• Tidak ada hasil yang ditemukan

PENENTUAN INTERVAL PERAWATAN DENGAN MENGGUNAKAN MODEL AGE REPLACEMENT DI PT. X

N/A
N/A
Protected

Academic year: 2021

Membagikan "PENENTUAN INTERVAL PERAWATAN DENGAN MENGGUNAKAN MODEL AGE REPLACEMENT DI PT. X"

Copied!
8
0
0

Teks penuh

(1)

PENENTUAN INTERVAL PERAWATAN DENGAN

MENGGUNAKAN MODEL AGE REPLACEMENT DI PT. “X”

Rizki Wahyuniardi, Arumsari H., Rizki Triana

Teknik Industri Fakultas Teknik Universitas Pasundan Bandung Jl. Dr. Setiabudi No.193 Bandung - 40153

Telp/Fax: 022-2019335, e-mail: rizq_triana92@yahoo.com

Abstrak

PT. “X” (Persero) adalah perusahaan yang bergerak dibidang pembuatan pesawat terbang di Indonesia dan memiliki kompetensi dalam perancangan, produksi dan pengembangan produk. Untuk memroduksi pesawat terbang dibutuhkan banyak part/komponen dari bagian produk tersebut yang membutuhkan banyak mesin dalam pembuatannya. Untuk itu, dibutuhkan sistem perawatan mesin yang tepat. Sistem perawatan mesin di PT. “X” terdiri dari sistem perawatan perbaikan (corrective maintenance) dan pencegahan (preventive maintenance). Namun sistem perawatan preventive maintenance tidak dilakukan pada semua komponen, yang memungkinkan mesin rusak dalam pembuatan sebuah komponen kritis. Pada penelitian ini akan dibuat sistem perawatan preventive untuk komponen kritis yang terdapat pada mesin kritis di PT. “X” yaitu komponen Coller Thrust pada mesin milling AABD06, dengan menghitung interval penggantian pencegahan komponen, sehingga diharapkan dapat mencegah terjadinya kerusakan komponen secara tiba-tiba dan dapat meminimasi downtime. Dari hasil penelitian diperoleh interval waktu penggantian pencegahan yang optimal untuk komponen kritis Collar Thrust adalah setiap 450 jam. Sedangkan interval waktu pemeriksaan optimal untuk komponen tersebut adalah 412 jam. Terjadi penurunan total downtime yang diakibatkan kerusakan komponen dari 54,50 jam menjadi 6,94 jam. Dihasilkan pula penurunan total biaya dengan perawatan dari Rp. 197.427.088,94 menjadi Rp. 119.902.134,59.

Kata kunci: minimasi downtime, age replacement, preventive maintenance PENDAHULUAN

PT. “X” (Persero) adalah sebuah perusahaan yang bergerak dibidang produksi dan perawatan pesawat terbang di Indonesia. Penelitian ini dilaksanakan di departemen Facility Maintenance. Departemen ini memiliki tugas untuk melakukan perawatan pada mesin-mesin yang ada di perusahaan. Sistem perawatan di perusahaan ini terdiri dari sistem perawatan perbaikan (corrective maintenance) dan sistem perawatan pencegahan (preventive maintenance). Namun sistem perawatan pencegahan yang ada dinilai masih kurang efektif karena tidak semua komponen memiliki penjadwalan preventive. Dengan kerusakan mesin secara tiba-tiba sehingga memerlukan perbaikan, maka sistem akan berhenti. Padahal, untuk komponen kritis yang sedang dibuat, kerusakan mesin secara tiba-tiba akan menyebabkan kerugian perusahaan yang tidak sedikit. Oleh karen itu, perumusan masalah yang dihadapi pada penelitian ini adalah bagaimana menentukan interval perawatan pencegahan komponen kritis di mesin milling tertentu guna meminimasi downtime dan bagaimana menghitung biaya perawatan pencegahan kerusakan komponen kritis di mesin milling tertentu tersebut.

PENDEKATAN PEMECAHAN MASALAH

Dalam penelitian ini digunakan model age replacement (Barlow, R.E. and Proschan, F., 1965, Jardine, 2006). Data yang dikumpulkan dilakukan dengan wawancara dan observasi langsung terhadap sistem perawatan di PT. “X”. Data terkumpul diolah

(2)

pencegahan. Berikut ditampilkan flowchart yang merupakan resume dari tahapan penelitian yang diperlihatkan pada Gambar 1.

