ESTIMASI PARAMETER DISTRIBUSI EXPONENTIATED
EKSPONENSIAL PADA DATA TERSENSOR TIPE II
SKRIPSI
AHMAD ZUDA KUMALA SANI
PROGAM STUDI S-1 MATEMATIKA
DEPARTEMEN MATEMATIKA
FAKULTAS SAINS DAN TEKNOLOGI
UNIVERSITAS AIRLANGGA
SURABAYA
ESTIMASI PARAMETER DISTRIBUSI EXPONENTIATED
EKSPONENSIAL PADA DATA TERSENSOR TIPE II
SKRIPSI
Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains Bidang Matematika di Fakultas Sains dan Teknologi
Universitas Airlangga
Oleh :
AHMAD ZUDA KUMALA SANI NIM. 080810246
Tanggal Lulus : 13 Juli 2012
Disetujui Oleh :
Pembimbing I
Toha Saifudin, S.Si, M.Si NIP. 197501061999031002
Pembimbing II
Drs. Eko Tjahjono, M.Si. NIP. 19600706 1986011001
LEMBAR PENGESAHAN SKRIPSI
Judul : ESTIMASI PARAMETER DISTRIBUSI
EXPONENTIATED EKSPONENSIAL PADA DATA
TERSENSOR TIPE II
Penyusun : AHMAD ZUDA KUMALA SANI
NIM : 080810246
Tanggal Ujian : 13 Juli 2012
Disetujui oleh :
Pembimbing I Pembimbing II
Toha Saifudin, S.Si, M.Si Drs. Eko Tjahjono, M.Si NIP. 197501061999031002 NIP. 196007061986011001
Mengetahui :
Ketua Program Studi S1-Matematika Departemen Matematika Fakultas Sains dan Teknologi
Universitas Airlangga
Dr. Miswanto, M. Si NIP : 196802041993031002
PEDOMAN PENGGUNAAN SKRIPSI
Skripsi ini tidak dipublikasikan, namun tersedia di perpustakaan dalam lingkungan Universitas Airlangga, diperkenankan untuk dipakai sebagai referensi kepustakaan, tetapi pengutipan harus seijin penyusun dan harus menyebutkan sumbernya sesuai kebiasaan ilmiah.
ii
KATA PENGANTAR
Syukur Alhamdulillah kehadirat Allah SWT yang telah melimpahkan rahmat-Nya, sehingga penyusun dapat menyelesaikan skripsi yang berjudul
Estimasi Parameter Distribusi Exponentiated Eksponensial Pada Data Tersensor Tipe II .
Dalam penyusunannya, penyusun memperoleh banyak bantuan dari berbagai pihak, karena itu penyusun mengucapkan terima kasih yang sebesar-besarnya kepada :
1. Kedua orang tua tercinta, M. Imam Sya’roni dan Ningsih, serta kakakku A. Z. Hakam S yang telah memberikan dukungan, kasih sayang, harapan dan kepercayaan yang begitu besar.
2. Toha Saifudin, S.Si, M.Si. dan Drs. Eko Tjahjono, M.Si selaku dosen pembimbing I dan II yang telah memberikan banyak arahan, masukan, perhatian, semangat, rasa sabar yang begitu besar dan pengetahuan yang tidak ternilai harganya.
3. Drs. H.Sediono, M.Si. dan Dr. Miswanto, M.Si. selaku dosen penguji I dan II yang telah banyak memberikan arahan dan masukan.
4. Ahmadin, S.Si, M.Si. selaku dosen wali selama menjadi mahasiswa Fakultas Sains dan Teknologi Universitas Airlangga yang telah banyak memberikan arahan dan saran demi kesuksesan menjadi mahasiswa Matematika.
5. Mas Edi, mas Udin, mas Aziz, mas Koni, Pak Budi yang telah membantu memperlancar keperluan di kampus.
6. Ardi Wahyu As’ari. yang telah banyak memberikan semangat dan motivasi. Terima kasih buat kesabaran, perhatian, ketulusan, dan kasih sayangnya. 7. Sahabatku Putu, Meta, Lina, Arifah, Varian, Mbah Uti, Vidong, Nasrul, Zaki,
Andika, Syafiq, Harun, Yani yang banyak memberikan support .
8. Teman-teman matematika 2008 atas kekompakan dan rasa kekeluargaan yang begitu hangat.
9. Serta pihak-pihak lain yang tidak dapat disebutkan satu persatu, terima kasih atas segala bantuan dalam penyelesaian skripsi ini.
Penyusun menyadari bahwa penulisan skripsi ini masih banyak kekurangan, untuk itu mohon kritik dan saran yang bersifat membangun demi kesempurnaan skripsi ini.
Akhir kata, penyusun berharap semoga skripsi ini bermanfaat bagi pembaca.
Surabaya, Juli 2012
iv
A Zuda Kumala Sani, 2012. Estimasi parameter Distribusi Exponentiated Eksponensial pada data
tersensor tipe II. Skripsi ini dibawah bimbingan Toha Saifudin,S.Si,M.Si dan Drs. Eko Tjahjono,
M.Si. Departeman Matematika.Fakultas Sains dan Teknologi, Unversitas Airlangga.
