• Tidak ada hasil yang ditemukan

Sintesis Lithium Mangan Oksida (LiMn2O4) untuk Katoda Baterai Lithium Ion

N/A
N/A
Protected

Academic year: 2017

Membagikan "Sintesis Lithium Mangan Oksida (LiMn2O4) untuk Katoda Baterai Lithium Ion"

Copied!
2
0
0

Teks penuh

(1)

DAFTAR PUSTAKA

Alice, DL, 2011. Electrochemical Analysis by Macro and Microelectrode array. [Tesis]. Durham: Durham University. Hlm : 13-15.

Arora P, Zhengming Z, 2004. Battery Separators. North Carolina. Chemical Reviews, 104(10): 4422.

Arora, Yukti, 2015. Lithium-Ion Battery Systems: A Process flow and Systems Framework Designed for Use in The Development of a Lifecycle Energy Model.[Tesis]. Georgia: Institute of Technology. Hlm, 23.

Brownson D. A. C, 2013. Graphene Electrochemistry : Fundamentals Through to Electroanalytical Applications. [Thesis]. Manchester: Manchester Metropolitan University. Hlm, 20.

Carvalho DV, Loeffler N, Kim GT, Passerini S, 2015. High Temperature Stable Separator for Lithium Batteries Based on SiO2 and Hydroxypropyl Guar Gum. Membranes, 5 : 633.

Chitra S, Kalyani P, Mohan T, dan Gangandharan R, 1999. Characterization and Electrochemical Studies of LiMn2O4 Cathode Materials Prepared by Combustion Method. Journal of Electroceramics, 3:4, 438.

Eriksson T, 2001. LiMn2O4 as a Li-Ion Battery Cathode. From Bulk to Electrolyte Interface. [Disertasi]. Sweden: Uppsala University Faculty of Science and Technology 651. Hlm, 13-20.

Julien Christian M, 2014. Comparative Issues of Cathode Materials for Li-Ion

Batteries. inorganics 2, 132-154. ISSN 2304-6740.

Kasvayee KA, 2011. Synthesis of Li-ion battery cathode materials via freeze granulation.[Thesis]. Swedia: Chalmers University of Technology. Hl, 8. Kiani MA, Mousavi MF, Rahmanifar MS, 2011. Synthesis of Nano-and

Micro-Particles of LiMn2O4: Electrochemical Investigation and Assessment as a Cathode in Li Battery. Int. J. Electrochem. Sci,6 (2011) 2587.

Lagashetty A, Havanoor V, Basavaraja S dan Venkataraman A, 2007. Combusion Synthesis of LiMn2O4 by Thermal Decomposition of Ocalate Precursors.

Indian Journal of Chemical Technology, 15: 41-44.

Lange Jonathan G, 2012. Improving Lithium-Ion Battery Power and Energy Densities using Novel Cathode Architectures and Materials. [Thesis]. Urbana-Champaign: University of Illinois.

Alice DL, 2011. Electrochemical Analysis Supported By Macro and Microelectrode Array. [Tesis]. Durham University Available at Durham E-Theses Online. Maroni F, Nobili F, 2011. Synthesis and characterization of Advanced Materials for

Li-ion Batteries : 1. Si/RGO Nanocomposite Anodes. 2. V2O5 gel Cathodes. [Thesis]. Universita di Camerino. Hlm. 34.

Matsui M, Dokko K, Kanamura K, 2010. Surface Layer Formation and Stripping Process on LiMn2O4 and LiNi1/2Mn3/2O4 Thin Film Electrodes. Journalof The

Electrochemical Society, 157 (2) A121-A129 (2010): A125.

Meti. 2009b. Patent Trend Report, Lithium Ion Battery. Retrieved June 7, 2010. Mikolajczak C, Kahn M,White K, Long RT, 2011. Lithium-Ion Batteries Hazard and

Use Assessment. The Fire Protection Research Fondation. Hlm. 26.

Oswal M, Paul J, Zhao R, 2010. A Comparative Study of Lithium-Ion batteries. University of Southern California. Hlm. 2.

(2)

Øystein G, 2012. Thermal characterisation of anode materials for Li-ion batteries. [Thesis]. Norwegia: Norwegian Universiy of Science and Technology. Hlm. 8

Philippe B, 2013. Insights in Li-ion Battery Interfaces through Photoelectron Spectroscopy Depth Profiling. Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of

Science and Technology 1041. 200 pp. Uppsala. ISBN 978-91-554-8662-4:

33-47.

