• Tidak ada hasil yang ditemukan

FASOP SCADA GI.pdf

N/A
N/A
Protected

Academic year: 2021

Membagikan "FASOP SCADA GI.pdf"

Copied!
49
0
0

Teks penuh

(1)

DAFTAR ISI

DAFTAR ISI

1.

1. SISTSISTIM TENAGA LIIM TENAGA LISTRISTRIK K ... ... 33 1.1.

1.1. PemPembangbangkit ... 4kit ... 4 1.2.

1.2. TranTransmismisi ... 4si ... 4 1.3.

1.3. GarGardu du IndInduk uk ... ... 55 1.4.

1.4. PanPanel el ConControl ... 5trol ... 5 1.5.

1.5. GarGardu du HubHubung ... 6ung ... 6 1.6.

1.6. GarGardu du DiDistribstribusi usi ... 6... 6

2.

2. SISTSISTEM SEM SCADA CADA ... ... 66 2.1.

2.1. TelTelekomekomunikunikasi asi SuaSuara... 7ra... 7 2.2.

2.2. KomKomunikaunikasi si Data ... 8Data ... 8 2.3.

2.3. ModeModem ... 8m ... 8 2.4.

2.4. PusPusat at PenPengatur ... gatur ... 99 2.5.

2.5. TelTelemeemeterintering... g... 1010 2.6.

2.6. TelTelesignesignallialling ng ... 10... 10 2.7.

2.7. TelTeleconecontrol trol ... 11... 11 2.8.

2.8. MasMaster ter StaStationtion... 11... 11 2.9.

2.9. Man Man MachMachine ine InterfInterface ... 12ace ... 12 2.10. Remote Terminal Unit (RTU) ... 12 2.10. Remote Terminal Unit (RTU) ... 12

3.

3. SISTSISTEM SCADEM SCADA PLN A PLN P3B P3B ... ... 1313 3.1. Jaringan Tenaga Listrik Jawa Bali... 13 3.1. Jaringan Tenaga Listrik Jawa Bali... 13 3.2.

3.2. HiHirarki rarki ConControl trol CenCenter ... 14ter ... 14 3.3. 3.3. TugaTugas s JCC ... JCC ... 1414 3.4. 3.4. TugaTugas s RCC RCC ... 15... 15 3.5. 3.5. TugaTugas s GSC ... GSC ... 1515 3.6. 3.6. TugaTugas s DCC DCC ... 15... 15 3.7.

3.7. BataBatas s WeWewenwenang ... 15ang ... 15 3.8.

(2)

3.9. Batas

3.9. Batas RCC – RCC – GSC dan GSC dan DCC DCC ... ... 1616

3.10. Batas JCC – RCC – GSC dan Pusat Listrik ... 16

3.10. Batas JCC – RCC – GSC dan Pusat Listrik ... 16

3.11. Perlengkapan Teknik (Perangkat Keras)... 16

3.11. Perlengkapan Teknik (Perangkat Keras)... 16

4. 4. PENGPENGENALAN ENALAN REMOTREMOTE TERE TERMINAMINAL UNIT L UNIT ... ... 2727 4.1. 4.1. RTU type RTU type 3200 ... 3200 ... 2727 4.2. Konfigurasi Card-card RTU EPC 3200 ... 28

4.2. Konfigurasi Card-card RTU EPC 3200 ... 28

4.3. 4.3. JenJenis-jis-jenis enis card card EPC EPC 32003200... 29... 29

4.4. 4.4. SisSistem RTU tem RTU type S type S 900900... ... 4646 4.5. J 4.5. Jenis enis -jenis -jenis card card RTU RTU type type S 9S 900 00 ... . 4747 5. 5. SISTSISTEM TEEM TELEKOMUNLEKOMUNIKASIKASI PI PLC LC ... ... 5555 6. 6. DIGIDIGITAL TAL FAULT FAULT RECORRECORDER DER ... ... 6161 6.1. 6.1. PenPengopergoperasiasian an DasDasar ... 64ar ... 64

6.2. 6.2. PenPengopergoperasiasian an Rutin ... 68Rutin ... 68

6.3. 6.3. PemPemelieliharaaharaan n RutiRutin ... 69n ... 69

6.4. TWS (Travelling Wave System) ... 78

6.4. TWS (Travelling Wave System) ... 78

7. 7. MINI MINI MASTER DI MASTER DI UPT UPT ... ...82...82 8.

(3)

3.9. Batas

3.9. Batas RCC – RCC – GSC dan GSC dan DCC DCC ... ... 1616

3.10. Batas JCC – RCC – GSC dan Pusat Listrik ... 16

3.10. Batas JCC – RCC – GSC dan Pusat Listrik ... 16

3.11. Perlengkapan Teknik (Perangkat Keras)... 16

3.11. Perlengkapan Teknik (Perangkat Keras)... 16

4. 4. PENGPENGENALAN ENALAN REMOTREMOTE TERE TERMINAMINAL UNIT L UNIT ... ... 2727 4.1. 4.1. RTU type RTU type 3200 ... 3200 ... 2727 4.2. Konfigurasi Card-card RTU EPC 3200 ... 28

4.2. Konfigurasi Card-card RTU EPC 3200 ... 28

4.3. 4.3. JenJenis-jis-jenis enis card card EPC EPC 32003200... 29... 29

4.4. 4.4. SisSistem RTU tem RTU type S type S 900900... ... 4646 4.5. J 4.5. Jenis enis -jenis -jenis card card RTU RTU type type S 9S 900 00 ... . 4747 5. 5. SISTSISTEM TEEM TELEKOMUNLEKOMUNIKASIKASI PI PLC LC ... ... 5555 6. 6. DIGIDIGITAL TAL FAULT FAULT RECORRECORDER DER ... ... 6161 6.1. 6.1. PenPengopergoperasiasian an DasDasar ... 64ar ... 64

6.2. 6.2. PenPengopergoperasiasian an Rutin ... 68Rutin ... 68

6.3. 6.3. PemPemelieliharaaharaan n RutiRutin ... 69n ... 69

6.4. TWS (Travelling Wave System) ... 78

6.4. TWS (Travelling Wave System) ... 78

7. 7. MINI MINI MASTER DI MASTER DI UPT UPT ... ...82...82 8.

(4)

1.

1. SISTEM SISTEM TENAGA TENAGA LISTRIK.LISTRIK.

Umum

Umum

Tenaga listrik merupakan kebutuhan yang sangat vital dan dalam kehidupan

Tenaga listrik merupakan kebutuhan yang sangat vital dan dalam kehidupan

manusia sehari-hari baik untuk kepentingan pribadi maupun dalam kehidupan

manusia sehari-hari baik untuk kepentingan pribadi maupun dalam kehidupan

bermasyarakat.

bermasyarakat.

Dilain itu tenaga listrik juga sangat dibutuhkan untuk Indistri-industri besar maupun Dilain itu tenaga listrik juga sangat dibutuhkan untuk Indistri-industri besar maupun industri kecil, perkantoran, pertokoan dan lain sebagainya.

industri kecil, perkantoran, pertokoan dan lain sebagainya.

Untuk itu tanpa dibantu dengan tenaga listrik manusia akan lebih susah untuk Untuk itu tanpa dibantu dengan tenaga listrik manusia akan lebih susah untuk melakukan sesuatu.

melakukan sesuatu. Banyak

Banyak sekali keuntungan-keuntungan sekali keuntungan-keuntungan menggunakan menggunakan tenaga tenaga listrik a.l listrik a.l ::

1.

1. Dengan adanya tenaga Dengan adanya tenaga listrik memudahkan Industri-induslistrik memudahkan Industri-industri dapat tri dapat berkembangberkembang dengan cepat.

dengan cepat. 2.

2. Dengan adanya tenaga Dengan adanya tenaga listrik pekerjaanlistrik pekerjaan-pekerjaan rumah tangga -pekerjaan rumah tangga dapat dengandapat dengan mudah

mudah diselesaikadiselesaikan.n. 3.

3. Dengan adanya Dengan adanya tenaga listrik tenaga listrik seluruh kebutuhan seluruh kebutuhan TelekomuniTelekomunikasi dkasi dapat terjamin.apat terjamin. 4.

4. Tenaga listrik dapat menerangi rTenaga listrik dapat menerangi rumah-rumah tangga, jalan raya, umah-rumah tangga, jalan raya, perkantoran danperkantoran dan pertokoan.

pertokoan. 5.

5. Dan mDan masih banyak asih banyak lagi keuntungan-keuntungan lagi keuntungan-keuntungan yang yang lain.lain.

Dengan demikian

Dengan demikian energi listrik merupakan energi listrik merupakan faktor yang faktor yang penting dalam penting dalam mencerdaskanmencerdaskan masyarakat dan secara langsung mempengaruhi keadaan perekonomian.

masyarakat dan secara langsung mempengaruhi keadaan perekonomian.

Karena tenaga listrik merupakan kebutuhan yang vital, maka tenaga listrik harus selalu Karena tenaga listrik merupakan kebutuhan yang vital, maka tenaga listrik harus selalu tersedia dalam jumlah yang cukup pada waktu yang tepat, dengan keandalan yang tersedia dalam jumlah yang cukup pada waktu yang tepat, dengan keandalan yang tinggi dan mempunyai mutu yang baik. Untuk memenuhi persyaratan-persyaratan tinggi dan mempunyai mutu yang baik. Untuk memenuhi persyaratan-persyaratan ketersediaan tenaga listrik tersebut diperlukan pengaturan yang baik dalam persediaan ketersediaan tenaga listrik tersebut diperlukan pengaturan yang baik dalam persediaan dan dalam penyaluran sistem tenaga listrik secara merata.

dan dalam penyaluran sistem tenaga listrik secara merata.

Dengan bertambahnya pemakaian beban tenaga listrik, maka memerlukan Dengan bertambahnya pemakaian beban tenaga listrik, maka memerlukan pengembangan system tenaga listrik, baik disisi pembangkit, penyaluran dan pengembangan system tenaga listrik, baik disisi pembangkit, penyaluran dan pendistribusian. Untuk memenuhi keandalan sistem dan mutu yang baik sangat pendistribusian. Untuk memenuhi keandalan sistem dan mutu yang baik sangat dibutuhkan suatu sistem yang terintegrasi.