Mulai

Studi Lapangan

Studi Pustaka

Identifikasi Perumusan Masalah

Pengumpulan Data: 1. Data Umum Perusahaan

2. Data jenis-jenis mesin milling

3. Data Komponen mesin milling AABD06 4. Data kerusakan komponen mesin milling AABD06 5. Data estimasi waktu penggantian pencegahan dan waktu penggantian kerusakan komponen mesin milling AABD06

Pengolahan Data

Mengidentifikasi Komponen Kritis Pada Mesin Milling AABD06 Menggunakan Analisis ABC

Menentukan Parameter Distribusi Waktu Antar Kerusakan

Kesimpulan dan Saran

Selesai

Menentukan Interval Waktu Penggantian Pencegahan

Menentukan Interval Waktu Pemeriksaan Komponen

Analisa dan Pembahasan

Menghitung Total Biaya Sesudah Tindakan Preventive

Maintenance

Mengidentifikasi Mesin Kritis Pada Mesin Milling Menggunakan Analisis ABC

Perhitungan Time To Failure (TTF)

Menghitung Mean Time To Failure (MTTF) dan Mean

Time To Repair (MTTR)

Perhitungan Downtime Penggantian Pencegahan Uj Kecocokan Distribusi Kolmogorov-Smirnov

Weibull 2 Parameter

A

A

Gambar 1. Langkah-langkah Penelitian

HASIL PENELITIAN DAN PEMBAHASAN

Perhitungan interval perawatan pencegahan menggunakan model age replacement dengan kriteria minimasi downtime adalah untuk mencegah terjadinya kerusakan pada komponen mesin dengan menghitung umur komponen mesin untuk kemudian dilakukan penggantian pencegahan. Adapun langkah-langkah perhitungan interval perawatan pencegahan adalah sebagai berikut:

1. Identifikasi Mesin Kritis

Data yang digunakan adalah data selama kurun waktu 1 (satu) tahun yaitu dari Januari 2014 - Desember 2014. Berdasarkan perhitungan mesin kritis dengan menggunakan metode ABC, maka dapat diketahui bahwa mesin yang termasuk dalam kategori mesin kritis ada 7 mesin, namun pada penelitian ini hanya akan meneliti 1 mesin saja yaitu mesin milling 1 dengan persentase kritis 36,10% dan berada pada kategori kelas A. Pada Tabel 1 dapat dilihat identifikasi mesin kritis.

(3)

Tabel 1. Identifikasi mesin kritis

Total % Kumulatif

Frekuensi Total Biaya % Kelas

1 32 Rp 664.474.771,27 Rp 664.474.771,27 36,10 36,10 A 2 19 Rp 148.983.789,23 Rp 813.458.560,50 8,09 44,20 A 3 17 Rp 146.884.513,31 Rp 960.343.073,81 7,98 52,18 A 4 15 Rp 130.832.314,16 Rp 1.091.175.387,97 7,11 59,28 A 5 15 Rp 123.524.686,45 Rp 1.214.700.074,42 6,71 66,00 A 6 18 Rp 118.158.823,54 Rp 1.332.858.897,96 6,42 72,42 A 7 17 Rp 112.610.555,50 Rp 1.445.469.453,46 6,12 78,53 A 8 17 Rp 102.648.140,40 Rp 1.548.117.593,86 5,58 84,11 B 9 17 Rp 95.386.550,11 Rp 1.643.504.143,97 5,18 89,29 B 10 24 Rp 93.511.428,18 Rp 1.737.015.572,15 5,08 94,37 B 11 17 Rp 63.440.344,03 Rp 1.800.455.916,17 3,45 97,82 C 12 7 Rp 40.110.639,00 Rp 1.840.566.555,17 2,18 100,00 C 1.840.566.555,17 Rp 100,00 78,53 Kategori 15,84 5,63 Kodefikasi Total Biaya Kumulatif Total Biaya % Total Biaya

Sumber: Departemen “Z”, PT. “X”, 2014, diolah 2. Mengidentifikasi Komponen Kritis

Setelah mengetahui mesin kritis, maka dengan menggunakan metode ABC dapat diketahui komponen yang termasuk komponen kritis, yaitu komponen Collar Thrust dengan persentase kritis 72,90% dan berada pada kategori kelas A. Identifikasi komponen kritis dapat dilihat pada Tabel 2.