ABSTRAK
Dalam skripsi ini, akan dibahas tentang distribusi Exponentiated Eksponensial yaitu bentuk umum dari distribusi Eksponensial satu parameter dan akan diterapkan pada data tersensor tipe II yaitu salah satu dari metode penyensoran berdasarkan kegagalan.
Penulisan skripsi ini bertujuan untuk menentukan penduga yang lebih baik untuk parameter distribusi Exponentiated Eksponensial pada data tersensor tipe II. Proses estimasi ini menggunakan metode Maximum Likelihood dan Ordinary Least Square (OLS) untuk memperoleh penduga titiknya.
Distribusi Exponentiated Eksponensial pada data tersensor tipe II memiliki bentuk fungsi Distribusi sebagai berikut :
Dengan adalah parameter bentuk, adalah parameter skala dan merupakan data tersensor tipe II yaitu data sampai r kegagalan. Estimasi parameter distribusi
Exponentiated Eksponensial pada data tersensor tipe II dengan metode Maximum Likelihood dan OLS tidak dapat diselesaikan secara analitis karena penduga yang
didapatkan masih dalam bentuk implisit. Sehingga diperlukan suatu metode numerik untuk menyelesaikannya, salah satunya yang digunakan dalam skripsi ini yaitu metode Newton-Raphson.
Penentuan penduga yang lebih baik dalam data ini menggunakan kriteria MSE dengan nilai yang paling kecil. Setelah dilakukan percobaan pada 16 data bangkitan dan pada data pasien Leukimia diperoleh bahwa metode Ordinary Least Square (OLS) yang lebih baik. Pada data bangkitan, nilai rata-rata MSE untuk metode Ordinary Least Square (OLS) = 0.003513 dan nilai rata-rata MSE untuk metode Maximum Likelihood = .041272. Prosentase urutan nilai MSE terkecil untuk metode Ordinary Least Square (OLS) sebesar 87,5 % sedangkan untuk metode Maximum Likelihood sebesar 12,5 %. Kemudian pada data pasien Leukimia didapatkan nilai MSE untuk metode Ordinary
Least Square (OLS) = 0.09842778 dan nilai MSE untuk metode Maximum Likelihood =
0.3210319.
Kata kunci : Distribusi Exponentiated Eksponensial, data uji hidup tersensor tipe II, metode Ordinary Least square, Metode Maximum Likelihood, Metode Newton-Raphson, Mean Square Error (MSE).
A Zuda Kumala Sani, 2012. Parameter Estimation Exponentiated Exponential Distribution on
Censored Data Type II.. This final project was supervised by Toha Saifudiin, S, Si, M. Si and Drs.
Eko Tjahjono, M.Si., Department of Mathematics, Faculty of Science and Technology, University of Airlangga, Surabaya.
ABSTRACT
In this undergraduate theses, we discuss about Exponentiated Exponential distribution which is the general form of an exponential distribution with one parameter and we will apply to censored data type II which is one of the censoring methods based on the failure.
The writing undergraduate theses purposes to determine the better estimation method for parameter of exponentiated exponential distribution on censored data type II. The estimation process uses Maximum Likelihood method and Ordinary Least Square (OLS) to obtain the point estimator.
Exponentiated exponential distribution on censored data type II has the form of distribution function is given:
where is the shape parameter, λ is the scale parameter, and t is data censored type II with r failures data. Parameter estimation of exponentiated exponential distribution on censored data type II with MLE and OLS cannot be solve analytically because the estimator is still implicit form. Therefore we need a numeric method to solve and this final project uses Newton-Raphson method to find numeric solution.
To determine is better estimation methods on data uses MSE criteria with the smallest value. After doing test with16 generate data and leukemia patient, we can know that method Ordinary Least Square (OLS) is better. On generate data, the average value of ordinary least square (OLS) =0.003153 and the average value of maximum likelihood estimator (MLE) = 0.041272. Percentage of MSE rank values for the method of Ordinary Least Square (OLS) was 87.5% while for the MLE method by 12.5%. Then on leukemia patient data the value MSE of ordinary least square (OLS) =0.09842778 and the value of maximum likelihood estimator (MLE) = 0.3210319.