(5)

1.1. Pembangkit. 1.1. Pembangkit.

Dalam system

Dalam system kelist

kelistrikan

rikan Pembangkitan merupakan k

Pembangkitan merupakan komponen hulu

omponen hulu mata rantai

mata rantai

produksi tenaga listrik . Fungsi sistem pembangkitan adalah mengubah (

produksi tenaga listrik . Fungsi sistem pembangkitan adalah mengubah (

mengkonversi ) energi primer seperti tenaga air, tenaga bahan bakar dan panas

mengkonversi ) energi primer seperti tenaga air, tenaga bahan bakar dan panas

bumi dan lainnya menjadi energi listrik yang akan di salurkan melalui sistem

bumi dan lainnya menjadi energi listrik yang akan di salurkan melalui sistem

transmisi dan didistribusikan kekonsumen melalui sistem distribusi.

transmisi dan didistribusikan kekonsumen melalui sistem distribusi.

Pusat Pembangkit Listrik yang dimiliki PT PLN antara lain adalah:

Pusat Pembangkit Listrik yang dimiliki PT PLN antara lain adalah: -

- PLTD PLTD ( ( Pusat Pusat Listrik Listrik Tenaga Tenaga Diesel Diesel ).). -

- PLTG PLTG ( ( Pusat Pusat Listrik Listrik Tenaga Tenaga Gas Gas )) -

- PLTU PLTU ( ( Pusat Pusat Listrik Listrik Tenaga Tenaga Uap Uap )) -

- PLTP PLTP ( ( Pusat Pusat Listrik Listrik Tenaga Tenaga Panas Panas Bumi Bumi ).). -

- PLTA PLTA ( ( Pusat Pusat Listrik Listrik Tenaga Tenaga Air Air ).). -

- PLTM PLTM ( ( Pusat Pusat Listrik Listrik Tenaga Tenaga Mikro Mikro Hidro Hidro ).). -

- PLTN ( PLTN ( Pusat Pusat Listrik TListrik Tenaga enaga Nuklir ). Nuklir ). Pusat Pusat Listrik Listrik ini masih ini masih dalam dalam penyelidikpenyelidikan.an. Untuk Pusat listrik tenaga Nuklir ( PLTN ) sementara masih dalam evaluasi dalam segi Untuk Pusat listrik tenaga Nuklir ( PLTN ) sementara masih dalam evaluasi dalam segi resiko dan bahayanya terhadap masyarakat di sekelilingnya , mengingat resiko dan bahayanya terhadap masyarakat di sekelilingnya , mengingat pengalaman-pengalaman negara maju yang pernah mengoperasikannya.

pengalaman negara maju yang pernah mengoperasikannya.

Pemilihan jenis Pusat pembangkit listrik didasarkan pada hasil studi kelayakan yang Pemilihan jenis Pusat pembangkit listrik didasarkan pada hasil studi kelayakan yang dibuat oleh PLN ( beberapa diantaranya dibuat bersama-sama konsultan ).

dibuat oleh PLN ( beberapa diantaranya dibuat bersama-sama konsultan ).

1.2 Transmisi. 1.2 Transmisi.

Tenaga listrik yang dibangkitkan oleh generator dari suatu unit pembangkit

Tenaga listrik yang dibangkitkan oleh generator dari suatu unit pembangkit

sebelum disalurkan melalui jaringan transmisi diatur terlebih dahulu tegangannya

sebelum disalurkan melalui jaringan transmisi diatur terlebih dahulu tegangannya

menjadi tegangan tinggi antara lain tegangan 70 kV, 150 kV atau 500 kV sesuai

menjadi tegangan tinggi antara lain tegangan 70 kV, 150 kV atau 500 kV sesuai

dengan kebutuhan.

dengan kebutuhan.

Perubahan tegangan dilakukan melalui transformator tenaga, transformator ditempatkan Perubahan tegangan dilakukan melalui transformator tenaga, transformator ditempatkan di Gardu Induk ( GI ) selain juga berfungsi mengubah tegangan listrik juga untuk di Gardu Induk ( GI ) selain juga berfungsi mengubah tegangan listrik juga untuk mendistribusikan tenaga listrik ke Gardu Induk lainnya. Bilamana tegangan akan mendistribusikan tenaga listrik ke Gardu Induk lainnya. Bilamana tegangan akan disalurkan ke gardu distribusi tegangan diturunkan mrnjadi tegangan menengah yaitu 20 disalurkan ke gardu distribusi tegangan diturunkan mrnjadi tegangan menengah yaitu 20 kV.

(6)

1.3. Gardu Induk.

Tegangan listrik yang dibangkitkan oleh suatu Pusat Listrik setelah dinaikkan tegangannya kemudian disalurkan melalui jaringan transmisi, dan disampaikan kekonsumen melalui Gardu Induk.

Sebenarnya suatu Gardu Induk adalah merupakan suatu pusat beban pada suatu daerah tertentu, dari Gardu Induk inilah disambung beban konsumen yang disambung melalui jaringan Distribusi, dan besarnya beban ini akan berubah-ubah sepanjang waktu, sehingga perubahan ini harus diimbangi dengan tenaga listrik yang dibangkitkan oleh pusat listrik yang tersambung pada sistem jaringan tegangan tinggi.

Kadangkala suatu Pusat Listrik tidak mampu mengimbangi beban pada suatu Gardu Induk sehingga perlu disalurkan tenaga listrik dari Pusat Listrik yang lainnya, dan juga harus tersambung dengan sistem jaringan transmisi ke Gardu Induk tersebut, inilah letak pentingnya suatu sistem interkoneksi dari beberapa Pusat Listrik dengan suatu jaringan transmisi beserta Gardu Induknya.

Apabila pengaturan pembebanan Pusat Listrik ini terlambat atau tidak dilaksanakan kemungkinannya adalah adanya penurunan frekuensi pada sistem bila daya yang dibangkitkan kurang dari daya yang dibutuhkan beban sistem atau kemungkinan bisa terjadi pengurangan beban ( pemadaman beban ) dan begitu pula sebaliknya akan terjadi frekuensi yang lebih tinggi, apabila daya yang dibangkitkan lebih besar dari beban sistem.

Peralatan gardu Induk terdiri dari peralatan yang berada didalam maupun diluar , peralatan yang berada diluar yaitu serandang hubung ( yang biasanya disebut Switchyard ) tegangan tinggi sedangkan untuk yang didalam adalah panel control dan peralatan tegangan menengah.

1.4. P

anel control.

Panel control yaitu untuk tempat untuk melakukan supervisi dan control bagi peralatan-peralatan tenaga listrik yang terpasang untuk suatu Gardu Induk, maka pada panel ditempatkan alat-alat ukur dan indikator serta peralatan remote control.

Melalui panel control diketahui parameter operasi tenaga listrik sehingga informasi tentang keadaan real time dapat diketahui dan selanjutnya informasi ini disampaikan ke control center, baik melalui sarana komunikasi suara maupun komunikasi data, hal ini tergantung dari teknologi sistem informasinya.

(7)

1.5. Gardu Hubung.

Tegangan yang telah diturunkan menjadi tegangan menengah ditampung menjadi satu pada suatu tempat yang disebut Gardu Hubung ( GH ). Tegangan menengah tersebut dibagi-bagi melalui switching menuju Gardu Distribusi. Jadi fungsi Gardu Hubung hanya menyalurkan/membagi tegangan menengah menuju ke Gardu Distribusi.

1.6. Gardu Distribusi.

Gadu distribusi berfungsi mengubah/menurunkan tegangan menengah yang datang dari Gardu Hubung menjadi tegangan rendah 220v yang kemudian disalurkan ke konsumen ( rumah-rumah, pertokoan, perkantoran ) dan lain sebagainya.

Tegangan menengah pada Gardu Distribusi ada juga yang langsung dari Gardu Induk ( GI ) tanpa melalui Garud Hubung ( GH ). Gardu-Gardu Distribusi ini paling banyak terpasang dilokasi tersebar dipelosok-pelosok perkotaan dan pedesaan yang membutuhkan aliran tenaga listrik.

Untuk pemakaian sendiri kebutuhan tenaga listrik di Gardu Induk ( GI ) atau pembangkit biasanya mempunyai transformator distribusi tersendiri.

Tegangan rendah 220 v disalurkan melalui transmisi-transmisi tegangan rendah yang sering kita lihat dipinggir-pingir jalan raya untuk disalurkan ke konsumen.

2. SISTEM SCADA.

Umum.

Sistem yang terintegrasi adalah suatu jaringan tenaga listrik yang terpadu meliputi pembangkit-pembangkit tenaga listrik, jaringan transmisi dan distribusi yang saling terhubung.

Sistem yang terintegrasi ini lebih dikenal dengan sistem interkoneksi. Keuntungan adanya interkoneksi adalah diperolehnya suatu skala produksi yang ekonomis, karena pusat pembangkit listrikyang kerkapasitas besar dan beroperasi pada sistem terinterkoneksi dapat mensuplai daerah lainnya yang membutuhkan tenaga listrik yang besar, tetapi hanya mempunyai pembangkit listrik yang berkapasitas kecil. Dengan semakin banyaknya pusat pembangkit tenaga listrik yang dioperasikan, maka diperlukan pengaturan beban sistem tenaga listrik. Dalam pengaturan sistem tenaga listrik perlu adanya sarana-sarana

(8)

Peralatan SCADA ( Supervisory Control And Data Acquisition ) sebagai berikut: 1. Sistem Telekomunikasi.

