• Tidak ada hasil yang ditemukan

BAHAN KULIAH BIOKIMIA POWER POINT BAGIAN 1 /BIOCHEMISTRY POWER POINT LECTURES PART 1 | Karya Tulis Ilmiah

N/A
N/A
Protected

Academic year: 2017

Membagikan " BAHAN KULIAH BIOKIMIA POWER POINT BAGIAN 1 /BIOCHEMISTRY POWER POINT LECTURES PART 1 | Karya Tulis Ilmiah"

Copied!
41
0
0

Teks penuh

(1)

Glycolysis

(2)

Pathway overview

1. Add phosphoryl groups to activate glucose.

2. Convert the phosphorylated intermediates into high energy phosphate compounds.

3. Couple the transfer of the phosphate to ADP to form ATP.

Stage I A preparatory stage in which glucose is phosphorylated and cleaved to yield two molecules of

glyceraldehyde-3-phosphate - uses two ATPs

Stage II glyceraldehyde-3-phosphate is converted to pyruvate with the concomitant generation of four ATPs-net profit is

2ATPs per glucose.

Glucose + 2NAD+ + 2ADP +2Pi  2NADH +

(3)
(4)
(5)

Phosphoglycerate Kinase: First ATP

generation step

C

CH2OPO3 2-OH H

O -O

C

CH2OPO3 2-OH H

OPO3 2-O

+ ADP + ATP

(6)

GAP + Pi + NAD+ 1,3 -BPG + NADH + 6.7 kJ• mol-1

1,3 BPG + ADP 3PG + ATP -18.8 kJ• mol-1

(7)

Phosphoglycerate mutase

C

CH2OPO3

2-OH H

O -O

C

CH2OH

OPO3-2

H

O -O

C

CH2OPO3

2-OPO3-2

H

O -O

3 PG 2PG

(8)

Phosphoglycerate mutase requires a phosphorylated

form of the enzyme to be active. Only 2,3 BPG can

phosphorylate the unphosphorylated enzyme.

N

N H2C

Enzyme

PO3

(9)
(10)
(11)
(12)

Enolase generation of a second “high

energy” intermediate

C

C

OPO3-2

H O -O OH H H

C OPO3-2 O

-O

H H

+ H2O

(13)
(14)
(15)
(16)
(17)

The need to regenerate NAD

+

from NADH

A. Homolactic fermentation: conversion of pyruvate to lactate

Mammals have two different types of enzymes: Isozymes M type for muscle

H type for heart

C

O -O

O

CH3 N

NH2 O

HR HS

+

+ H+

R

C

O -O

CH3 N

H NH2 O R H HO + LDH

(18)

Lactate dehydrogenase is a tetramer H4 has a low Km for pyruvate and is allosterically inhibited by

high concentrations of pyruvate.

M4 has a higher Km for pyruvate and is not allosterically regulated

Although all five types can exist, H4, H3M, H2M2 HM3, M4 The M predominates in anaerobic muscle tissues which favor the formation of lactate while the

H4 form predominates in aerobic tissues like heart where the formation of pyruvate from lactate is

(19)

Pro-R hydride is

transferred from C4 of NADH to C2 of pyruvate with the concomitant

transfer of a proton from His 195

(20)

Alcoholic fermentation

A two step process:

1) Pyruvate decarboxylase requires thiamine pyrophosphate TPP as a cofactor.

(21)

Thiamine pyrophosphate

The build up of negative charges seen in decarboxylation reactions on the carbonyl atom in the transition state is

(22)

Reaction mechanism of pyruvate

decarboxylation

1. Nucleophilic attack by the ylid from of TPP on the carbonyl

2. Departure of CO2 and resonance-stabilization of the carbanion.

3. Protonation of the carbanion

4. Elimination of TPP ylid to form

(23)
(24)

Deficiencies of TPP lead to Beriberi

Vitamin B1

Beriberi was prevalent in the rice consuming countries of the Orient where polished rice is preferred. TPP is found in the brown outer layers of rice.

(25)
(26)

Energetics of Fermentation

Glucose 2lactate + 2H+ -196 kJ• mol-1 of glucose

Glucose 2CO2 + 2ethanol -235 kJ• mol-1 of glucose

Formation of 2ATP +61 kJ• mol-1 of glucose

equals 31% and 26% efficient for energy conservation

Under physiological conditions this efficiency approaches 50%

(27)

Glycolysis is for rapid ATP production

Glycolysis is about 100 times faster than oxidative-phosphorylation in the mitochondria

Fast twitch muscles - short blasts of energy and are

nearly devoid of mitochondria use exclusively glycolysis for ATP

(28)

Control of Metabolic Flux

P

B

A

S

J

v

v

J

j r

 

 

J

v

f

-

v

r

At equilibrium J = 0 and far from equilibrium J=vf

The flux throughout the pathway is constant at steady state conditions and control of flux requires:

1) The flux-generating step varies with the organisms metabolic needs

(29)
(30)

An increase in flux, J causes [A] to increase and

when [A] increases the is a vf So J = vf

f

f

r

f

f

f

f

f

v

v

v

v

v

J

v

v

v

J

J

Plugging in the the Michaelis -Menton equation

 

 

A

K

A

V

v

M

max

f

f

M M max

f

if

[A]

K

K

A

V

(31)

 

 

 

A

A

v

v

hence

v

f

f

K

A

V

f

M max f

v

f

v

r

(32)

vf/(vf-vr) is a measure of the sensitivity of a reactions fractional change in flux to its fractional change in

substrate concentration

1. In an irreversible reaction, vr approaches 0 and vf/(vf-vr) approaches 1. The reaction is therefore requires a nearly fractional increase in its substrate concentration order to respond to a fractional increase in flux

2. As a reaction approaches equilibrium, vr approaches vf and

vf/(vf-vr) approaches infinity. The reaction’s response to a

(33)

Flux is controlled at the rate limiting step

Usually the product is removed much faster than it is formed so that the rate-determining step is far from equilibrium. Because of the fractional change in the flux J/J when vf>>vr is directly proportional to the

change is substrate concentrations other mechanisms are needed to achieve factors of over 100 as seen in glycolysis.

Allosteric regulationCovalent modification

(34)
(35)

Three steps to elucidate common

controlling mechanisms in a pathway

1. Identify the rate determining steps: Those with a large negative G and measure flux through the

pathway and each step with inhibitors.

2. Identify In vitro allosteric modifiers of the pathway study each enzymes kinetics, mechanisms and

inhibition patterns.

(36)

Free energy changes in glycolysis

Reaction enzyme G´ G

1 Hexokinase -20.9 -27.2

2 PGI +2.2 -1.4

3 PFK -17.2 -25.9

4 Aldolase +22.8 -5.9

5 TIM +7.9 +4.4

6+7 GAPDH+PGK -16.7 -1.1 8

PGM +4.7 -0.6

9 Enolase -3.2 -2.4

(37)

Only three enzymes function with large negative G’s

Hexokinase, Phosphofructokinase and pyruvate kinase

The other enzymes operate near equilibrium and their rates are faster than the flux through the pathway.

Specific effectors of Glycolysis

Enzymes Inhibitors Activators

Hexokinase G6P none

PFK ATP, citrate, PEP ADP, AMP, cAMP FBP,F2,6BP, F6P

NH4, Pi

(38)
(39)
(40)

AMP concentrations not ATP control

glycolysis

ATP concentrations only vary about 10% from resting to active cells. [ATP] is buffered by creatine phosphate and adenylate kinase.

2ADP ATP + AMP

 

ADP

0.44

AMP

ATP

K

2

(41)

Substrate cycling

Fructose-6 phosphate +ATP Fructose 1,6-bisphosphate

Fructose 1,6-bisphosphate Fructose-6 phosphate + Pi

The net result is the breakdown of ATP.

Two different enzymes control this pathway PFK and Fructose 1,6 bisphosphatase. If these both were not controlled a futile cycle would occur.

Specific effectors of Glycolysis

Enzymes Inhibitors Activators

Referensi

Dokumen terkait

Pada hari ini Senin tanggal Dua puluh tujuh bulan Oktober Tahun Dua Ribu Empat Belas , dimulai pada Pukul 09.00 Wib sd 12.00 Wib, Kami yang bertandatangan dibawah

Hasil : Dari hasil pengujian delete data proses, kemudian didapatkan informasi proses dengan id sekian telah. terhapus dari

Dalam rangka mencapai tujuan Pendidikan Nasional yakni mencerdaskan kehidupan bangsa dan mengembangkan manusia seutuhnya maka sangat dibutuhkan peran pendidik yang profesional.

Bagi perkara-perkara yang tidak dinyata di dalam syarat-syarat pertandingan, pihak Jawatankuasa Penganjur Pertandingan berhak untuk membuat keputusan

DAFTAR HARGA UPAH KERJA DALAM KABUPATEN SIMEULUE. TAHUN

2 Bahwa pasien juga harus menuruti nasihat–nasihat yang diberikan oleh Kyai Zarqoni, karena Allah pun menegaskan ”Ingatlah kamu dalam waktu duduk, berdiri dan berbaring,

Dalam hal ini untuk memastikan wawasan negara tercapai mengikut acuan dan matlamat yang dikehendaki, maka persiapan dari aspek rohani, jasmani dan ilmu pengetahuan perlu

Keterbatasan lembaga penguji yang sudah terakreditasi, maka Hasil LAB diterbitkan secepat-cepatnya 3(tiga) hari setelah bahan kain diterima oleh lembaga