Tabel 2. Identifikasi komponen kritis

Frekuensi % Total % Kumulatif

Kerusakan Biaya Total Biaya % Kelas

Collar Thrust 5 Rp 11.180.675,00 Rp 55.903.375,00 Rp 55.903.375,00 72,9045 72,9045 72,90 A Hydraulic Pump 6 Rp 2.500.000,00 Rp 15.000.000,00 Rp 70.903.375,00 19,5617 92,4663 19,56 B Hose Hydraulic 3 Rp 908.300,00 Rp 2.724.900,00 Rp 73.628.275,00 3,5536 96,0198 C Manometer 3 Rp 476.000,00 Rp 1.428.000,00 Rp 75.056.275,00 1,8623 97,8821 C Pressure Hydraulic 5 Rp 280.000,00 Rp 1.400.000,00 Rp 76.456.275,00 1,8258 99,7079 C Connector RS 232 2 Rp 60.000,00 Rp 120.000,00 Rp 76.576.275,00 0,1565 99,8644 C Fuse 3 Rp 18.000,00 Rp 54.000,00 Rp 76.630.275,00 0,0704 99,9348 C Mechanical Seal 2 Rp 25.000,00 Rp 50.000,00 Rp 76.680.275,00 0,0652 100,0000 C Jumlah 29 Rp 76.680.275,00 100,0000 Harga / unit

Nama Komponen Total Biaya Biaya Kumulatif Kategori

7,53

Sumber: Departemen “Z”, PT. “X”, 2014, diolah 3. Perhitungan Time To Failure (TTF)

Time To Failure (TTF) merupakan interval waktu antar kerusakan yang dihitung dari selisih antara waktu kerusakan komponen yang telah selesai diperbaiki dengan waktu kerusakan komponen berikutnya. Adapun data Time To Failure dapat dilihat di Tabel 3.

Tabel 3. Time To Failure Komponen Collar Thrust

No Ke rusakan (Hari) (Jam)

1 08-Jan-14

2 23-Mei-14 93 1488

3 02-Jul-14 29 464

4 07-Okt-14 71 1136

5 08-Des-14 45 720

4. Perhitungan Parameter Distribusi Waktu Antar Kerusakan

Parameter distribusi waktu antar kerusakan menggunakan distribusi Weibull dilakukan untuk menentukan dua parameter yaitu θ dan β. Untuk mengetahui nilai

(4)

akan didapatkan koefisien-koefisien regresi yaitu a dan b, maka kemudian dapat dicari distribusi parameter θ dan β.

Perhitungan parameter distribusi Weibull dilakukan dengan menggunakan rumus:

( ) (1)

(2)

Dari perhitungan parameter distribusi waktu antar kerusakan untuk distribusi Weibull didapatkan nilai θ (parameter skala) = 1.106,84 dan β (parameter bentuk) = 1,95.

5. Uji Kecocokan Distribusi

Pengujian ini dilakukan dengan tujuan untuk mengetahui data berdistribusi Weibull. Pengujian ini dilakukan menggunakan uji statistik yaitu uji distribusi non parametrik Kolmogorov-Smirnov. Adapun formulasi uji hipotesis pengujian ini adalah:

Distribusi waktu antar kerusakan mengikuti distribusi Weibull. Distribusi waktu antar kerusakan tidak mengikuti distribusi Weibull

Tabel 4. Uji kecocokan distribusi

No xi (Jam) fi fk fo fe Dn 1 464 1 1 0,25 0,1672 0,0828 2 720 1 2 0,50 0,3505 0,1495 3 1136 1 3 0,75 0,6508 0,0992 4 1488 1 4 1,00 0,8318 0,1682 S 4 Dn max = 0,1682 D(α=0,01)= 0,783

Hasil pengujian kolmogorov-smirnov dengan taraf signifikansi (a=1%) menunjukkan bahwa diterima, artinya data TTF yang ada sesuai dengan distribusi Weibull dengan

( )

6. Perhitungan Mean Time To Failure (MTTF) dan Mean Time To Repair (MTTR)

Untuk menentukan rata-rata waktu antar kerusakan (MTTF) didasarkan pada distribusi yang terbentuk dari data yang terkumpul berkenaan waktu kerusakan. Untuk menghitung nilai MTTF distribusi weibull adalah sebagai berikut:

( ) (3)

( ) ( )

Dimana nilai ( ) didapat dari tabel fungsi gamma dengan nilai 0,88659.