2. Alat-alat pengolah data untuk mengambil, menyimpan dan mengolah data sistem tenaga listrik.

3. Perangkat lunak untuk mengolah data, agar data dapat ditampilkan dalam pengaturan sistem tenaga listrik.

Dengan adanya sarana-sarana peralatan SCADA tersebut pusat pengatur beban bisa mendapatkan keuntungan-keuntungan antara lain :

1. Kecepatan dan kemudahan memperoleh informasi yang diperlukan.

2. Kwalitas data yang ditampilkan dapat dipantau secara real time ( data baru ). 3. Cara-cara penyajian data dan informasi bagi pengatur sistem yang sempurna. 4. Operator pusat pengatur beban dapat dengan mudah untuk pengaturan sistem. Beroperasinya peralatan sistem SCADA sangat tergantung pada:

1. Keandalan saluran data ( komunikasi ) karena dengan terganggunya saluran data akan berakibat terganggunya operasi pengaturan sistem

2. Kwalitas Power supply ( catu daya ) untuk menunjang beroperasinya peralatan.

Permasalahan mengenai energi listrik merupakan permasalahan yang sangat kompleks. Permasalahannya tidak hanya bagaimana energi listrik ini dibangkitkan, disalurkan tetapi juga mengenai perhitungan ekonomis dari suatu pembangkit yang lebih dikenal dengan manajemen energi.

2.1 Telekomunikasi Suara

Untuk pembicaraan antara operator pusat pengatur beban dengan operator pusat pembangkit PLN mempunyai jalur komunikasi khusus yang disebut PLC ( Power Line Carrier ).

Komunikasi ini merupakan sistem komunikasi yang memanfaatkan propogasi perambatan gelombang frekuensi radio melalui kunductor transmisi Saluran Udara Tegangan Tinggi ( SUTT ) sebagai media transmisi komunikasi. Jadi SUTT selain menangani fungsi utamanya , yaitu menyalurkan tenaga listrik dengan frekuensi 50 Hz,  juga menyalurkan energi listrik dengan frekuensi tinggi ( HF ).

Batas jalur pembawa sistem komunikasi PLC pada umumnya berkisar antara 30 kHz sampai dengan 500 kHz, batas terendah dari daerah frekuensi pembawa PLC dibatasi

(9)

oleh nilai reaktansi kapasitip ( Xc ) dan kapasitor penghubung ( Coupling Capasitor / CC ), sedangkan batas tertinggi alokasi frekuensi pembawa PLC dibatasi oleh nilai redaman dari pada konduktor saluran transmisi SUTT.

Selain komunikasi PLC yang digunakan untuk pembicaraan antar operator juga tersedia media lain yaitu:

1 Dengan menggunakan media kabel. 2 Dengan menggunakan media Radio Link. 3 Dengan menggunakan media Serat optic.

4 Dengan menggunakan media satelit ( sewa dengan PT Telkom ).

2.2. Komunikasi Data

Komunikasi data merupakan gabungan 2 macam teknik, yaitu teknik telekomunikasi dan teknik pengolah data. Kombinasi kedua teknik ini disebut sebagai komunikasi data atau disebut juga pengolah jarak jauh ( teleprocessing ). Komunikasi data merupakan proses pengiriman informasi ( data ) yang telah dirubah dalam suatu kode tertentu dan disalurkan melalui media listrik atau elektro optik dari suatu tempat ke tempat lainnya. Informasi yang dikirimkan kesuatu tempat dapat berbentuk sinyal analog atau sinyal digital . Sinyal analog adalah sinyal yang sifatnya seperti gelombang, sehingga pada sinyal analog tidak ada perubahan yang tiba-tiba antara bagian-bagian sinyal tersebut. Sedangkan sinyal digital adalah sinyal yang bentuknya seperti pulsa. Pada sinyal digital terjadi perubahan yang tiba-tiba antara bagian dari sinyal itu sendiri.

Sinyal digital terdapat pada peralatan pengolah data, sedangkan sinyal analog ada pada peralatan telekomunikasi sebagai sarana pembawa informasi yang bersifat digital.

Untuk melakukan komunikasi data diperlukan beberapa komponen utama yaitu : - Rangkaian Pemancar ( transmitter )

- Rangkaian Penerima ( receiver ) - Media penghubung.

Diantara dua peralatan SCADA yang berhadapan selalu menggunakan komponen-komponen tersebut diatas, komponen-komponen tersebut biasa kita sebut Modem .

2.3. Modem.

Modem ini berfungsi untuk merubah sinyal analog menjadi sinyal digital atau sebaliknya merubah sinyal digital menjadi sinyal analog. Rangkaian Pemancar ( transmitter ) dari suatu modem berfungsi sebagai pengubah sinyal digital menjadi analog, sedangkan

(10)

rangkaian Penerima ( receiver ) berfugsi sebaliknya yaitu merubah sinyal analog menjadi sinyal digital.

Modem ini dipergunakan ( dipasang ) apabila media komunikasinya berupa komunikasi analog, dan apabila media komunikasinya sudah berupa digital peralatan bantu modem ini tidak diperlukan lagi karena diantara peralatan SCADA sudah berbentuk sinyal digital sehingga sudah dapat komunikasi.

2.4 Pusat Pengatur.

Pertambahan kebutuhan tenaga listrik yang terus meningkat menyebabkan pula meningkatnya jumlah pembangkit yang beroperasi dan penambahan sistem saluran tenaga listrik yang semakin kompleks.

Untuk mendapatkan penyediaan tenaga listrik yang baik dan andal dibuat sistem yang saling terhubung ( interkoneksi ) antara seluruh pembangkit dengan saluran tenaga listrik.

Pengaturan tenaga listrik pada sistem yang terinterkoneksi dilaksanakan oleh pusat pengatur sistem tenaga listrik. Kecepatan dan keakuratan data informasi sangatlah dibutuhkan pada pengaturan sistem tenaga listrik, sehingga pusat pengatur tenaga listrik dalam melaksanakan tugas pengaturan didukung oleh peralatan yang berbasis komputer untuk membantu operator ( dispatcher ) dalam melaksanakan tugasnya.

Sistem pengaturan yang berbasis komputer disebut Supervisory Control And Data Acquisition (SCADA).

SCADA terdiri dari perlengkapan perangkat keras ( hardware ) dan perangkat lunak ( software ).

SCADA berfungsi mulai dari pengambilan data pada peralatan pembangkit atau Gardu Induk, pengolahan informasi yang diterima, sampai reaksi yang ditimbulkan dari hasil pengolahan informasi.

Jadi secara umum fungsi SCADA adalah : - Penyampaian data.

- Proses kegiatan dan monitoring. - Fungsi kontrol.

- Perhitungan dan pelaporan.

Dengan adanya peralatan SCADA penyampaian dan pemerosesan data dari sistem tenaga listrik akan lebih cepat diketahui oleh operator ( dispatcher ).

(11)

Informasi pengukuran dan status indikasi dari sistem tenaga listrik dikumpulkan dengan menggunakan peralatan yang ditempatkan di Gardu Induk ( GI ) dan di pusat pembangkit.

Kontrol penyaluran sistem peralatan memungkinkan penyampaian data secara remote. Data dapat dilakukan secara manual atau dengan perhitungan. Data yang baru dapat  juga dihitung dan disimpan dalam database melalui pengumpulan nilai secara

automatis. Penyampaian data dan pemerosesan data dilakukan secara real - time .

Parameter sistem tenaga listrik dalam real time operation seperti Frekuensi, Tegangan, Daya aktip dan reaktip, serta tap changer position ( posisi tap trafo ), dapat dibaca di control center atau pusat pengatur beban adalah melalui sarana teleinformasi yang disebut telemetering.

2.5 Telemetering.

Pengaturan tenaga listrik sangat diperlukan dalam penyediaan tenaga listrik untuk mendapatkan fungsi keamanan, kualitas dan ekonomis dalam bidang ketenaga listrikan.

Kualitas tenaga listrik adalah tegangan dan frekuensi yang stabil dan tersedia terus menerus, keamanan tenaga listrik berhubungan dengan jaringan dan kestabilan pembangkitan tenaga listrik sedangkan segi ekonomis ketenaga listrikan berhubungan dengan investasi dan biaya produksi tenaga listrik. Untuk mendapatkan fungsi-fungsi pengaturan ketenaga listrikan tersebut, maka diperlukan pengendalian ketenaga listrikan dalam kegiatan:

- Kontrol Produksi

- Pengaturan sistem transmisi - Administrasi pemeliharaan - Supervisi sistem tenaga listrik.

Macam telemetering yang dipantau oleh pusat pengatur beban diantaranya adalah : - Pengukuran Tegangan ( kV )

- Pengukuran Megawatt ( MW ) - Pengukuran Megavar ( Mvar ) - Pengukuran Arus ( A ) dan - Pengukuran Frekuensi ( Hz )

(12)

Status dari peralatan tenaga listrik, sinyal alarm dan sinyal lainnya yang ditampilkan disebut dengan status indikasi. Status indikasi terhubung ke modul digital input. Status indikasi terdiri dari indikasi tunggal ( single indication ) dan indikasi ganda ( double indication ). Indikasi ganda ter pasang pada peralatan yang mempunyai dua keadaan atau dua posisi, dimana satu keadaan menunjukkan kontak terbuka ( open ) dan kontak lain tertutup ( close ), seperti pada PMT ( pemutus ) dan PMS ( pemisah ).

Indikasi tunggal dipergunakan untuk menyampaikan data alarm dari peralatan tenaga listrik. Status indikasi dikirim ke pusat pengatur beban atau control center bila terjadi perubahan status dari peralatan.

2.7. Telecontrol.

Fungsi kontrol sistem tenaga listrik terbagi 2 bagian, yaitu: - Fungsi kontrol secara digital

- Fungsi kontrol secara analog

Fungsi kontrol secara digital merupakan perintah langsung ke peralatan tenaga listrik seperti perintah buka/tutup PMT atau PMS, perintah start/stop unit pembangkit dan juga perintah merubah posisi tap changer dari transformer ( naik/turun ).

Fungsi kontrol secara analog merupakan perintah untuk pengaturan peralatan pembangkit tenaga listrik guna menaikan/menurunkan daya pembangkit.

2.8. Master station.

Master station berfungsi untuk mengolah data yang diterima dari sistem tenaga listrik yang ada agar dapat dimonitor oleh operator melalui peralatan bantu yang disebut Man Machine Interface. Master station terdiri dari 2 bagian yaitu:

- Komputer utama ( Main Computer ) - Front-end komputer

Front-end komputer merupakan komputer yang menangani pembacaan data dan memindahkan kumpulan data ke komputer utama serta menangani output dari komputer utama.

