• Tidak ada hasil yang ditemukan

BAB II KAJIAN TEORITIK. 1. Kemampuan pemahaman konsep matematis

N/A
N/A
Protected

Academic year: 2021

Membagikan "BAB II KAJIAN TEORITIK. 1. Kemampuan pemahaman konsep matematis"

Copied!
10
0
0

Teks penuh

(1)

BAB II

KAJIAN TEORITIK

A. Deskripsi Kontekstual

1. Kemampuan pemahaman konsep matematis

Pemahaman menurut Bloom (Susanto Ahmad, 2013) diartikan sebagai kemampuan untuk menyerap arti dari materi atau bahan yang dipelajari. Pengertian konsep menurut Rosser (Wilis Ratna, 2006) yaitu suatu abstraksi yang mewakili suatu kelas objek, kejadian, kegiatan, atau hubungan yang mempunyai atribut yang sama. Pengertian konsep menurut Wardhani (2008) yaitu ide (abstrak) yang dapat digunakan atau memungkinkan seseorang untuk mengelompokkan/ menggolongkan suatu objek. Pengertian pemahaman konsep menurut NCTM (2000) adalah suatu komponen yang penting dalam pengetahuan untuk menangani dan mengatur dalam memecahkan masalah. Pengertian pemahaman konsep menurut Wardhani (2008) adalah menjelaskan keterkaitan antar konsep dan pengaplikasian konsep atau algoritma, secara luwes, dan tepat dalam memecahkan masalah. Pemahaman konsep merupakan kompetensi yang ditujukkan siswa dalam memahami konsep dan dalam melakukan prosedur (algoritma) secara luwes, akurat, efisien, dan tepat (Shadiq, 2009)

(2)

pelajaran sehingga dapat mengaplikasikannya dalam permasalahan matematika.

Menurut Wardhani (2009) indikator pemahaman konsep matematis siswa antara lain: menyatakan ulang sebuah konsep, mengklasifikasikan objek menurut sifat-sifat tertentu sesuai dengan konsepnya, memberi contoh dan bukan contoh dari suatu konsep, menyajikan konsep dalam berbagai bentuk representasi matematis, mengembangkan syarat perlu atau syarat cukup dari suatu konsep, menggunakan dan memanfaatkan serta memilih prosedur atau operasi tertentu, mengaplikasikan kosep atau algoritma ke pemacahan masalah. Menurut Peraturan Dirjen Dikdasmen Depdiknas no.506/c/PP/2004 (dalam Shadiq, 2009) indikator pemahaman konsep matematis siswa antara lain: menyatakan ulang sebuah konsep, mengklasifikasikan objek menurut sifat-sifat tertentu sesuai dengan konsepnya, memberi contoh dan noncontoh, menyajikan konsep dalam berbagai bentuk representasi matematis, mengembangkan syarat perlu atau syarat cukup dari suatu konsep, kemampuan mengaplikasikan kosep atau algoritma ke pemacahan masalah.

Berdasarkan beberapa uraian tentang kemampuan pemahaman konsep matematis di atas, maka peneliti menetapkan indikator kemampuan pemahaman konsep matematis sebagai berikut.

(3)

a) Menyatakan ulang sebuah konsep.

Menyatakan ulang sebuah konsep adalah kemampuan mengungkapkan kembali informasi pada materi yang telah dipelajari.

Contoh:

Apa yang Anda ketahui tentang persegi?

b) Mengklasifikasikan objek menurut sifat-sifat tertentu (sesuai dengan konsepnya).

Mengklasifikasikan objek menurut sifat-sifat tertentu (sesuai dengan konsepnya) adalah kemampuan mengelompokkan suatu objek menurut jenisnya berdasarkan sifat-sifat yang terdapat dalam materi.

Contoh:

a) Semua sisinya sama panjang.

b) Sudut-sudut yang berhadapan sama besar dan dibagi dua sama besar oleh diagonal-diagonalnya.

c) Kedua diagonalnya saling membagi dua sama panjang dan saling tegak lurus.

d) Kedua diagonalnya merupakan sumbu simetri. Sifat-sifat bangun datar di atas adalah sifat-sifat dari....

(4)

c) Memberi contoh dan bukan contoh dari konsep.

Memberi contoh dan bukan contoh dari konsep adalah kemampuan untuk membedakan contoh dan bukan contoh dari suatu materi.

Contoh:

Dari benda-benda berikut, manakah benda yang berbentuk persegi dan bukan persegi.

White board, maker, kertas, pensil, ballpoint, penggaris, daun pintu, tas.

d) Menyajikan konsep dalam berbagai bentuk representasi matematis. Menyajikan konsep dalam berbagai bentuk representasi matematis adalah kemampuan memaparkan konsep secara berurutan yang bersifat matematis. Misalkan siswa diberi permasalahan, siswa mampu menyajikan permasalahan yang di berikan dalam bentuk tabel, grafik, diagram, gambar sketsa, model matematika, atau cara lainnya.

Contoh:

Diketahui jajar genjang PQRS dengan panjang PQ dan QR berturut-turut 9cm dan 2,5cm serta tinggi jajar genjang 2cm. Sketsalah gambar jajar genjang tersebut!