Paravasthu Rushendra, 2012. Synthesis and Characterization of Lithium-Ion

Catahode Materials in The System (1-x-y)

LiNi1/3Mn1/3Co1/3O2.xLi2MnO3.yLiCoO2. [Thesis]. Colorado: Department of Mechanical Engineering Colorado State University. Hlm. 1- 5.

Park M, Zhang XC, Chang M, Less GB, Sastry AM, 2010. A Review of Conduction Phenomena in Li-Ion Batteries. Journal Power of Source, 10.

Seyedahmadian M, Houshyarazar S, Amirshaghaghi A, 2012. Synthesis and Characterization of Nanosized of Spinel LiMn2O4 via Sol-gel and Freeze Drying Methods. Bull. Korean Chem. Soc. 2013, 34: 6.

Simonescu CM, 2012. Application of FTIR Spectroscopy in Environmental Studies.

INTECH Open Science.Hlm. 1-2.

Simpson Chester, 2011. Characteristics of Rechargeable Batteries. Texas

Instruments, Literature Number, SNVA 533: 3.

Svens P, 2014. Methods for Testing and Analyzing Lithium-Ion Battery Cells Intended for Heavy-Duty Hybrid Electric Vehicles. [Thesis]. Sweden: KTH Royal Institute of Technology Applied Electrochemistry Department of Chemical Engineering and Technology SE -100 44 Stockholm, Sweden. Hlm. 11.

Triwibowo J, 2011. Rekayasa Bahan LixTMnxFez (PO4)3 sebagai Katoda Solid Polymer Battery (SPB) Lithium. [Tesis]. Depok : Universitas Indonesia.

Wang Guoxiu, 2000. Investigations on Electrode Material for Lithium-Ion batteries.

University of Wollongong Research Online, Hlm.13-20

Wibowo H, 2005. Konsep Kimia Dasar. Modul Universitas Negeri Yogyakarta Xiang, Wu M, Zhao XY, Zhang Z, Chen M, Bai H, Guo JM, 2013. LiMn2O4

Prepared by Liquid Phase Flameless Combustion with F-Doped for Lithium-ion Battery Cathode Materials. Advanced Materials Research, 652-654 (2013) pp 825-830: 3.

Yang M, Hou J, 2012. Membranes in Lithium Ion Batteries. Membranes 2012, 2: 373.

Yee HK, Ramakrishnan S, Mohamad AA, 2014. Modelling of Charge/Discharge cycle of Lithium Ion Battery System. Journal of Quality Measurement and

Analysis, 10(1): 39-47.

Zhang J, Li Y, Wang L, Zhang C, He Hong, 2015. Catalytic oxidation of Formaldehyde Over manganese Oxides with Different Crystal Structures.

Catalysis Science and Technology, 5: 2305-2313.

Kejie Z, 2012. Mechanics of Electrodes in Lithium-Ion Batteries. [Dissertation]. Cambridge: Harvard University. Hlm. 18.

Referensi

Dokumen terkait

Baterai lithium secara teori adalah baterai yang digerakkan oleh ion lithium. Dalam kondisi charge dan discharge baterai lithium bekerja menurut fenomena interkalasi, dimana

Dari hasil pengujian kapasitas discharge baterai yang dihasilkan pada komposisi 85:10:5 semakin menurun dengan bertambahnya ketebalan lembaran katoda LiMn 2 O 4 , sedangkan

Dari hasil pengujian kapasitas discharge baterai yang dihasilkan pada komposisi 85:10:5 semakin menurun dengan bertambahnya ketebalan lembaran katoda LiMn 2 O 4 , sedangkan

Dalam penelitian ini difokuskan pembuatan lembaran katoda dengan variasi komposisi, serta variasi ketebalan lembaran katoda LiMn2O4 untuk mengetahui mikrostruktur

Baterai lithium secara teori adalah baterai yang digerakkan oleh ion lithium. Dalam kondisi charge dan discharge baterai lithium bekerja menurut fenomena interkalasi, dimana

Adsorpsi dilakukan dengan mencelupkan Lithium Mangan Oksida Spinel yang telah disintesis kedalam Lumpur Sidoarjo.Pengujian ICP dilakukan untuk mengetahui kandungan