Komputer utama melakukan perhitungan serta analisa sistem dengan menggunakan data base.

Komputer utama biasanya menggunakan konsep dual komputer, satu komputer sebagai master dan yang satunya sebagai slave. Konsep ini menyediakan fasilitas deteksi kesalahan dan penormalan.

(13)

Data-data dari Gardu Induk atau pusat listrik dikirimkan ke pusat pengatur beban atau control center melalui saluran komunikasi. Data ini diterima oleh Front-end komputer dan selanjutnya didistribusikan ke fungsi pengolahan, baik ke master komputer maupun langsung ke Mimic Board dan peralatan monitor yang ada diruang pengendalian sistem.

2.9. Man Machine Interface.

Man Machine Interface adalah suatu peralatan diruang control yang berfungsi sebagai perantara antara operator ( dispatcher ) dengan sistem komputer. Dengan adanya Man Machine Interface memudahkan operator memonitor sistem jaringan tenaga listrik yang ada.

Peralatan Man Machine Interface diantaranya adalah: VDU Monitor, Key board, Printer, Logger, Recorder, Hard Copy dll.

2.10. Remote Terminal Unit ( RTU ).

Remote Terminal Unit ( RTU ) berfungsi untuk mengumpulkan data status dan pengukuran peralatan tenaga listrik, kemudian mengirimkan data dan pengukuran tersebut ke Master Station ( pusat control ) setelah diminta oleh Master.

Dismping itu rtu berfungsi melaksanakan perintah dari master station ( remote control ). RTU terpasang pada setiap Gardu Induk ( GI ) atau pusat pembangkit yang masuk dalam sistem jaringan tenaga listrik.

Remote Terminal Unit ( RTU ) terdiri dari komponen-komponen antara lain: - Central Processing Unit ( CPU )

- Memory

- Modul Input / Output ( I / O ) - Modul Power supply

Modul I / O merupakan interface dengan peralan proses yang berada di Gardu Induk maupun pusat pembangkit. Jadi fungsi utama dari modul I / O adalah melayani masukan dan pengeluaran untuk nilai analog dan sinyal digital dari kontak, Transducer dan sumber sinyal lainnya dari peralatan tenaga listrik.

Telemetering ( TM ) yang datang dari transducer disambung langsung ke modul Analog input.

Telesinyal ( TS ) yang datang dari peralatan GI disambung langsung ke modul digital input.

(14)

Telekontrol ( TC ) yang dkeluarkan dari modul analog output disambung ke peralatan pembangkit yang dapat diatur system pembebanannya.

Telecontrol ( TC ) yang dikeluarkan dari modul digital output disambung ke PMT, PMS, Start/stop Unit Pembangkit yang bisa dikontrol.

RTU banyak terdapat dipasaran dengan berbagai macam merk dan type masing – masing mempunyai kelebihan dan kekurangan baik dari segi teknis maupun ekonomis. Remote Terminal Unit ( RTU ) untuk SCADA PLN P3B diantaranya :

Untuk Jawa barat DKI dan Jawa timur kebanyakan dipasang RTU EPC 3200, S 900 ( buatan Perancis ). Sedangkan untuk Jawa tengah dipasang RTU Indactic ( buatan Swedia )

3. SISTEM SCADA PLN P3B

3.1. Jaringan tenaga listrik Jawa-Bali

Sistem jaringan tenaga listrik Jawa-Bali terdiri dari 3 tegangan tinggi yaitu : 70 kV, 150 kV dan 500 kV. Tulang punggung sistem tenaga listrik Jawa-Bali adalah jaringan tegangan extra tinggi 500 kV serta pembangkit berskala besar yang tersambung langsung dengan jaringan 500 kV.

Pembangkit berskala besar yang tersambung langsung dengan jaringan 500 kV pada saat ini diantaranya adalah :

- PLTU Suralaya - PLTA Saguling - PLTA Cirata

- PLTGU Gresik dan - PLTU Paiton.

Pusat-pusat beban dipasok melalui Transformator inter bus ( IBT ) 500kV/150 kV yang terpasang di Gardu Induk Tegangan Extra Tinggi ( GITET ).

Saluran tegangan tinggi 150 kV & 70 kV serta pembangkit-pembangkit yang terhubung dengan jaringan ini merupakan penyedia tenaga listrik untuk setiap control center.

Pendistribusian tenaga listrik ke konsumen disalurkan melalui transformator 150/20 kV atau 70/20 kV dan jaringan tegangan menegah.

Konfigurasi tegangan sistem tenaga listrik Jawa-Bali ini menuntut disusunnya hirarki control center yang sejalan dan dapat mendukung pola pengoperasiannya.

(15)

Untuk menunjang pengopesasian sistem tenaga listrik Jawa-Bali telah dipasang peralatan SCADA yang telah beroperasi sejak th 1982. Dengan adanya peralatan SCADA operator dapat mengawasi dan mengontrol serta dapat memperoleh data yang akurat dari Gardu-gardu Induk maupun pusat pembangkit, dengan demikian operator dapat melaksanakan pengoperasian sistem tenaga listrik dengan andal.

3.2. Hirarki Control Center

Pada saat ini terdapat 3 hirarki Control Center yaitu : - JCC ( Java Control Center )

- RCC ( Regional Control Center ) - GSC ( Group Switching Center )

Sistem tenaga listrik Jawa-Bali terbagi menjadi 4 Area Control Center masing-masing adalah :

- Regional Control Centre Cawang ( RCC Cawang )

Yang meliputi daerah Jawa-barat bagian barat,Banten serta DKI Jakarta. - Regional Control Centre Cigereleng ( RCC Cigereleng )

Yang meliputi daerah Jawa-barat bagian timur.

- Regional Control Centre Ungaran ( RCC Ungaran )

Yang meliputi daerah Jawa-tengah. Dan Daerah Istimewa Yogyakarta. - Regional Control Centre Waru ( RCC Waru )

Yang meliputi daerah Jawa-timur ditambah GSC Bali.

Dari keempat Regional tersebut masing-masing dimonitor oleh JCC ( Java Control Center )

Yang terletak di Gandul. Disamping memantau seluruh Regional Control Centre ( RCC ), JCC Juga mengontrol langsung jaringan tegangan Extra tinggi 500 kV.

Dengan adanya hirarki-hirarki tersebut, maka dapat diambil kesimpulan tugas dari masing-masing Control Center antara lain:

3.3. Tugas JCC

- Mengatur alokasi Energi diantara pusat-pusat pembangkit

- Melakukan operasi pengaturan jaringan pada saluran tegangan extra tinggi 500 kV baik pengaturan daya maupun tegangan.

(16)

- Menjaga sekuriti sistem secara keseluruhan. - Mempertahanhan kualitas frekuensi sistem

- Monitor dan mengatur transfer daya antar control center.

3.4. Tugas RCC

- Melakukan operasi pengaturan jaringan pada saluran tegangan tinggi 150 kV dan 70 kV, baik dalam rangka pengaturan daya maupun tegangan.

- Menjaga sekuriti pasokan daya ke Gardu-gardu Induk diwilayah kerjanya masing-masing.

3.5. Tugas GSC.

- Membantu tugas ACC dalam melakukan pengaturan jaringan pada jaringan 150 kV dan 70 kV diwilayahnya.

- Mengambil alih tugas operator Gardu Induk yang berada dibawah kendali GSC, sehingga dengan demikian Gardu-gardu secara bertahab dapat menjadi Gardu Induk Tanpa Operator ( GITO ) . Untuk GI tanpa operator ini GSC mendapat tugas tambahan memantau beberapa teleinformasi yang sifatnya tidak langsung dibutuhkan untuk operasi real-time, tapi ini diperlukan oleh regu pemeliharaan ( sebagai contoh kondisi power supply panel, power supply untuk telekomunikasi dan seluruh alarm peralatan yang terpasang di gardu tersebut.

3.6. Tugas DCC

Disamping hirarki yang tercantum diatas ada suatu Control Center diluar P3B yang disebut DCC ( Distribution Control Center ) adapun tugas DCC adalah:

- Melakukan operasi pengaturan jaringan pada saluran tegangan menengah 20 kV ke bawah ( tegangan rendah 220 v ).

- Menjaga sikuriti pasokan daya ke Gardu Hubung yang langsung disalurkan ke konsumen-konsumen diwilayah kerjanya masing-masing.

3.7. Batas wewenang.

Dalam melaksanakan tugas baik JCC, RCC maupun GSC bekerja sama dan berbatasan wilayah hanya dengan DCC dan pusat listrik.

Batas wewenang dan tanggung jawab yang jelas antara control center perlu ditetapkan agar tidak terjadi kesenjangan wewenang dan informasi data.

(17)

3.8. Batas wewenang JCC – RCC

Batas wewenang operasional antara JCC dan RCC adalah pada trafo inter bus 500 kV/150 kV.

Pengoperasian dan keamanan Transformer dan kualitas tegangan disisi150 kV menjadi tanggung jawab JCC. Dalam fisiknya wewenang JCC adalah sampai pemutus tenaga ( PMT ) disisi 150 kV setelah itu menjadi wewenang RCC.

3.9. Batas RCC-GCS dan DCC

Batas wewenang operasional antara RCC dengan DCC adalah pada Transformator 150 kV/20 kV atau 70 kV/20 kV. Keamanan operasi transformator dan kualitas tegangan disisi tegangan menengah menjadi tugac DCC. Dalam fisiknya wewenang RCC adalah sampai pemutus tenaga ( PMT ) disisi 150 kV atau 70 kV.

3.10. Batas JCC-RCC –GSC dan Pusat listrik.

Batas wewenang operasional antara JCC- RCC dan pusat listrik adalah setelah pemutus tenaga ( PMT ) pada bay Generator.

Jadi JCC-RCC hanya berwenang mengatur masuk / keluarnya suatu pembangkit dari / ke jaringan sampai ke pembebanan. Untuk pelaksanaan pemasukan / pengeluaran pembangkit dilakukan oleh pengelola pusat listrik, dalam hal ini PLN Sektor.

