16(x+1)(1+106x+x

2

(7)

Table 4: The generating function for the powers of Chebyshev polynomials of the second

Applying Theorem 4 for k = 1,2,3, then we give the following corollary.

Corollary 5. Let k = 1,2,3. Then the generating function ℜk,t,r(x;a, b, p, q) is given by

(8)

[2] A.F. Horadam, Generating functions for powers of a certain generalized sequence of numbers, Duke Math. J.32 (1965), 437–446.

[3] T. Mansour, A formula for the generating functions of powers of Horadam’s sequence, Australasian J. Combinatorics 30 (2004), 207–212.

[4] J. Riordan, Generating function for powers of Fibonacci numbers, Duke Math. J. 29

(1962), 5–12.

[5] P. Haukkanen and J. Rutkowski, On generating functions for powers of recurrence se-quences, Fibonacci Quart. 29 (1991), 329–332.

[6] P. Haukkanen, A note on Horadam’s sequence, Fibonacci Quart., 40 (2002), 358–361.

[7] P. Stanica, Generating functions, weighted and non-weighted sums for powers of second-order recurrence sequences, Fibonacci Quart. 41 (2003), 321–333.

[8] E. Kılı¸c and P. Stanica, Factorizations of binary polynomial recurrences by matrix meth-ods, Rocky Mount. J. Math., to appear.

2010 Mathematics Subject Classification: Primary 11B37; Secondary 11B39, 05A15. Keywords: second-order linear recurrence, generating function.

(Concerned with sequences A000032, A000045, andA000129.)

Received December 6 2010; revised version received January 27 2011; May 3 2011. Published inJournal of Integer Sequences, May 3 2011.

Gambar

Table 1: The generating function for the powers of Fibonacci numbers
Table 4: The generating function for the powers of Chebyshev polynomials of the second

Referensi

Dokumen terkait

(2002) ex- amined the impact of regional economic integration on ex- ports of agricultural commodities of The United States (U.S.) revealed that the membership on free trade

Demikian addendum dokumen pengadaan ini dibuat untuk dapat diper gunakan sebagaimana mestinya. M akassar, 07

Pada gambar 16 diatas, objek yang ditangkap dirubah sudut posisi penangkapan objeknya, dan hasil yang didapat ternyata tidak sesuai, yang mana objek merupakan Toyota

Gambaran histologi kelenjar tiroid tikus putih seluruh kelompk tikus percobaan secara statistik (ukuran tinggi epitel folikel, diameter folikel dan persentase nassa koloid dalam

Sebagai bendera perusahaan, logo adalah aset visual yang paling penting sekaligus katalisator dari perasaan baik dan buruk yang karenanya, perlu dikelola dengan cara yang

Evaluasi Administrasi dilakukan terhadap penawaran yang masuk dan dibuka pada pembukaan penawaran sesuai Berita Acara Pembukaan penawaran nomor :

Paket pengadaan ini terbuka untuk penyedia barang/jasa dan memiliki surat izin usaha Bidang Pengadaan Barang (SIUP) dengan Kualifikasi Kecil dengan kegiatan badan

Berdasarkan Penetapan Peringkat Teknis Nomor : T.02/K.GDKEL-MINSEL/ULP/BPSDMP- 2017 tanggal 8 Mei 2017, Kelompok Kerja Jasa Konsultansi Perencanaan Gedung Kelas BDP Minsel,