Untuk menentukan waktu rata-rata yang diperlukan untuk melakukan perbaikan (MTTR) adalah sebagai berikut:

(4)

( )

7. Penentuan Interval Waktu Penggantian Pencegahan

Perhitungan interval waktu penggantian pencegahan ini menggunakan model age replacement dengan tujuan meminimalisasi downtime, diperlihatkan pada Tabel 5.

(5)

Tabel 5. Perhitungan Interval Penggantian Pencegahan No tp(Jam) F(tp) R(tp) M(tp) D(tp) Availability 1 400 0,1279 0,8721 7671,5796 0,00164513 0,9983549 2 450 0,1583 0,8417 6200,5192 0,00164233 0,9983577 3 500 0,1908 0,8092 5143,9714 0,00164683 0,9983532 4 550 0,2251 0,7749 4359,7577 0,00165806 0,9983419 5 600 0,2609 0,7391 3761,9338 0,00167551 0,9983245 6 650 0,2977 0,7023 3296,0440 0,00169874 0,9983013 7 700 0,3354 0,6646 2926,2144 0,00172734 0,9982727 8 750 0,3734 0,6266 2628,0249 0,00176095 0,9982390 9 800 0,4116 0,5884 2384,3804 0,00179925 0,9982007 10 850 0,4495 0,5505 2183,0205 0,00184193 0,9981581 11 900 0,4870 0,5130 2014,9645 0,00188868 0,9981113 12 950 0,5238 0,4762 1873,5099 0,00193920 0,9980608 13 1000 0,5596 0,4404 1753,5709 0,00199321 0,9980068 14 1050 0,5943 0,4057 1651,2306 0,00205038 0,9979496 15 1100 0,6277 0,3723 1563,4309 0,00211038 0,9978896 16 1150 0,6596 0,3404 1487,7552 0,00217288 0,9978271 17 1200 0,6900 0,3100 1422,2719 0,00223751 0,9977625 18 1250 0,7187 0,2813 1365,4209 0,00230387 0,9976961 19 1300 0,7457 0,2543 1315,9299 0,00237154 0,9976285 20 1350 0,7710 0,2290 1272,7519 0,00244011 0,9975599 21 1400 0,7946 0,2054 1235,0178 0,00250912 0,9974909 22 1450 0,8164 0,1836 1202,0004 0,00257812 0,9974219 23 1500 0,8365 0,1635 1173,0866 0,00264663 0,9973534 Probabilitas total downtime per unit waktu adalah:

D (tp) = ( ) ( ) ( ( ) ( ) ( ( )))( ( )) (5) Keterangan:

tp = Interval penggantian pencegahan

Tf = Waktu untuk melakukan perbaikan kerusakan

Tp = Waktu untuk melakukan penggantian pencegahan

F(tp) = Fungsi kepadatan peluang dari waktu kerusakan R (tp) = Probabilitas terjadinya siklus pencegahan

M (tp) = Nilai ekspektasi panjang siklus kerusakan jika penggantian perbaikan dilakukan D (tp) = Probabilitas total downtime per unit waktu untuk penggantian pencegahan

Dari perhitungan interval waktu penggantian pencegahan, maka dapat diketahui bahwa penggantian komponen dilakukan setiap umur komponen Collar Thrust mencapai 450 jam dilihat dari D(tp)minimum yaitu 0,00164233. Adapun availability untuk komponen

Collar thrust pada saat tp 450 jam adalah 0,9983577.

Nilai availability penggantian pencegahan didapat dengan rumus:

( ) ( ) (6)

8. Perhitungan Downtime Penggantian Pencegahan

Total downtime sesudah penggantian pencegahan didapat melalui perhitungan sebagai berikut:

( ) (7)

(6)

Adapun perbandingan total downtime sebelum dan sesudah penggantian pencegahan dapat dilihat pada Tabel 6.