Keyword: Exponetiated exponential distribution, lifetime data for censored type II, Ordinary Least Square (OLS), Maximum Likelihood Estimator (MLE), Newton-Raphson, Mean square error
vi DAFTAR ISI Halaman KATA PENGANTAR ... ii ABSTRAK ... iv ABSTRACT ... v DAFTAR ISI ... vi
DAFTAR TABEL ... viii
DAFTAR LAMPIRAN ... ix BAB I PENDAHULUAN ... 1 1.1 Latar Belakang ... 1 1.2 Rumusan Masalah ... 3 1.3 Tujuan ... 4 1.4 Manfaat ... 4 1.5 Batasan Masalah... 4
BAB II TINJAUAN PUSTAKA ... 6
2.1 Distribusi Exponentiated Eksponensial... 6
2.2 Estimasi Titik ... 6
2.3 Metode Maximum Likelihood ... 7
2.4 Metode Ordinary Least Square ... 7
2.5 Analisis Data Uji Hidup ... 8
2.6 Fungsi Survival ... 8
2.7 Tipe Penyensoran ... 9
2.8 Mean Square Error ... 10
2.9 Metode Newton Raphson ... 12
2.10 Uji Goodness of Fit Kolmogorov – Smirnov ... 13
2.11 Estimasi Kaplan-Meier... 14
2.12 Keluarga Eksponensial dari Probability Density Function ... 15
2.13 S-Plus 2000 ... 16
BAB III METODE PENULISAN ... 18
BAB IV HASIL DAN PEMBAHASAN ... 22
4.1 PDF (Probability Density Function) dan CDF (Cumulative Density Function) Distribusi Exponentiated Eksponensial... 22
4.2 Estimasi Parameter Distribusi Exponentiated Eksponensial pada data tersensor tipe II dengan metode Maximum
Likelihood ... 24
4.3 Estimasi Parameter Distribusi Exponentiated Eksponensial pada Data Tersensor Tipe II dengan Ordinary Least Square (OLS) ... 29
4.4 Membangkitkan Data Distribusi Exponentiated Eksponensial ... 32
4.5 Menentukan nilai awal Penduga Distribusi Exponentiated Eksponensial ... 33
4.6 Algoritma Progam ... 33
4.6.1 Algoritma untuk membangkitkan r data dari n data berdistribusi Exponentiated Eksponensial ... 33
4.6.2 Algoritma untuk menentukan penduga dengan metode Maximum Likelihood ... 34
4.6.3 Algoritma untuk menentukan penduga dengan metode Ordinary Least Square ... 35
4.6.4 Algoritma untuk menentukan nilai Mean Square Error (MSE) ... 36
4.6.5 Algoritma untuk uji Goodness of fit Kolmogorov Smirnov ... 37
4.6.6 Implementasi Algoritma ke Progam Komputer ... 38
4.7 Penerapan pada Data Tahan Hidup Tersensor Tipe II ... 39
4.7.1 Penerapan pada Data Simulasi ... 39
4.7.2 Penerapan pada Data Pasien Leukimia ... 44
BAB V PENUTUP ... 48
5.1 Kesimpulan ... 48
5.2 Saran ... 50
DAFTAR PUSTAKA ... 51 LAMPIRAN
viii
DAFTAR TABEL
Nomor Judul Halaman
4.1 Nilai parameter nilai penduga parameter ( , ) dan nilai
Mean Square Error dengan metode Maximum Likelihood dan
Ordinary Least Square (OLS) 42
4.2 Perbandingan nilai Mean Square Error 43
4.3 Data pasien Leukimia yang masih bertahan 44
4.4 Hasil penduga dan nilai MSE pada data pasien leukemia dengan metode Maximum Likelihood dan Ordinary Least
Square (OLS) 45
DAFTAR LAMPIRAN
Judul Lampiran
Lampiran 1
1. Progam 1 Progam untuk membangkitkan data ke-r dari n data berdistribusi Exponentiated Eksponensial
2. Progam 2 Progam untuk mendapatkan nilai penduga distribusi
Exponentiated Eksponensial pada data tersensor tipe II dengan
metode Maximum Likelihood
a. Progam 2.1 Progam matriks turunan pertama distribusi Exponentiated Eksponensial pada data tersensor tipe II dengan metode
Maximum Likelihood
b. Progam 2.2 Progam matriks jacobian distribusi Exponentiated Eksponensial pada data tersensor tipe II dengan metode
Maximum Likelihood
3. Progam 3 Progam untuk mendapatkan nilai penduga distribusi
Exponentiated Eksponensial pada data tersensor tipe II dengan
metode OLS
c. Progam 3.1 Progam matriks turunan pertama distribusi Exponentiated Eksponensial pada data tersensor tipe II dengan metode
OLS
x
Eksponensial pada data tersensor tipe II dengan metode OLS
4. Progam 4 Progam utama untuk menentukan nilai Mean Square Error dari metode Maximum Likelihood dan metode OLS
5. Progam 5 Progam utama untuk menentukan nilai Mean Square Error dari metode Maximum Likelihood dan metode OLS pada data pasien
Leukimia
Lampiran 2
BAB 1 PENDAHULUAN
1.1 Latar Belakang
Perkembangan ilmu pengetahuan yang disertai dengan meningkatnya kebutuhan hidup manusia , kemajuan teknologi yang berkembang pesat dan persaingan ditingkat global yang semakin meningkat, sehingga itu semua menuntut industri-industri dalam negeri harus memiliki keunggulan komparatif. Diantara keunggulan-keunggulan tersebut adalah kualitas dan keandalan suatu produk hasil sebuah produksi. Untuk menilai tingkat kualitas dari produknya, maka diperlukan suatu penelitian. Untuk menguji serta mengetahui kualitas dan keandalan suatu produk hasil industri, maka diperlukan analisis tentang data uji hidup.
Analisis data uji hidup merupakan analisis statistik yang menyelidiki tentang waktu tahan hidup suatu individu atau benda pada keadaan operasional tertentu, yang telah banyak dikembangkan menjadi topik yang sangat penting bagi para ilmuwan dalam banyak bidang. Diantaranya dalam bidang teknik, kedokteran dan bahkan dalam bidang psikologi.
Pada pengujian data uji hidup, jika semua unit eksperimen diobservasi sampai semuanya mati maka akan diperoleh sampel lengkap. Keuntungan menggunakan metode seperti ini adalah dapat dihasilkan observasi terurut dari semua komponen yang diuji. Akan tetapi metode ini juga mempunyai kerugian yaitu memerlukan waktu yang lama dan biaya yang besar. Maka dari itu untuk
menghemat waktu dan biaya dilakukan metode penyensoran, yaitu jika hanya sebagian unit eksperimen diamati, sehingga diperoleh sampel tersensor (Lawless,
1982).