Oleh karena itu semua PMT pada bay Generator tidak dilengkapi peralatan remot control dari control center. Bila pada bay Generator tidak ada PMT maka pada PMT pengapit dari bay generator tersebut pengoperasiannya menjadi wewenang pusat listrik. Untuk menjaga mutu dan pelayanan listrik , maka pusat pengatur baik JCC, RCC/GSC dan DCC harus mempunyai hubungan kerja yang erat dan kontinyu.

3.11. Perlengkapan Teknik ( Perangkat Keras )

Untuk menunjang beroperasinya sistem SCADA maka di masing-masing Control Center dipasang komputer lengkap dengan peralatan Man Machine Interface.

Untuk peralatan di remote station dipasang Remote Terminal Unit yang mempunyai kapasitas yang berbeda sesuai besar / kecilnya Gardu Induk atau pusat pembangkit.

(18)

Umum

Untuk pengaturan sistem tenaga listrik yang andal khususnya jaringan listrik

yang mempunyai pembangkit interkoneksi sebaiknya dipasang peralatan Load

Frequency Control ( LFC ) di Unit-unit pembangkit yang mempunyai kapasitas

minimal 100 MW . LFC juga dipasang pada Unit dengan sistem blok yang artinya

satu komando LFC untuk mengatur beberapa unit pembangkit.

Di Indonesia LFC sudah mulai dirancang sejak adanya proyek West Java Load

Dispatching Center yang biasa disebut LDC yang telah dilaksanakan pada th

1980 . Pada saat Scada proyek LDC berjalan , JCC Gandul baru mulai

pembangunan gedung. Sehingga pada saat itu sudah ada 2 control center yang

berfungsi yaitu :

Regional Control Centre Cawang dan Regional Control Centre Cigereleng.

Setelah Java Control Center ( JCC ) beroperasi , kemudian pada akhir

Desember 1987 baru ada sistem LFC yang beroperasi yaitu LFC Hydro Power

Plant ( PLTA Saguling ) yang terdiri dari 4 Unit pembangkit berkapasitas

masing-masing 180 MW. Pada saat itu hanya PLTA Saguling yang sangat dibutuhkan

untuk menunjang keandalan sistem tenaga listrik Jawa-Bali, karena ditinjau dari

segi bahan bakar adalah yang termurah disamping itu telah dipasang peralatan

LFC yang dapat mengatur Frekwensi secara otomatis melalui peralatan SCADA.

Tidak lama kemudian menyusul beroperasinya LFC PLTA Cirata yang terdiri dari

4 Unit pembangkit yang masing-masing mempunyai kapasitas 125 MW.

Dengan adanya pengembangan Gardu-Gardu Induk dan Unit-Unit pembangkit

tenaga listrik Jawa Bali sampai saat sekarang sudah ada 10 Unit Pembangkit

yang sudah menggunakan fasilitas LFC yaitu :

-PLTA Saguling

( 4 X 175 MW )

-PLTA Cirata

( 8 X 125 MW )

-PLTGU Gresik Blok 2

( 1 X 550 MW )

-PLTGU Gresik Blok 3

( 1 X 550 MW )

-PLTU Paiton

( 2 X 400 MW )

-PLTGU Grati

( 1 X 500 MW )

(19)

-PLTU Muarakarang

( 2 X 200 MW )

-PLTGU Priok blk 1, 2

( 2 X 600 MW )

-PLTU Gresik 150

( 2 X 200 MW )

-PLTGU Muara Tawar

( 1 X 400 MW )

-PLTU Suralaya

( 3 X 600 MW )

Disamping lokasi-lokasi tersebut diatas ada beberapa pengembangan peralatan

SCADA LFC yang sedang dalam proses pemasangan dan pengetesan

diantaranya adalah :

-PLTU Tambaklorok 150 ( 1 X 200 MW ) -PLTGU Gresik Blok 1 ( 1 X 500 MW ) -PLTGU Tambak LOROK Blok 2 ( 2 X 500 MW ) -PLTA Cirata Unit 5 s/d 8 ( 4 X 125 MW )

LFC hanya dapat beroperasi pada saat jaringan sistem tenaga listrik dalam kondisi normal.

Pada saat sistem tenaga listrik mengalami gangguan atau lepas interkoneksi (Separated Network) di salah satu Gardu Induk atau Pembangkit maka LFC secara otomatis akan OFF. Untuk mengetahui terjadinya Separated Network, di Master komputer terdapat suatu program Network Topologi yang berfungsi untuk memonitor jaringan tenaga listrik. Jaringan sistem tenaga listrik akan lebih baik mutu frekwensinya apabila lebih banyak unit pembangkit yang ikut berpartisipasi menggunakan LFC. Disamping itu pembangkitan akan bekerja lebih stabil atau bekerja lebih ringan apabila banyak Unit yang beroperasi dengan LFC.

Antara Unit satu dengan unit yang lain saling berpacu untuk memperbaiki mutu frekwensi biasanya PLTA adalah unit yang paling cepat dalam menerima respon dari Master Station dan Unit2 yang bekerja lebih lambat bisa membantu untuk perbaikan Frekwensi.

Pembagian fungsi LFC

Ditinjau dari sistem tenaga listrik LFC dapat dibagi menjadi 3 fungsi yaitu :

- Fungsi pengaturan Frekwensi sistem.

- Fungsi pengaturan Beban ( Power )

(20)

4.1. Fungsi pengaturan Frekwensi.

Dalam fungsi ini LFC akan bekerja mengatur Frekwensi sistem tenaga listrik dengan menaikan atau menurunkan beban pembangkit dengan berdasarkan perbedaan Frekwensi antara Frekwensi sistem dengan frekwensi standard yang ditetapkan oleh operator di master station.

Bila Frekwensi sistem lebih rendah dari frekwensi standard, maka LFC bekerja memberi perintah untuk menaikkan output beban pembangkit. Sebaliknya bila frekwensi sistem lebih tinggi dari frekwensi standard, maka LFC bekerja menaikkan output beban pembangkit.

4.2. Fungsi pengaturan beban ( power )

Fungsi ini LFC akan mengatur pembebanan dengan menaikkan atau menurunkan beban pembangkit berdasarkan perbedaan antara total pengukuran power pembangkit dengan perubahan jadwal beban konsumen.

4.3. Fungsi pengaturan power dan frekwensi

Fungsi ini merupakan fungsi gabungan antara fungsi pengaturan Beban dan fungsi pengaturan frekwensi untuk itu LFC bekerja menaikkan atau menurunkan beban pembangkit berdasarkan beban dan frekwensi saat itu.

Diantara ketiga fungsi tersebut diatas yang dipergunakan di sistem tenaga

listrik Jawa-Bali adalah fungsi pengaturan Frekwensi. Apabila program LFC di

Master Station tidak diaktifkan, maka tidak ada pula perintah yang dikirim ke

unit pembangkit, karena perintah harus terpusat dari satu Master dan disebar

keseluruh Unit Pembangkit yang menggunakan fasilitas LFC.

4.4. System komunikasi SCADA LFC.

LFC adalah salah satu bagian dari input/output pada peralatan RTU yang terpasang di Unit pembangkit ( TM, TS, RCA dan RCD )

Dari Master Station ( Pusat Kontrol ) mengirim signal N ( level ) yang besarnya antara  –1 s/d +1 ke semua unit yang berpartisipasi menggunakan LFC. Besarnya level N tersebut dihasilkan dari perhitungan komputer di Master Station yang berdasarkan frekwensi sistem dan jumlah total bandwide beban dari masing-masing unit pembangkit yang telah ditentukan oleh operator (Dispatcher).

(21)

Dalam pengoperasian LFC ada beberapa parameter yang dibutuhkan baik dari Master Station maupun dari Unit pembangkit a.l :

- Signal dan besaran 2 yang dikirim oleh komputer Master. - Signal dan besaran2 yang dikirim dari Unit Pembangkit. - Signal alarm dari RTU ke Pempangkit atau sebaliknya.

4.5. Signal dan besaran2 yang dikirim oleh komputer master

- Referensi beban real untuk beban pembangkit. ( Po ) dalam MW - Variasi (Bandwide) beban generator unit pembangkit. ( Pr ) dalam MW - Level N yang mempunyai nilai –1 s/d +1.

- Remote Control untuk LFC Request ( LFC ON dan LFC OFF ).

4.6. Signal dan besaran2 yang dikirim oleh unit pembangkit.

- Referensi beban real dari pembangkit. ( P’o ) dalam MW - Variasi (Bandwide) beban generator unit pembangkit. ( P’r ) dalam MW - Indikasi LFC ON dan LFC OFF.

- Indikasi kesiapan peralatan LFC ( LFA )

- Indikasi balik LFC Request yang dilakukan Remote dari JCC.

4.7. Signal alarm dari RTU ke pembangkit.

Untuk sistem proteksi/pengamanan beroperasinya LFC, Unit pembangkit perlu juga memonitor indikasi kesiapan RTU untuk itu RTU disiapkan suatu alarm yang disebut RTU Faulty (RTU mati) . Bila RTU Fault muncul, maka unit pembangkit (Load Coordinator) secara otomatis akan mati (LFC Off) dan untuk pengaturan beban diambil aleh oleh operator unit secara manual.

4.8. Prinsip kerja LFC

LFC bekerja full automatic yang diatur oleh komputer di Master Station kemudian setelah sampai di unit pembangkit diatur oleh suatu peralatan yang disebut Load Coordinator yang langsung berhubungan dengan peralatan control unit pembangkit. Antara komputer di Master Station dan Load Coordinator saling mengontrol bila terjadi alarm di salah satu sisi maka menyebabkan LFC Off dan bila ini terjadi, maka unit pembangkit menerima data terakhir yang dikirim dari Master/RTU.

Prinsip kerjanya sangat simpel, yaitu ketika LFC beroperasi maka beban unit pembangkit akan berubah sebagai berikut :

(22)

-Output Unit Pembangkit = P = P’o + N.P’r  dimana

-P = Output unit pembangkit.