Tabel 6. Perbandingan total downtime sebelum dan sesudah penggantian pencegahan

Total Downtime Sebelum Total Downtime Sesudah Penggantian pencegahan Penggantian pencegahan

(Jam) (Jam)

Collar Thrust 54,50 6,94

Komponen

9. Penentuan Interval Waktu Pemeriksaan Komponen

Untuk menentukan interval waktu pemeriksaan komponen berdasarkan waktu produksi yang ada dilakukan tahap-tahap berikut:

1) Rata-rata jam kerja perbulan:

Rata-rata jam kerja per bulan = Hari kerja perbulan x jam kerja setiap hari (8) = (22 x 16) = 352 jam

2) Jumlah Kerusakan

Jumlah kerusakan selama 12 bulan = 5 kerusakan 3) Waktu rata-rata perbaikan

(9)

(10)

jam 4) Waktu rata-rata pemeriksaan

(11) (12) jam 5) Rata-rata kerusakan (13) 6) Frekuensi Pemeriksaan (14)

7) Interval waktu pemeriksaan

(15)

(7)

8) Downtime pemeriksaan

( ) (16)

( ) ( )

10. Menghitung Total Biaya Sesudah Tindakan Perawatan Pencegahan

Perhitungan total biaya sebelum dan sesudah tindakan perawatan pencegahan (preventive maintenance) dapat digunakan untuk mengetahui efektif atau tidaknya tindakan perawatan pencegahan ini untuk mengurangi biaya perawatan. Berikut ini adalah perbandingan total biaya sebelum dan sesudah tindakan perawatan pencegahan selama 12 bulan.

Tabel 7. Perbandingan total biaya sebelum dan sesudah tindakan perawatan pencegahan

Biaya Sebelum Sesudah

Biaya Tenaga Kerja Rp 1.400.000,00 Rp 1.440.000,00 Biaya Pembelian Komponen Rp 55.903.375,00 Rp 100.626.075,00 Biaya Kehilangan Produksi Rp 140.123.713,94 Rp 17.836.059,59

Total Biaya Rp 197.427.088,94 Rp 119.902.134,59 Selisih Total Biaya Rp 77.524.954,35 KESIMPULAN

Berdasarkan tujuan pemecahan masalah serta hasil pengumpulan dan pengolahan data serta analisa dan pembahasan hasil penelitian dapat ditarik kesimpulan yang berdasarkan pada permasalahan yang telah dirumuskan dan dapat mencapai tujuan pemecahan masalah. Kesimpulan yang dapat diambil dari hasil penelitian di PT. “X” adalah sebagai berikut

1. Berdasarkan hasil penelitian dapat diketahui bahwa penentuan interval perawatan ini menggunakan model age replacement. Model tersebut digunakan untuk mengetahui interval penggantian pencegahan komponen dengan kriteria minimasi downtime. Berdasarkan hasil perhitungan dengan kriteria ini, dihasilkan interval waktu penggantian pencegahan dan interval waktu pemeriksaan, dimana interval penggantian pencegahan komponen Collar Thrust dilakukan pada saat komponen mencapai umur 450 jam, sedangkan interval pemeriksaan komponen Collar Thrust dilakukan setiap 412 jam.

2. Untuk total biaya sebelum dan sesudah dilakukan perawatan pencegahan, didapatkan hasil bahwa total biaya sebelum perawatan pencegahan pada komponen Collar Thrust adalah Rp. 197.427.088,94. Sedangkan total biaya sesudah perawatan pencegahan pada komponen Collar Thrust adalah Rp. Rp. 119.902.134,59. Maka terjadi penurunan total biaya perawatan dengan selisih dari total biaya sebelum dan sesudah dilakukan penggantian pencegahan adalah Rp. 77.524.954,35.

DAFTAR PUSTAKA

1. Assauri. Sofjan. (2004). Manajemen Produksi dan Operasi. Lembaga Fakultas Ekonomi Universitas Indonesia. Jakarta.

2. Aristiono. F.A. Purwaningsih. Isti. & Dania W.A.P. (2011). Aplikasi Optimal Preventive Replacement Age Model Untuk Menentukan Jadwal Penggantian Komponen Dumping Grate Pada Mesin Ketel Uap. Jurnal Teknologi Pertanian.