Salah satu tipe sampel penyensoran adalah tipe sampel tersensor tipe II. Suatu sampel dikatakan tersensor tipe II jika penelitian dihentikan setelah kegagalan ke-r telah diperoleh. Misalkan adalah observasi terurut dari n sampel dengan pdf ƒ dan fungsi survival S dan waktu sensor L . Penelitian dikatakan telah selesai jika kegagalan ke-r telah tercapai .Adapun pdf bersama
dari adalah
g
dengan distribusi yang digunakan adalah Distribusi Exponentiated Eksponensial. Distribusi Exponentiated Eksponensial ini pertama kali dikenalkan oleh
Gupta dan Kundu (1999) Sebuah Variabel acak dikatakan mempunyai
Distribusi Exponentiated eksponensial jika probabilitas density function (pdf) : (2.1) dan
Cumulative Distribution Function (CDF) :
(2.2) , > 0 dan > 0
Dengan : parameter bentuk : parameter skala
Kelebihan dari Distribusi ini menurut Gupta dan Kundu (1999) adalah memiliki fungsi yang fleksibel yaitu dapat menganalisis sampel yang berbentuk
distribusi eksponensial satu parameter, distribusi weibull 2 parameter, dan fungsi hazradnya memiliki bentuk yang tidak konstan sehingga tidak sama dengan distribusi eksponensial 1 parameter yang berbentuk konstan menyebabkan fungsi hazradnya logis. Dalam penerapannya pada data riil menggunakan data waktu tahan hidup pasien Leukimia dan pada data simulasi.
Untuk memperoleh kesimpulan dari suatu penelitian, diperlukan inferensi secara statistik. Inferensi statistik merupakan suatu metode yang digunakan dalam penarikan kesimpulan terhadap suatu parameter populasi. Penentuan inferensi statistik secara garis besar meliputi estimasi parameter dan pengujian hipotesis parameter. Salah satu penduga yang digunakan untuk melakukan inferensi parameter populasi adalah Metode Maximum Likelihood dan metode Ordinary
Least Square (OLS) yang kemudian dibandingkan hasilnya berdasarkan indikator Mean Square Error (MSE) . Penduga yang memiliki MSE paling kecil atau
minimum merupakan penduga yang lebih baik karena MSE nilainya tidak mungkin sama dengan nol sebab secara teoritis nilai kumulatif parametrik dan nilai kumulatif empiris tidak mungkin sama.
1.2 Rumusan Masalah
1. Bagaimana bentuk penduga parameter-parameter Distribusi
Exponentiated Eksponensial pada data tersensor tipe II dengan Metode
Maximum Likelihood dan Metode Ordinary Least Square (OLS) ?
2. Bagaimana membandingkan kedua penduga pada data tersensor tipe II secara simulasi dengan menggunakan kriteria MSE?
3. Bagaimana menerapkan kedua penduga pada data tersensor tipe II pada data pasien Leukimia?
1.3 Tujuan
1. Mendapatkan bentuk penduga parameter-parameter Distribusi
Exponentiated Exponensial pada data tersensor tipe II dengan
menggunakan Metode Maximum Likelihood dan Metode Ordinary Least
Square
2. Membandingkan kedua penduga pada data tersensor tipe II secara simulasi dengan menggunakan kriteria MSE.
3. Menerapakan hasil kedua penduga pada data tersensor tipe II pada data pasien Leukimia
1.4 Manfaat
1. Mengetahui estimasi parameter Distribusi Exponentiated Eksponensial pada data Tersensor Tipe II
2. Mengetahui penduga yang lebih baik bagi Parameter distribusi
Exponentiated Eksponensial pada data tersensor Tipe II
1. 5 Batasan Masalah
1. Penduga parameter Distribusi Exponentiated Eksponensial pada data tersensor tipe II yang digunakan adalah metode Maximum Likelihood dan
2. Data yang diterapkan dalam penelitian ini adalah data tahan hidup tersensor tipe II yang berasal dari distribusi Exponentiated Eksponensial. 3. Estimasi yang di bahas hanya sampai estimasi titik.
6
BAB II
TINJAUAN PUSTAKA
2.1 Distribusi Exponentiated Eksponensial
Variabel acak dikatakan mempunyai Distribusi Exponentiated Eksponensial jika Probabilitas Density Function (PDF) :
(2.1)
dan
Cumulative Distribution Function (CDF) :
(2.2) dengan : parameter bentuk yaitu jenis khusus dari parameter numerik yang
menunjukkan bentuk dari kurva.
: parameter skala yaitu jenis khusus dari parameter numerik yang menunjukkan besarnya distribusi data.
(Gupta dan Kundu, 1999)
2.2 Estimasi Titik
Jika terdapat nilai dari beberapa statistik yang mewakili atau mengestimasi parameter yang tidak diketahui, maka setiap statistik
disebut estimator titik .