(5)

e) Mengembangkan syarat perlu dan syarat cukup dari suatu konsep. Mengembangkan syarat perlu dan syarat cukup dari suatu konsep adalah kemampuan mengkaji mana syarat perlu dan syarat cukup terkait dalam suatu konsep materi.

Contoh:

Diketahui persegi panjang dengan luas 35𝑐𝑚2. Jika panjang salah satu sisinya adalah 7𝑐𝑚, berapakah keliling persegi panjang tersebut?

f) Mengaplikasikan konsep algoritma pada pemecahan masalah. Mengaplikasikan konsep algoritma pada pemecahan masalah adalah kemampuan menyajikan konsep dalam berbagai bentuk representasi matematis sebagai suatu algoritma pemecahan masalah.

Contoh:

Sebuah kebun berbentuk persegi panjang dengan ukuran panjang 20 meter dan lebar 7 meter. Sekeliling kebun itu akan dipasangi pagar. Biaya pembuatan pagar Rp 40.000 tiap meter.

a) Buatlah sketsa kebun dari keterangan di atas.

b) Berapa biaya yang diperlukan untuk pembuatan pagar tersebut? 2. Tipe Kepribadian Tipologi Hippocrates-Galenus

(6)

atau pertunjukan. Allport (Yusuf Syamsu, 2011) mengemukakan pendapatya tentang pengertian kepribadian, yaitu “personality is the dynamic organization within the individual of those psychophysical

system that determine his unique adjusment to this

environment”.(kepribadian merupakan organisasi yang dinamis dalam diri individu tentang sistem psikofisik yang menentukan penyesuaianya yang unik terhadap lingkungannya). Dari pendapat pernyataan tersebut, maka dapat disimpulkan bahwa setiap individu dari lingkungan yang berbeda akan memiliki kepribadian yang berbeda-beda.

Dalam ilmu psikologi, dikenal empat tipe kepribadian yang dikemukakan oleh Glenus dan Hippocrates, ahli fisiologi yang hidup pada abad ke-2 Masehi. Empat tipe kepribadian tersebut yaitu Sanguinis, Choleris, Melankolis, dan Plagmatis. Adapun sifat dari masing kepribadian tersebut (Florence Littauer, 2015):

Tabel 2.1

Karakteristik Tipe Kepribadian

Sanguinis Koleris Melankolis Plagmatis Periang Suka bergurau Supel Meyakinkan Segar Petualang Persuasif Berkemauan keras Kompetitif Banyak akal Analitis Gigih Rela berkorban Penuh perhatian Penuh hormat Mudah beradaptasi Tenang Penurut Pandai mengendalikan diri Pendiam Bersemangat Promotor Spontan Optimis Mandiri Positif Yakin Blak-blakan Sensitif Perencana Terjadwal Tertib Mudah puas Sabar Pemalu Ringan tangan

(7)

Menyenangkan Ceria Inspiratif Demonstratif Suka bergaul Pemberani Percaya diri Independen Tegas Musikal Terperinci Berbudaya Idealis Mendalam Penggerak Diplomatis Konsisten Tidak mengganggu Humor satire Penengah Banyak bicara Lincah Manis Populer Enerjik Teguh Pemimpin Ketua Produktif Berani Bijaksana Loyal Pembuat tabel Perfeksionis Sopan Toleran Pendengar Tergenapi Menyenangkan Seimbang Tukang pamer Tidak disiplin Pengulang Pelupa Suka menginterupsi Sok berkuasa Apatis Penentang Terang-terangan tidak sabaran Canggung Menyimpan amarah Mudah tersinggung Rewel Terancam Melamun Ogah-ogahan Enggan Penakut Ragu-ragu Tidak terduga Serampangan Permisif Mudah marah Naif Tidak perduli Keras kepala Sombong Argumentatif nekad Tidak populer Sulit puas Pesimis Terasing Bersikap negatif Tidak terlibat Peragu Datar Tanpa tujuan Tak acuh Ingin dipuji Banyak bicara Tidak teratur Tidak konsisten Gila kerja Tidak peka Mendominasi Tidak toleran Menarik diri Terlalu sensitif Tertekan Introver Pencemas Gentar Peragu Masa bodoh Berantakan Berlagak Lantang Kurang fokus Pembosan Plin-plan Manipulatif Bebal Arogan Pemarah Gegabah Licik Muram Skeptif Penyendiri Curiga Pendendam Kritis Pengomel Lamban Pemalas Malas-malasan Si berat hati Berkompromi

3. Kajian Materi Bangun Ruang Sisi Datar

(8)

Adapun Standar Kompetensi, Kompetensi Dasar kelas VII yang memuat materi bangun datar segiempat (BSNP, 2006:148).

a) Standar Kompetensi

6. Memahami konsep segitiga dan segi empat serta menentukan ukurannya.

b) Kompetensi Dasar

6.1 Mengidentifikasi sifat-sifat segitiga berdasarkan sisi dan sudutnya.

6.2 Mengidentifikasi sifat-sifat persegi panjang, persegi, trapesium, jajargenjang, belah ketupat, dan layang-layang. 6.3 Menghitung keliling dan luas bangun segitiga dan segi empat

serta menggunakannya dalam pemecahan masalah.