(8)

(Online). Vol. 12. No. 1. (http://jtp.ub.ac.id/index.php/jtp/article/download/332/ 420. diakses 21 April 2015).

3. Barlow, R.E. and Proschan, F. (1965). Mathematical Theory of Reliability. Wiley, New York.

4. Campbell. J.D. & Jardine. A.K.S. (2001). Maintenance Excellence Optimizing Eqipment Life-Cycle Decisions. Marcel Dekker. New York.

5. Corder. A. 1992. Teknik Manajemen Pemeliharaan. Erlangga. Jakarta.

6. Ebeling. Charles E. (1997). An Introduction to Reliability and Maintainability Engineering. McGrow-Hill Book Co. Singapura.

7. Firmansyah. A. Siregar. K. & Sinaga. T.S. (2013). Analisis Waktu Antar Kerusakan Mesin Electric Motor Menggunakan Metode Failure Finding Interval (Studi Kasus Di PT. XYZ). E-Journal Teknik Industri FT USU. (Online). Vol. 1. No 1. (http://download.portalgaruda.org/article.php?article=58667&val=4128. diakses 29 Desember 2014).

8. Gaspersz. Vincent. (2002). Total Quality Management. PT. Gramedia. Jakarta

9. Hamdala. Ihwan. (2011). Perencanaan Preventive Maintenance Komponen Cane Cutter I Dengan Pendekatan Age Replacement (Studi Kasus di PG Kebon Agung Malang). (Online). (http://jrmsi.studentjournal.ub.ac.id/index.php/jrmsi/article/ view/92. diakses 18 Mei 2015).

10. Iriani. Yani. & Rahmadi. E.S. (2011). Usulan Waktu Perawatan Berdasarkan Keandalan Suku Cadang Kritis Bus di Perum Damri Bandung. Proceedings 6th National Industrial Engineering Conference (NIEC-6). (Online). (http://repository.widyatama.ac.id/xmlui/bitstream/handle/123456789/2119/KIN.HC.07 3.pdf? sequence=1. diakses 1 April 2015).

11. Jardine. A.K.S. (2006). Maintenance, Replacement and Reliability. Taylor and Francis Group. New York

12. Ristono. Agus. (2009). Manajemen Persediaan. Ed. 1. Graha Ilmu. Yogyakarta. 13. Russel. R. S. dan Taylor. B. W. (2000). Operation Management. Prentice Hall. New

Jersey.

14. Sudradjat. Ating. (2011). Pedoman Praktis Manajemen Perawatan Mesin Industri. PT Refika Aditama. Bandung.

Gambar

Gambar 1. Langkah-langkah Penelitian  HASIL PENELITIAN DAN PEMBAHASAN
Tabel 2. Identifikasi komponen kritis
Tabel 4. Uji kecocokan distribusi
Tabel 5. Perhitungan Interval Penggantian Pencegahan  No tp(Jam) F(tp) R(tp) M(tp) D(tp) Availability 1 400 0,1279 0,8721 7671,5796 0,00164513 0,9983549 2 450 0,1583 0,8417 6200,5192 0,00164233 0,9983577 3 500 0,1908 0,8092 5143,9714 0,00164683 0,9983532 4
+3

Referensi

Dokumen terkait

Rerata Nilai Kekokohan Semai Kayu Jabon Dengan Pemberian Kerapatan Naungan. Posisi daun tanaman, sudul

Ketertarikan untuk menulis tentang Kebersihan Kebun Binatang Medan Sebagai Daya Tarik Wisata karena penulis melihat bahwa sangat penting untuk untuk tetap menjaga

Sedangkan siswa yang memiliki motivasi yang rendah artinya siswa tersebut tidak dapat mengatur diri dengan baik, sesuai dengan indikator strategi self regulated

meniadakan hukum acara yang umum, tetapi untuk menambah ketentuan yang ada dalam hukum acara umum. Tujuan model-model eksekusi khusus yang diatur dalam

[r]

[r]

Puji dan syukur penulis panjatkan ke hadirat Tuhan Yang Maha Esa yang telah melimpahkan rahmatnya sehingga penulis dapat menyelesaikan penelitian ini dengan judul

Setelah kami memperoleh informasi lengkap tentang alumni Jurusan Pendidikan Fisika yang meliputi: Nama alumni, NIM, angkatan, IP tiap semester, tempat dan tanggal