2.3 Metode Maximum Likelihood
Misal merupakan sampel acak dari suatu distribusi dengan
Probabilitas Density Function (PDF) , untuk . Probabilitas Density
Function (PDF) bersama antara adalah
Jika Probabilitas Density Function (PDF) bersama tersebut dinyatakan sebagai fungsi terhadap maka dinamakan fungsi
Likelihood yang dinotasikan L atau ditulis :
dengan (2.3)
( Hogg and Craig, 1995b )
Jika statistik memaksimumkan fungsi likelihood
, maka statistik dinamakan
Maximum Likelihood Estimator (MLE) dari .
(Hogg dan Craig, 1995)
2.4 Metode Ordinary Least Square
Misalkan adalah sampel acak berukuran n dari fungsi distribusi F(.) dan mewakili sampel terurut, Cumulative Distribution
Function (CDF) parametrik dari distribusi F(.) adalah F( ). dan Cumulative
Distribution Function (CDF) empirisnya adalah *( ). Dengan *( ) adalah
. Kita ketahui bahwa antara Cumulative Distribution Function (CDF) parametrik dan Cumulative Distribution Function (CDF) empirisnya pasti ada perbedaan yang di notasikan sebagai error jadi *( ).
Prinsip dari metode Ordinary Least Square adalah untuk meminimumkan jumlah kuadrat error-nya. Jadi, Menurut Gupta Dan Kundu (2000) penduga Ordinary
Least Square didapatkan dengan cara meminimalkan
(2.4)
2.5 Analisis Data Uji Hidup
Analisis statistik yang sering disebut analisis data uji hidup merupakan penyelidikan tentang waktu tahan hidup suatu benda atau individu pada keadaan operasional tertentu.
(Lawless,1982)
2.6 Fungsi Survival
Fungsi survival didefinisikan sebagai probabilitas bahwa suatu individu atau benda akan bertahan sampai waktu tertentu dan dirumuskan sebagai berikut:
(2.5) (Lawless,1982)
2.7 Tipe Penyensoran
Untuk mendapatkan data uji hidup biasanya dilakukan suatu eksperimen. Pada suatu eksperimen terdapat beberapa metode yang dapat dilakukan sehingga macam data yang dihasilkan juga berbeda dari satu metode ke metode yang lainnya. perbedaan analisis data uji hidup dari bidang statistik lainnya adalah penyensoran.
Menurut (Lawless, 1982) Ada tiga macam metode yang sering digunakan dalam eksperimen uji hidup, yaitu :
1. Sampel Lengkap
Pada uji sampel lengkap, eksperimen akan dihentikan jika semua benda atau individu yang diuji telah mati atau gagal. Langkah seperti ini mempunyai keuntungan yaitu dihasikannya observasi terurut dari semua benda atau individu yang diuji
2. Sampel Tersensor Tipe 1
Dalam sampel tersensor tipe 1, percobaan uji hidup akan dihentikan jika telah tercapai waktu tertentu (waktu penyensoran). Misalkan adalah sampel acak dari distribusi uji hidup dengan fungsi kepadatan peluang , fungsi survival dan waktu sensor untuk semua adalah dengan i = 1,2,…,n
Suatu komponen dikatakan terobservasi jika dan observasi
dilakukan hanya pada . Sehingga variabel yang
1 , jika =
0 , jika
adalah indikator apakah tersensor atau tidak. Jika maka terobservasi dan jika maka tersensor.
3. Sampel Tersensor Tipe 2
Pada uji ini, suatu sampel dikatakan tersensor tipe II apabila penelitian dihentikan setelah kegagalan ke-r telah diperoleh. Misalkan
adalah observasi terurut dari n sampel sampai dengan pdf ƒ dan fungsi
survival S dan waktu Penelitian dikatakan telah selesai jka
kegagalan ke telah tercapai . Adapun pdf bersama dari adalah
g (2.6)
sedangkan fungsi likelihoodnya
(2.7)
2.8 Mean Square Error Definisi 2.2
Dalam statistik, kesalahan kuadrat rata-rata (MSE) dari penduga adalah satu dari banyak cara untuk mengukur perbedaan antara nilai-nilai dari penduga dan nilai sebenarnya dari jumlah yang diperkirakan. MSE merupakan dua momen dari error yaitu menggabungkan varians penduganya dan penduga biasnya. Untuk penduga yang tak bias, MSE adalah varian. Seperti halnya varian, MSE
memiliki satuan ukuran yang sama dengan jumlah kuadrat yang di estimasi. Semakain kecil nilai MSE nya maka semakin bagus nilai penduga yang diperoleh karena mendekati nilai yang diobservasi dan juga sebaliknya.
MSE dari penduga dari estimasi parameter didefinisikan
MSE merupakan jumlah dari varian dari parameter dan kuadrat dari penduga biasnya
Jika penduganya unbiased atau bias maka MSE dapat didefinisikan sebagai varian sehingga
(Graybill,et.al,1963)
Jika merupakan penduga dari fungsi distribusi kumulatif , maka menurut Al Fawzan (2000) rumus Mean Square Error dapat dinyatakan sebagai berikut :
(2.8) dengan merupakan fungsi distribusi kumulatif empiris.
Apabila parameter populasi diketahui, maka merupakan fungsi distribusi kumulatif parametrik .