B. Penelitian yang Relevan

Beberapa penelitian menunjukan bahwa tipe kepribadian menunjukan hasil yang berbeda dalam berpikir. Diantaranya adalah penelitian yang dilakukan oleh vera rosalina bulu (2015) dengan judul kesulitan metagoknisi siswa dalam memecahkan masalah marematika pada materi peluang ditinjau dari tipe kepribadian tipologi Hippocrates-Galenus kelas XI MIA 1 SMA negeri 1 Soe yang menunjukkan bahwa siswa dengan tipe Sanguinis, Choleris, Melancholis, Phlegmatis mempunyai kesulitan metakognisi yang berbeda dalam memecahkan masalah. Hal yang sama juga diungkapkan oleh Abdul Aziz (2014) dalam

(9)

penelitian berjudul proses berpikir kreatif dalam pemecahan masalah matematika ditinjau dari tipe kepribadian dimensi Myer-Briggs siswa kelas VIII MTs NW Suralaga Lombok Timur Tahun pelajaran 2013/2014. Hasil penelitiannya juga menunjukkan bahwa siswa dengan tipe kepribadian rational-guardian mempunyai cara berpikir yang berbeda dalam menyelesaikan masalah.

Dari penelitian di atas, peneliti tertarik melakukan penelitian yang berjudul “ Deskripsi kemampuan pemahaman konsep matematis siswa kelas VII SMP Negeri 2 Rakit ditinjau dari tipe kepribadian tipologi Hippocrates-Galenus”, guna mendeskripsikan kemampuan pemahaman konsep matematis siswa kelas VII ditinjau dari tipe kepribadian tipologi Hippocrates-Galenus.

C. Kerangka Pikir

Pembelajaran matematika dengan pemahaman konsep sangatlah penting karena pemahaman konsep adalah kemampuan dasar untuk memecahkan masalah, dengan demikian jika siswa tidak memiliki kemampuan pemahaman konsep siswa akan mengalami kesulitan dalam memecahkan masalah matematik. Dalam pemahaman konsep siswa akan mampu dalam menyatakan ulang sebuah konsep, mengklasifikasikan objek menurut sifat-sifat tertentu sesuai dengan konsepnya, memberi

(10)

dari suatu konsep, kemampuan mengaplikasikan kosep atau algoritma ke pemacahan masalah.

Kepribadian merupakan suatu cerminan yang khas pada diri seseorang. Kepribadian ini dapat dilihat pada proses pembelajaran. Pada abad ke-2 Masehi, ahli fisiologi Hippocrates dan Galenus menggolongkan tipe kepribadian menjadi empat yaitu sanguinis, koleris, melankolis, plagmatis, dengan sifat-sifat berbeda yang dimiliki oleh masing-masing tipe kepribadian. Dari kepribadian yang berbeda dimungkinkan akan mengakibatkan kemampuan pemahaman konsep yang berbeda.

Mengetahui kepribadian yang dimiliki oleh masing-masing siswa adalah penting bagi guru untuk. Selain untuk memilih metode pembelajaran yang tepat, kepribadian juga dapat digunakan untuk mengetahui cara berpikir siswa dalam pemahaman konsep. Hal ini mendorong peneliti untuk melakukan penelitian terhadap tipe kepribadian siswa dan kemampuan pemahaman konsep guna mengetahui gambaran kemampuan pemahaman konsep matematis siswa yang ditinjau dari tipe kepribadian Hippocrates-Galenus.

Referensi

Dokumen terkait

Admin melakukan login dengan memasukan username dan password untuk mengelola data aplikasi System menvalidasi username dan password, jika salah akan kembali

Teknik analisis data yang digunakan penulis adalah metode deskriptif ditujukan untuk mendeskripsikan suatu keadaaan atau fenomena – fenomena apa adanya (Sukmadinata, 2011 :

1. Afifah Al Rosyidah: “Pendidikan Karakter pada Classic Fairy Tales“. Penelitian ini bertujuan untuk mendeskripsikan: a. Kandungan aspek pendidikan pendidikan karakter

Demografis Masyarakat (lingkungan masyarakat dimasjid dan musholla). Masyarakat merupakan sarana pendidikan non formal. Pendiddikan non formal yang sangat relevan dalam

Penelitian Akroush dan Al-Debei (2015) membuktikan bahwa semakin baik kulaitas website vendor daring, maka akan menghasilkan sikap yang lebih positif dan menguntungkan

Dari hasil rekapitulasi tingkat kematangan AI2 mendapatkan dan memelihara perangkat lunak aplikasi pada bagian Biro Administrasi Akademik Politeknik “XYZ” ,

Menurut Shoimin (2017: 174), langkah-langkah pembelajaran dalam menggunakan model snowball throwing yaitu: (1) menyampaikan tujuan pembelajaran, guru menyampaikan materi yang

Dengan pemberian pupuk NPK pada beberapa level atau dosis dapat dilihat pada level atau dosis berapa yang memberikan pengaruh yang paling efektif terhadap