-P’o = Power yang diset oleh operator unit.(sesuai permintaan dari Master). -P’r = 50% dari bandwide yang diset operator unit (sesuai permintaan Master). -N = Level dari Master Station yang mempunyai nilai -1 s/d +1.

Bila terjadi gangguan LFC ( LFC Off ) maka tidak ada pengaturan yang otomatis dari Master Station dan pengaturan diambil alih oleh operator Unit Pembangkit secara manual.

Pada kondisi LFC normal untuk pembebanan Unit operator harus menyesuaikan perintah dari Master yaitu P’o = Po dan P’r = Pr .

Apabila terjadi ketidak samaan antara permintaan dari Master dengan pengesetan di unit pembangkit ( P’o tidak sama Po atau P’r tidak sama Pr ) maka kemungkinan LFC akan blok. Contoh : Po - Pr Po Po + Pr P P Bandwide Perubahan beban Unit MW Unit

(23)

Kita ambil contoh misal Unit Pembangkit mempunyai kapasitas Max 150 MW. Ditentukan Po = 100 MW

Pr = 25 MW dan

N perhitungan dari komputer menghasilkan + 1 maka berdasarkan rumus diatas

P = Po + Pr.N P = 100 + 25.1 = 125 MW

Jadi generator Unit pada kondisi seperti ini harus membangkit 125 MW dan besarnya unit untuk membangkit tergantung berasnya level N yang dikirim oleh komputer Master .

Dengan demikian untuk contoh ini unit pembangkit bisa membangkitkan beban antara 75 s/d 125 MW.

4.9. Frekwensi Meter

Pemantauan Frekwensi sangat diperlukan oleh Master kontrol dan frekwensi ini pula yang dibutuhkan untuk program LFC di komputer Master, oleh karena itu di Master Station harus dipasang minimal satu buah alat untuk memonitor Frekwensi sistem dan lebil andal lagi apabila dipasang dua buah Frekwensi meter yang bekerja secara Master dan Slave yang berfungsi bila terjadi gangguan Master Frekwensi meter maka secara otomatis Frekwensi meter Slave mengambil alih menjadi master sehingga LFC tidak terganggu.

Bila kejadian kedua alat tersebut terganggu, dari frekwensi meter mengirim alarm ke komputer dan LFC langsung blok sehingga level N yang dikirim ke Unit Pembangkit yang saat itu menggunakan LFC akan blok dengan harga terakhir secara kontinyu selama belum ada pemberitahuan dari operator di Master Station bahwa LFC terganggu.

Untuk memperkecil terjadinya gangguan monitoring Frekwensi dapat diambil langkah sbb :

- Pengambilan input untuk Frekwensi meter usahakan dari dua sumber.

- Pasang alat yang dapat bekerja secara otomatis untuk memindahkan sumber input

apabiala salah satu sumber tegangan/Frekwensi terganggu.

- Pasang dua buah Frekwensi meter di Master Station agar dapat bekerja bergantian.

(24)

- Masing-masing komputer harus saling berhubungan dengan Frekwensi meter.

Contoh :

4. 10. Sistem Pengiriman Level N.

Untuk program LFC pengiriman level N dari komputer adalah setiap 10 detik sekali dengan pulsa pengiriman selama 1 detik , oleh karena itu LFC berfungsi pada saat sistem dalam kondisi normal. Pada saat sistem keadaan terganggu LFC tidak berfungsi.

Ada beberapa faktor yang mengakibatkan LFC terganggu a.l :

4.11. Di Master Station :

- Gangguan frekwensi meter .

BB 150 BB 500 Frek. Frek. Komputer Komputer PT PT 220 V 220 V Trans XXX Iindikator Recorder RTU Kontrol Gardu Induk DIF

(25)

LFC Blok ketika peralatan monitor frekwensi ( Frekwensi meter ) mengalami gangguan

atau alat tersebut memberikan data tidak benar/invalid . - Gangguan sistem Deviasi .

LFC Blok ketika terjadi perubahan atau deviasi beban yang terlalu besar terhadap Band Wide yang telah ditentukan ( jumlah P’r yang saat itu ).

- Jaringan sistem terpisah ( separated network ).

LFC Blok ketika terjadi gangguan sistem jaringan listrik ( interkoneksi terpisah ). - Frekwensi Deviasi .

LFC Blok ketika terjadi deviasi ( perubahan ) Frekwensi terlalu besar sehingga melewati batas frekwensi yang telah ditentukan oleh operator kontrol senter. - Power regulator ( Band Wide Power )

LFC Blok ketika komputer master tidak menerima total Band Wide dari masing-masing unit pembangkit ( P’r = 0 ).

- Manual Blok

LFC dapat di blok secara manual oleh operator di kontrol senter kemudian level N dapat diberikan secara manual .

4.12. Di Power Station .

- Gangguan Komunikasi Data. - Gangguan RTU.

Ketika RTU mati maka alarm dari RTU dikirim ke Unit pembangkit sehingga LFC Blok.

- Gangguan Load Kordinator.

LFC bisa terganggu disebabkan oleh peralatan kontrol ( Load Kordinator ) di Power Plant Pembangkit.

- Ketidak samaan pengesetan antara Po dengan P’o atau Pr dengan P’r.

4.13. LFC Level Band Wide

Dalam Program LFC Level N telah dibatasi besarnya yaitu –1 s/d +1 bila perhitungan dari komputer melewati harga tersebut maka LFC level akan berhenti di –1 atau +1.

(26)

Apabila ini terjadi operator harus mengambil langkah-langkah untuk menaikkan atau menurunkan unit pembangkit secara manual dengan merubah Po dan Pr yang sudah ditentukan sebelumnya agar supaya harga N level mendekati 0 atau =0.

4.14. LFC Level Manual.

Disamping pemberian Level N secara otomatis dari komputer, operator di kontrol senter dapat juga memberikan Level N secara manual ke Unit-unit pembangkit berdasarkan perhitungan sesuai dengan rencana pembebanan operasional.

Dengan dirubahnya Level N oleh operator maka N tersebut langsung dikirimkam ke unit-unit pembangkit yang mempergunakan LFC untuk menaikkan atau menurunkan beban pembangkit. Dengan cara ini operator di kontrol senter harus betul-betul memperhatikan perubahan Frekwensi pada saat itu sehingga cara ini  jarang sekali dilakukan.

4.15. Frekwensi referensi

Operator di kontrol senter dapat memberikan batasan referensi Frekwensi secara manual misal 49,5 Hz < = Fo < = 50,5 Hz sehingga komputer akan menghitung dan menentukan Level N berdasarkan perbedaan antara Frekwensi sistem dengan referensi frekwensi tersebut (  F = F – Fo ).

Disamping itu juga berdasarkan dari jumlah P’r dari seluruh unit pembangkit yang menggunakan LFC saat itu.

Dengan ketentuan tersebut diatas komputer secara Real Time menghitung berapa besarnya level N yang harus diberikan.

4.16. Pengukuran Frekwensi

LFC harus menggunakan Frekwensi yang terpasang di kontrol senter walaupun disetiap GI ada fasilitasnya dan dapat dimonitor karena untuk menghindarkan kesalahan perhitungan .

Frekwensi-frekwensi yang datang dari gardu induk ini berfungsi sabagai referensi apabila terjadi gangguan terpisahnya sistem interkoneksi ( separated network ).

(27)

4.17. Band Wide Regulation ( P’r )

Besarnya 50% Band Wide untuk masing-masing Generator ditentukan oleh operator dari Unit Pembangkit yang sebelumnya telah dikoordinasikan dengan operator kontrol senter.

Jumlah P’r dari unit-unit Pembangkit inilah yang dipergunakan komputer untuk menentukan besarnya level N dan diperhitungkan juga dengan Frekwensi pada saat itu.

4.18. Base Point Generator.

Base Point suatu Generator ( P’o ) adalah input TM yang diatur oleh operator di unit Pembangkit sehingga operator kontrol senter dapat mengetahuinya bahwa permintaan Base Point dari Master Station sudah disesuaikan oleh Unit Pembangkit.

(28)

5. SISTEM TELEKOMUNIKASI POWER LINE CARRIER

Sistem Telekomunikasi PLC (Power Line Carrier) adalah sistem telekomunikasi

yang menggunakan saluran tegangan tinggi untuk menyampaikan informasi

dengan melalui media frekuensi tinggi antara dua GI atau lebih, sistem PLC

pertama kali digunakan pada tahun 1930 an, sistem ini sangat dibutuhkan untuk

menyalurkan informasi berupa :

- Suara

- Data

- Teleproteksi.

Informasi Suara ini umumnya kita kenal dengan saluran telepon. Melalui Sistem

PLC dapat disalurkan informasi antar PABX di suatu Gardu Induk (GI) ke GI

yang lain, atau dari satu pesawat telepon ke pesawat telepon yang lain.

Gambar 1. Komunikasi antar GI / KIT

Informasi data pada sistem ini adalah informasi yang membawa data-data dari

dan ke RTU berupa telesinyaling (misalnya status pmt terbuka atau tertutup),

telemetering (mw, mvar, kV, A), dan fungsi remote control (Membuka / menutup

PMT).

Sistem informasi yang lain adalah teleproteksi, sebenarnya teleproteksi ini dapat

dikategorikan pada informasi data, tetapi dikarenakan fungsinya khusus dan juga

(29)

memerlukan

perhatian

yang

khusus

(keamanannya,

selektifitasnya,

kecepatannya), maka dipisahkan fungsinya dari informasi data.

Perangkat PLC mempunyai prinsip kerja seperti perangkat radio yang

mempunyai sistem pemancar dan penerima dimana informasi dimodulasikan ke

frekuensi tertentu (40 kHz – 500 kHz) yang kemudian disalurkan melalui saluran

udara tegangan tinggi yang berfungsi sebagai antena.