2.9 Metode Newton-Raphson
Misalkan dan
adalah tiga persamaan dengan yang tidak diketahui. Langkah-langkah dalam metode Newton-Raphson, sebagai berikut :
1. Asumsikan diketahui sebagai solusi awal atau solusi perkiraan dari sistem tiga persamaan nonlinier dengan tiga variabel yang tidak diketahui :
2. Menentukan jacobian tiga persamaan tersebut 3. Dengan ekspansi Taylor, diperoleh :
Jacobian J( ) = -g( )
= -
Kemudian mencari nilai :
g( ) dengan
4. Misal perkiraan diketahui, dimana Untuk , dilakukan iterasi dimulai dengan dan k bertambah satu tiap satu kali untuk barisan iterasi sehingga dengan
Sebagai perkiraan yang lebih baik dari perkiraan sebelumnya.
5. Menghentikan proses iterasi ketika diperoleh max , dimana dan error adalah bilangan positif yang sangat kecil.
(Lawless, 1982)
2.10 Uji Goodness of fit Kolmogorov –Smirnov
Uji Goodness of fit Kolmogorov –Smirnov adalah sebuah metode untuk uji kesesuaian distribusi sebuah sampel random yang belum diketahui distribusinya. Misalkan adalah sampel acak berukuran n yang diambil dari populasi yang tidak diketahui distribusinya
1. Hipotesis
misalkan merupakan fungsi distribusi yang dibutuhkan untuk semua t dari sampai untuk salah satu nilai
2. Statistik Test
Misalkan adalah fungsi distribusi empiris berdasarkan sampel acak . diberikan test statistik merupakan nilai terbesar
(dinotasikan “sup” atau supremum) jarak antara dan atau dapat ditulis
(2.9) Dengan T sama dengan supremum, untuk semua dan nilai mutlak untuk
setiap yang berbeda
Setelah ditemukan nilai statistik test T maka langkah selanjutnya dibandingkan dengan Tabel Kolmogorov-Smirnov dengan tingkat
signifikan 1- . Apabila nilai statistik test T < tabel Kolmogorov-Smirnov maka terima dan sebaliknya.
(W.J Conover, 1980)
2.11 Estimasi Kaplan-Meier
Cara yang digunakan untuk menggambarkan survival dari sampel acak yaitu menggambarkan grafik fungsi survival atau fungsi distribusi empiris dengan cara estimasi Kaplan-Meier. Selain itu juga memberikan estimasi distribusi secara nonparametrik.
Diberikan yang menyatakan sampel random tersensor,
dengan merupakan data terobservasi dan merupakan data tersensor.
Misalkan terdapat dengan waktu yang berbeda , yang
menyatakan banyaknya data yang terobesvasi. Kemungkian terjadinya satu atau
menyatakan banyaknya event terobservasi pada saat . Estimasi dari dapat didefinisikan sebagai berikut :
(2.10) dengan merupakan banyaknya individu yang beresiko pada saat
dengan kata lain banyaknya individu yang belum mengalami kejadian atau
event dan tidak tersensor sebelum pada saat .
(Lawless, 1982)
2.12 Keluarga Eksponensial dari Probabilitas Density Function
Suatu Keluarga besar dari p.d.f yang bergantung pada parameter yang bernilai real adalah bentuknya sebagai berikut :
(2.11)
Dengan dan , merupakan himpunan positif dari
yang independen dari .
Untuk kasus kontinu. Jika i.i.d dengan p.d.f seperti diatas maka p.d.f bersama dari t adalah sebagai berikut :
2.13 S-PLUS 2000
Dalam (Everitt, 1994) disebutkan bahwa S-Plus adalah suatu paket progam yang memungkinkan membuat progam sendiri walaupun di dalamnya sudah tersedia banyak progam internal yang siap di gunakan . Kelebihan dari progam ini adalah baik progam internal maupun progam yang pernah dibuat digunakan sebagai subprogram dari progam yang akan dibuat.
Beberapa perintah internal yang digunakan dalam S-Plus a. function
Function(…) digunakan untuk menunjukkan fungsi yang akan digunakan dalam progam.
Bentuknya adalah :function (…) b. length
Length(…) digunakan untuk menunjukkan banyaknya data. Bentuknya ada lah :length (….)
c. for(I in 1: n)
Untuk melakukan pengulangan sebanyak n kali Bentuknya adalah : for(i in 1:n)
d. sort
Untuk mengurutkan data dari terkecil sampai ke terbesar Bentuknya adalah : sort (…)
e. matrix(a,b,c)
Untuk membentuk sebuah matrik yang anggotanya a dengan jumlah baris sebanyak b dan jumlah kolom sebanyak c.