Dengan metode modulasinya komunikasi PLC dapat digunakan secara full

duplex (ini dapat kita rasakan sewaktu kita menggunakan pesawat telepon yang

langsung melalui PLC, pembicaraan dua arah dapat dilakukan tanpa dirasakan

adanya delay waktu)

Pemilihan frekuensi ini dengan pertimbangan apabila di bawah 40 kHz maka

redaman sinyal di line trap akan tinggi, dan juga keterbatasan bandwidth dari

peralatan coupling (Coupling capacitor, cvt, LMU), sedangkan apabila

frekuensinya lebih dari 500 kHz maka muncul redaman akibat radiasi (skin effect

radiation), menginterferensi siaran radio, dan juga redaman pada konduktor

cukup tinggi. Di beberapa negara untuk sistem ini dibatasi antara 40khz – 500

kHz dikarenakan frekuensi diatasnya ataupun di bawahnya digunakan untuk

frekuensi Radar Beacon

(radar navigasi laut dan udara).

Pada sistem Telekomunikasi PLC peralatan yang kita perlu ketahui adalah

sebagai berikut :

1. Line Trap

2. Coupling capasitor (CC atau CVT)

3. Line Matching Unit

4. Kabel koaksial

5. Peralatan SSB PLC

Koneksi ke Suara, melalui PABX / Pesawat Telepon

Koneksi ke Data, melalui RTU

(30)

6. Catu Daya

Gambar 2. Sistem Power Line Carrier

1. Line Trap

Line Trap adalah peralatan berupa induktor yang cukup besar yang gunanya

untuk memblok frekuensi tinggi (40 kHz – 500 kHz) agar tidak diteruskan ke arah

trafo, PMT, PMS dan peralatan lainnya yang ada di switch yard dan Gardu Induk.

Peralatan ini tetap menyalurkan frekuensi rendah 50 Hz, yang merupakan

frekuensi sistem tenaga listrik.

(31)

Peralatan ini berfungsi sebagai penerus sinyal yang membawa berfrekuensi

tinggi ke konduktor transmisi tegangan tinggi. Suatu kapasitor mempunyai sifat

menahan frekuensi rendah (50 Hz) dan meneruskan frekuensi yang tinggi

(frekuensi kerja PLC 40 kHz – 500 kHz).

Gambar 2. Line Trap dan Coupling Capacitor

3. Line Matching Unit

Fungsi LMU ini adalh menyesuaikan karakteristik impedansi saluran udara

tegangan tinggi (300 ohm) dengan impedansi yang ada di kabel koaksiaal (75

ohm) yang menuju PLC, pada peralatan ini berisi komponen-komponen berupa

induktor dan kapasitor yang membentuk filter pasif band pass.

Fungsi lain dari peralatan ini adalah sebagai penjaga / pelindung peralatan PLC

dari tegangan sisa yang mungkin tembus dari coupling kapasitor / CVT.

4. Kabel Koaksial

Berfungsi menyalurkan frekuensi kerja PLC, bila kita ukur di kabel ini akan

terdeteksi frekuensi kerja PLC antara 40 kHz – 500 kHz. Impedansi kabel

koaksial ini adalah 75 ohm. Kabel yang digunakan untuk outdoor apabila cukup

 jauh biasanya menggunakan pelindung, untuk menghindari kerusakan fisik dan

 juga bocornya frekuensi.

5. Peralatan SSB PLC

Peralatan ini merupakan pemancar dan penerima dengan menggunakan sistem

modulasi amplitudo, single side band. Di peralatan ini informasi (suara, data,

teleproteksi) yang aslinya dari frekuensi audio dimodulasikan kefrekuensi tengah

(32)

(intermediate) dan kemudian dimodulasikan akhir ke frekuensi tinggi / frekuensi

pembawa.

Teleproteksi

Merupakan peralatan bantu untuk mendapatkan percepatan waktu secara

selektif ke peralatan distance relay. Prinsip dasar dari kerja peralatan ini adalah

perpanjangan kontak dengan kecepatan tinggi antar gardu induk yang akan

dibuka PMT nya, dengan melalui media komunikasi PLC.

PAX

Merupakan peralatan switching suara, atau switching saluran telepon agar

pembicaraan melalui pesawat telepon dapat diarahkan ke pesawat telepon lain

yang kita inginkan.

RTU

Peralatan ini berfungsi sebagai pengumpul informasi, dan perintah yang

kemudian disalurkan ke kontrol center. Peralatan ini berisi transducer-transducer

yang berfungsi mengukur mis. Mw. Mvar, kv, a. Juga berisi relay-relay untuk

status buka tutup PMt dan juga relay-relay yang berfungsi untuk melakukan

remote control penggerak motor-motor PMT.

6. Catu daya

Catu daya yang digunakan dalam sistem ini adalah 48 volt DC, yang

dibangkitkan dari rectifier yang di dukung dengan suplai cadangan batere.

Umumnya satu peralatan telekomunikasi PLC, menggunakan daya kurang lebih

200 Watt. Dengan sistem pentanahan Positive Grounding.

SISTEM TELEKOMUNIKASI FIBER OPTIK

Seiring masuknya proyek JWOTS di PLN yang diimplementasikan disekitar

tahun 1990 an, maka dimulailah era penggunaan telekomunikasi melaluli fiber

optik di PLN. Pada awalnya penggunaan Telekomunikasi FO ini digunakan untuk

voice dan data RTU, yang kemudian meningkat ke Video conference, dan juga

digunakan untuk fasilitas teleproteksi. Teleproteksi yang menggunakan fasilitas

FO adalah :

(33)

SUBSTATION 500 kV

Merk

Type

CLGON – CIBNG

CLGON – SLAYA

CIBNG – SGLNG

CRATA – CBATU

CBATU – MTWAR

GRSIK – KRIAN

KRIAN – GRATI

GRATI – PITON

CWANG – BKASI

PEDAN – KDIRI

KDIRI - PITON

ABB

NOKIA

ABB

NOKIA

NOKIA

ABB

NOKIA

NOKIA

NOKIA

NOKIA

ECI

FOX U – NSD70

TPS 64

FOX U – NSD70

TPS 64

TPS 64

FOX 20

TPS 64

TPS 64

TPS 64

VFEM / SAINCo

DIP 5000

Tabel 1. GITET yang menggunakan Teleproteksi FO

Prinsip kerja dari peralatan fiber opttik adalah, menyalurkan informasi yang

dimodulasikan dalam bentuk sinar yang disalurkan ke dalam serat optik.

7. MINI MASTER DI UPT

Mini Master yang dipasang di UPT

merupakan suatu sistem pengolah

data yang berbasis PC windows . Sistem ini berfungsi memonitor semua status,

telemetering dan kejadian (event) dari semua Gardu Induk yang menjadi

wewenang suatu UPT. Data kejadian ini digunakan untuk kebutuhan

maintenance, analisa dan laporan.

Mini Master yang dipasang di UPT

menerima data dari RTU Concentrator yang

kesehariannya mengirimkan data ke Regional Control Centre (RCC). Data yang

diperoleh dari RTU Concentrator dapat sama atau berbeda dengan data yang

(34)

diterima oleh RCC. Sistem dirancang untuk tidak mengganggu komunikasi data

existing dari RTU Concentrator ke RCC . Secara garis besar

Mini Master yang

dipasang di UPT

digambarkan sebagai berikut :

1. FUNGSI

RTU Concentatror RCC Modem LAN Client Logger/Print Sound alarm Server / Komputer

RTU Satelite RTU Satelite RTU Satelite RTU Satelite

(35)

Mini Master yang dipasang di UPT

berfungsi untuk menampilkan dan

mengolah data :

a. Status peralatan

Menampilkan dan menyimpan data kondisi status dari peralatan yang

dimonitor antara lain :

-

Status Open/Close PMT

-

Status Open/Close PMS

-

Status Open/Close PMS Tanah

-

Status Local/Remote

b . Alarm

 Alarm yang timbul pada peralatan gardu induk dan menjadi wewenang Tragi

dapat ditampilkan berupa daftar alarm ataupun grafis, misalnya:

-

DC source

-

Busbar Protection

-

Line Protection

-

Trafo Alarm

-

Communication Failure

Display

GI

Pulogadung

(36)

c. Logging

 Alarm dan perubahan status dapat ditampilkan dalam logger serta dapat

dihitung pula rentang waktunya.

d. Telemetering

Data telemetering dari setiap gardu induk dapat ditampilkan berupa besaran

nilai ataupun grafis, seperti :

-

Daya Active ( MW )

-

Daya Reactive ( MVAR )

-

Tegangan ( KV )

-

 Arus ( Amp )

-

Tap Changer Trafo

e. Record Data

Semua data pengukuran maupun event dapat disimpan dalam suatu file

tertentu dan memudahkan untuk membuat laporan bagi suatu UPT. Data

tersebut dapat dimunculkan dalam format yang lain misalnya dalam bentuk

file Excel atau database SQL dan dapat secara otomatis dikirim dengan email.

f. Tampilan

Data-data disajikan dalam bentuk grafis berbasis windows yang interaktif .

Tampilan daftar alarm

(37)

g. Pengembangan

Sistem minimum awal dapat dikembangkan menjadi sistem yang lebih besar

dengan mudah dan bersifat open system.

2. HASIL PENGUJIAN

Pengujian yang

telah dilakukan pada UPT Jaktim di GI Pulogadung pada

tanggal 2 Februari 2000 yang mencakup GI Pulogadung, GI Tosan Prima, GI

Penggilingan, dan GI Pangeran Karang dengan hasil memuaskan, dalam arti

kebutuhan informasi pemeliharaan dapat terpenuhi dari informasi yang

ditampilkan oleh Mini Master yang dipasang di GI Pulogadung ,

(38)

3. MANFAAT LAIN YANG MASIH DALAM PENGEMBANGAN

Selain fungsi monitoring dan record data di atas, masih terdapat fungsi lain

yang saat ini sedang dikaji dan dikembangkan, agar tugas-tugas rutin UPT

yang saat ini dapat digantikan dengan peralatan, karena semua data operasi

yang terjadi di gardu Induk sudah terrecord di mesin komputer, antara lain:

a.  Alarm

 Alarm yang terjadi di setiap Gardu Induk dapat ditampilkan sesuai yang

muncul pada panel gardu induk, dimana alarm pada masing-masing kejadian

dapat dimonitor dan dianalisa sesuai dengan kebutuhan UPT.

b. Telemetering

(39)

Telemetering yang saat ini hanya mengukur besaran yang diperlukan untuk

operasi tenaga listrik dapat ditambahkan pengukuran yang digunakan untuk

transaksi energi, misalnya MWh, dengan menambahkan meter digital pada

sisi yang diukur.

c. Statistik

Data statistik dari masing-masing jenis peralatan tercatat dalam database

yang termodifikasi secara otomatis dari hasil monitoring kejadian. Hal ini

diperlukan untuk analisa (preventive maintenance) sehingga regu

pemeliharaan dapat memperkirakan waktu pemeliharaan yang optimum.