Bentuknya adalah : matrix (….,…,…) f. rep (a,b)
Untuk membentuk sebuah vektor yang anggotanya a sebanyak b. Bentuknya adalah : rep(…,…)
g. abs
Untuk membuat harga mutlak dari suatu bilangan Bentuknya adalah : abs (….)
h. sum
Untuk menjumlahkan semua bilangan anggota dari suatu vektor. Bentuknya adalah : sum (…)
i. ginverse
18
BAB III
METODE PENELITIAN
Langkah-langkah penyelesaian yang sesuai dengan tujuan penelitian adalah sebagai berikut :
1. Menentukan bentuk penduga Distribsi Exponentiated Eksponensial pada data tersensor tipe II
A. Menentukan estimasi parameter Distribusi Exponentiated Eksponensial pada data tersensor tipe II menggunakan metode Maximum Likelihood dengan langkah-langkah sebagai berikut :
a. Mengambil sampel acak dari distribusi uji hidup
Exponentiated Eksponensial.
b. Menentukan (n-r) sample tersensor tipe II yang posisinya sebagai berikut
c. Menentukan fungsi Likelihood dari distribusi Exponentiated Eksponensial pada data tersensor tipe II
Dengan
e. Mendiferensialkan hasil log- likelihood tersebut terhadap parameter-parameter distribusi Exponentiated Eksponensial pada data tersensor tipe II
f. Hasil dari diferensial tersebut disamadengankan nol sebagai syarat perlu untuk memaksimalkan fungsi likelihood.
g. Jika pada langkah f penduga yang didapatkan masih dalam bentuk fungsi implisit maka ditentukan nilai estimasi dari fungsi tersebut melalui metode Newton-Raphson.
B. Menentukan estimasi parameter Distribusi Exponentiated Eksponensial pada data tersensor tipe II menggunakan metode Ordinary Least Square dengan langkah-langkah sebagai berikut :
a. Mengambil sampel acak , dari distribusi uji hidup
Exponentiated Eksponensial.
b. Menentukan (n-r) sample tersensor tipe II yang posisinya sebagai berikut
c. Menentukan fungsi distribusi kumulatif distribusi Exponentiated Eksponensial
d. Meminimalkan fungsi dengan cara
Mendiferensialkan fungsi tersebut terhadap parameter-parameter distribusi Exponentiated Eksponensial ( ) kemudian disama dengankan nol
e. Melakukan pendekatan numerik jika pada langkah d diperoleh bentuk fungsi yang berbentuk implisit
2. Membandingkan kedua penduga melalui indikator Mean Square Error dengan langkah-langkah sebagai berikut :
a. Membangkitkan sampel data tersensor tipe II berdistribusi
Exponentiated Eksponensial dengan tertentu.
b. Mengestimasi parameter distribusi Exponentiated Eksponensial pada data tersensor tipe II dengan metode Maximum Likelihood dan metode
Ordinary Least Square
c. Menghitung Mean Square Error dari metode Maximum Likelihood dan metode Ordinary Least Square dengan rumus
MSE
Dengan merupakan fungsi distribusi kumulatif empiris d. Mengulang langkah a sampai c sebanyak 16 kali percobaan
e. Menentukan prosentase menempati nilai MSE terkecil untuk metode
Maximum Likelihood dan metode Ordinary Least Square dari
percobaan
f. Menentukan penduga yang lebih baik dengan melihat nilai rata-rata MSE yang terkecil dari kedua metode dan melihat prosentase minimal menempati nilai MSE paling kecil
3. Menyusun algoritma berdasarkan langkah-langkah yang telah dibuat 4. Membuat progam komputer berdasarkan algoritma tersebut dengan
5. Menerapkan hasil estimasi pada data pasien Leukimia a. Memasukkan data tahan hidup pasien Leukimia b. Mengurutkan data tahan hidup pasien Leukimia
c. Mengestimasi parameter distribusi Exponentiated Eksponensial pada data tersensor tipe II dengan metode Maximum Likelihood dan metode
Ordinary Least Square
d. Menghitung Mean Square Error dari metode Maximum Likelihood dan metode Ordinary Least Square dengan rumus
MSE
Dengan merupakan fungsi distribusi kumulatif empiris e. Menguji kesesuaian data dengan uji Kolmogorov Smirnov
f. Menentukan penduga yang lebih baik dengan melihat nilai MSE yang terkecil
22
BAB IV
HASIL DAN PEMBAHASAN
Dalam bab ini akan dibahas tentang estimasi titik distribusi Exponentiated Eksponensial pada data tersensor tipe II dengan menggunakan metode Maximum
Likelihood dan Ordinary Least Square (OLS).
4.1. PDF (Probability Density Function) dan CDF (Cumulative Density
Function) Distribusi Exponentiated Eksponensial
Pada bagian ini akan dibuktikan bahwa:
untuk
merupakan PDF (Probability Density Function) dari distribusi Exponentiated Eksponensial.
Bukti :
=
Terbukti
Kemudian akan dicari CDF (Cumulative Density Function) dari distribusi
Exponentiated Eksponensial sebagai berikut:
(4.1) Berdasarkan persamaan (4.1), maka fungsi survival dari t adalah :
(4.2) Selanjutnya akan dibuktikan apakah distribusi Exponentiated Eksponensial merupakan keluarga Eksponensial. Misalkan T merupakan variabel acak berdistribusi Exponentiated Eksponensial dengan Probability Density Function didefinisikan pada persamaan (2.1) akan dibuktikan apakah distribusi
Exponentiated Eksponensial merupakan keluarga Eksponensial yaitu memenuhi
persamaan (2.11), pembuktiannya seperti dibawah ini:
(4.3) Karena persamaan (4.3) tidak dapat dinyatakan sebagai persamaan (2.11) maka dapat disimpulkan bahwa distribusi Exponentiated Eksponensial bukan keluarga eksponensial.