Selain fungsi maintenance, database dapat dipergunakan untuk menganalisa

kejadian sehingga hasil yang didapat mempunyai akurasi yang tinggi.

Data-data statistik antara lain:

-

Jumlah ON/OFF tiap PMT

-

Jumlah gangguan per alat dan GI

-

Jumlah gangguan per alat dan per UPTi

-

Jumlah gangguan per hari/bulan/Tahun, dll

d. Report

Data-data yang tersimpan dalam file database, dapat dibuat suatu format

laporan yang disesuaikan dengan format laporan UPT, ataupun laporan untuk

Region. Misalnya :

-

Laporan gangguan per UPT per hari/minggu/bulan

-

Laporan beban trafo harian, mingguan

-

Laporan open/close masing-masing PMT ( prefentive maintenance ), dll

c. Networking dan Local Area Network

Struktur jaringan Mini Master yang dipasang di UPT

yang berupa LAN

dapat dihubungkan ke suatu WAN yang memungkinkan dilakukannya

monitoring oleh Region. Data-data yang diperoleh dari Mini Master yang

dipasang di UPT

dapat juga ditampilkan di intranet/internet.

(40)

8.FASILITAS OPERASI GARDU INDUK

SEMUA PERALATAN UNTUK KEPERLUAN OPERASI :

SISTEM PENGAMAN

SISTEM PENGATURAN PENGAWASAN

SISTEM KOMUNIKASI

SISTEM PENDINGIN

SISTEM PENTANAHAN

SISTEM POWER SUPPLY

SISTEM PENGGERAK PMT DAN PMS

1.2 SISTEM PENGATURAN PENGAWASAN :

(41)

PENGAWASAN ( SUPERVISORY )

TUJUAN PENGAWASAN :

Untuk mendapatkan gambaran keadaan operasi sistem tenaga listrik dan kondisi

peralatan agar supaya fluktuasi abnormal sistem dan peralatan dapat diketahui.

INSTRUMEN YANG DIGUNAKAN :

Instrumen penunjuk, meter pencatat, instrumen penunjuk dan pencatat.

INFORMASI YANG DIBERIKAN :

Tegangan, arus, daya, terbuka atau tertutupnya pemutus beban dan pemisah,

keadaan operasi dan gangguan pada pengatur tegangan dan peralatan lainnya

dalam gardu.

1.3 PENCATATAN ( RECORDING )

TUJUAN PENCATATAN :

Untuk mencatat keadaan operasi dari sistem dan peralatan yang berguna untuk

perancangan instalasi, perancangan pemeliharaan dan operasi sistem.

 ALAT PENCATAT :

 Alat pencatat yang sering dijumpai di gardu induk yaitu : Buku harian dan

printer.

TEKNOLOGI RECORDING :

Pencatatan dapat dilakukan secara manual oleh operator gardu induk atau

terintegrasi dengan sistem komputer sehingga dapat dilakukan pencataan

otomatis.

(42)

TUJUAN PENGATURAN :

Untuk bekerjanya objek-objek yang diatur oleh operator gardu induk dalam

operasi normal sesuai pertimbangan dan jadwal yang telah ditentukan terlebih

dahulu.

OBJEK YANG DIATUR :

Pemutus beban dan pemisah, pengatur tegangan transformator dan pengubah

tap pada transformator.

TEKNOLOGI PENGATURAN :

PERKEMBANGAN SISTEM PENGAWASAN DAN PENGATURAN

PENGAWASAN DAN PENGATURAN SERTA PENGOLAHAN DATA :

Dilakukan secara manual oleh operator gardu induk.

PENGAWASAN DAN PENGATURAN SERTA PENGOLAHAN BERBASIS KOMPUTER

Dilakukan secara otomatis dengan bantuan komputer.

SUPERVISORY CONTROL AND DATA ACQUISITION ( SCADA )

Dilakukan secara otomatis dengan bantuan komputer dan terintegrasi dengan

pusat pengatur. Sehingga data-data operasional seperti Telemetering,

Telesignalling dan Remote Control di gardu induk dapat termonitor secara real

time pada pusat pengatur.

(43)

Gambar Sistem MINI MASTER UPT

SISTEM TELEMETERING ( TM )

PARAMETER YANG DIUKUR :

Tegangan, arus, daya aktif dan daya reaktif

TEKNOLOGI TELEMETERING :

Data untuk telemetering diperoleh dari CT/PT pengukuran, outputnya akan

digunakan sebagai input bagi transducer. Output transduser akan diterima oleh

komputer dan dengan media komunikasi PLC/FO, data telemetering ini akan

dikirimkan ke pusat pengatur.

PERANGKAT TM DI GARDU INDUK :

CT dan PT pengukuran, Transducer, Meter , Panel interface ( MDF ).

(44)

PERALATAN YANG DILENGKAPI RC :

Pemutus beban, pemisah dan pengubah tap transformator.

TEKNOLOGI RC :

Peralatan di switchgear yang dapat di remote dari pusat pengatur akan

terhubung ke relai-relai pada panel kontrol melalui panel interface. Dari panel

interface ini relay akan dihubungkan dengan sistem komputer, sehingga dapat

dilakukan remote control dari pusat pengatur.

PERANGKAT RC DI GARDU INDUK :

Peralatan yang motorized, relai dan relai bantu.

SISTEM TELESIGNALLING ( TS )

PERALATAN YANG DILENGKAPI TS :

Semua status dan indikasi yang terdapat di panel kontrol.

TEKNOLOGI TS :

Limit switch seluruh peralatan gardu induk akan terhubung ke peralatan

komputer mealui panel interface. Beberapa indikasi alarm dari panel kontrol juga

terhubung ke peralatan komputer di gardu induk melalui panel interface.

Sehingga melalui media komunikasi PLC dan FO semua indikasi telesignalling

akan terkirim ke pusat pengatur.

PERANGKAT TS DI GARDU INDUK :

Limit Switch, Relai dan relai bantu

REMOTE TERMINAL UNIT ( RTU )

(45)

Perangkat elektronik yang terpasang di gardu induk yang berfungsi

mengumpulkan status indikasi, pengukuran data operasi gardu induk dan remote

control dari pusat pengatur secara real-time.

PERANGKAT RTU :

Perangkat utama yang terdapat pada RTU yaitu :

Power Supply

CPU (Central Processing Unit)

Modul Memory

Modul Komunikasi

Modul I/O (Digital Input, Digital Output, Analog Input, Analog Output, Tap

Changer)

Modul Analog to Digital

TYPE RTU :

EPC3200(Cegelec-Alstom), S900 (Alstom), INDACTIC 233 (ABB), ScadaPack

(Controlmicrosystem), IDS850 (IDS BERCA) dan lain-lain

RTU YANG TERPASANG DI GARDU INDUK :

RTU yang terpasang pada gardu induk P3B Jawa – Bali yaitu :

P3B Jawa Bali : EPC3200 dan S900

Region Jakarta dan Banten

: EPC3200, S900 dan ScadaPack32

Region Jawa Barat

: EPC3200, S900 dan D20Haris

Region Jawa Tengah dan DIY

: Indactic 233

Region Jawa Timur dan Bali

: EPC3200

(46)

Gambar RTU Tipe S900

1.5 GANGGUAN TM DAN PERBAIKANNYA

Gangguan telemetering disebabkan oleh beberapa hal, yaitu :

a. Transducer rusak

b. Wiring input dan output transducer salah

c. Range measurement dan ouput transducer tidak sesuai dengan database

master.

d. Ratio CT/PT yang terpasang tidak sesuai dengan database master

e. Ada kerusakan modul I/O untuk analog input atau modul ADC

Gambar

Gambar 1. Komunikasi antar GI / KIT
Gambar 2. Sistem Power Line Carrier
Tabel 1. GITET yang menggunakan Teleproteksi FO
Gambar Sistem MINI MASTER  UPT
+4

Referensi

Dokumen terkait

Hasil penelitian ini serupa dengan pernyataan Detha et al., (2014), yang menyatakan bahwa kadar laktosa pada susu dapat menurun seiring meningkatnya umur ternak, sehingga

 Menampilkan peran serta dalam seni budaya dan keterampilan dalam tingkat lokal, regional, maupun global. Standar Kompetensi dan Kompetensi Dasar mata pelajaran Seni Budaya

Data mining dengan teknik klustering pada data mahasiswa baru pada PTS di lingkungan Kopertis Wilayah VI Jawa Tengah berdasarkan jumlah mahasiswa yang melakukan

Algoritma  yang  ditulis  dalam  suatu  pseudocode  dibedakan  dari  programnya  yang ditulis dalam suatu bahasa pemrograman akibat adanya perbedaan tujuan  dari 

Dari data yang telah diperoleh, hasil analisis data ini mendukung hipotesis yang diajukan, yaitu penerapan model pembelajaran kooperatif tipe Numbered Head Together dapat

alkohol.aranya!teteskan tiner atau alkohol pada sikat gigi dan p(b yang akan dibersihkan!lalu gosok dengan sikat sampai bersih dari kotoran.'engapa kotoran yang menempel p(b

Pada tahapan pelaksanaan ini akan menguraikan pendataan pegawai yang mendapatkan penghasilan, penilaian pihak-pihak yang berwenang dan pendistribusian tambahan

Angka Rasio NPM menunjukkan kemampuan bank dalam menghasilkan laba bersih sebelum pajak ( net income ) ditinjau dari sudut pendapatan operasinya sebesar 9,64%.