4.2. Estimasi Parameter Distribusi Exponentiated Eksponensial pada data tersensor tipe II dengan metode Maximum Likelihood
Langkah-langkah estimasi parameter pada sub-bab (2.3). Jika PDF (Probability Density Function) distribusi Exponentiated Eksponensial didefinisikan pada persamaan (2.1), maka fungsi Likelihood pada data tersensor tipe II berdasarkan persamaan (2.7) adalah sebagai berikut :
Sehingga dari fungsi Likelihood diatas dapat di tulis sebagai berikut :
Kemudian fungsi Likelihood tersebut di ln-kan, sehingga didapatkan : ln
(4.4) Selanjutnya dengan mendiferensialkan fungsi ln-Likelihood terhadap kemudian hasil disamadengankan nol sebagai syarat perlu untuk memaksimumkan fungsi Likelihood, sehingga di dapatkan hasil sebagai berikut : Diferensial dari persamaan (4.4) terhadap dan selanjutnya disamadengankan nol diperoleh :
Diferensial dari persamaan (4.4) terhadap dan selanjutnya disamadengankan nol diperoleh :
Karena persamaaan (4.5) dan (4.6) merupakan persamaan implisit maka diselesaikan dengan suatu metode numerik. Dalam pembahasan skripsi ini akan digunakan salah satu dari metode numerik yaitu metode Newton Raphson .
Berikut merupakan langkah-langkah metode Newton-Raphson yang telah dijelaskan pada sub-bab (2.9) :
Langkah I :
Menentukan nilai awal penduga yang dapat ditulis dengan .
Langkah II :
Menentukan fungsi dalam bentuk matriks, dengan
, yaitu dengan adalah fungsi dari (4.5) , adalah fungsi dari (4.6).
Langkah III :
Langkah IV :
Mencari nilai koreksi ( ), yaitu
Dengan adalah invers dari
Langkah V :
Menentukan atau
Dimana merupakan nilai penduga yang akan dicari. Langkah VI :
Melakukan pengulangan dari langkah II sampai V hingga max
dengan dengan error = 0.5. Kemudian diperoleh nilai penduga parameter
4.3. Estimasi Parameter Distribusi Exponentiated Eksponensial pada Data Tersensor Tipe II dengan Ordinary Least Square (OLS).
Langkah-langkah estimasi parameter pada sub-bab ini menggunakan
Ordinary Least Square (OLS) berdasarkan sub-bab (2.4), yaitu dengan
meminimalkan persamaan (2.4). Misal
Kemudian mendiferensialkan persamaan (E) terhadap dan hasilnya disamadengankan nol, sehingga didapatkan :
Karena persamaan (4.7) dan (4.8 ) berbentuk fungsi implisit, sehingga diperlukan suatu metode numerik untuk dapat menyelesaikannya. Dalam pembahasan skripsi ini digunakan salah satu metode numerik yaitu metode Newton-Raphson.
Berikut ini merupakan langkah-langkah metode Newton-Raphson yang telah dijelaskan pada sub-bab (2.9):
Langkah I :
Menentukan nilai awal penduga-penduga yang dapat ditulis dengan .
Langkah II :
Menentukan fungsi dalam bentuk matriks, dengan
yaitu dengan adalah fungsi dari (4.7),
adalah fungsi dari (4.8). Langkah III :
dengan :
Langkah IV :
Dengan adalah invers dari Langkah V :
Menentukan atau
dengan merupakan nilai penduga yang akan dicari. Langkah VI :
Melakukan pengulangan dari langkah II sampai V hingga max dengan dengan error = 0.5. Kemudian diperoleh nilai penduga parameter
4.4. Membangkitkan Data Distribusi Exponentiated Eksponensial
Dengan memisalkan , berdasarkan persamaan (2.2) diperoleh: U=
Kemudian kedua ruas dipangkatkan 1/ , sehingga diperoleh
Akan sama artinya dengan :
Kedua ruas di-ln-kan, sehingga
(4.9) Dengan adalah parameter distribusi Exponentiated Eksponensial . Untuk dapat membangkitkan data berdistribusi Exponentiated Eksponensial yang harus dilakukan adalah membangkitkan U berdistribusi Uniform (0,1), maka selanjutnya dengan persamaan (4.9) akan diperoleh berdistribusi Exponentiated Eksponensial.
4.5. Menentukan nilai awal Penduga Distribusi Exponentiated Eksponensial
Dalam mengestimasi parameter terdapat hal penting yang sangat mempengaruhi nilai penduga parameter, yaitu penentuan nilai penduga awal dari parameter . Jika nilai awal tersebut ditentukan secara tepat, maka nilai penduga parameter yang dihasilkan akan konvergen, demikian juga sebaliknya maka akan divergen.
Pada pembahasan kali ini, penentuan nilai awal dilakukan dengan cara mengambil nilai parameter untuk membangkitkan data.
4.6. Algoritma Progam
Algoritma ini dibuat berdasarkan teori-teori yang telah dibahas pada sub-bab sebelumnya. Pada pembahasan skripsi ini akan dibuat algoritma-algoritma sebagai berikut :
4.6.1. Algoritma untuk membangkitkan r data dari n data berdistribusi
Exponentiated Eksponensial
2. Membangkitkan U 3. Menghitung
4.6.2. Algoritma untuk menentukan penduga dengan metode Maximum
Likelihood
Jika pada estimasi parameter distribusi Exponentiated Eksponensial pada data tersensor tipe II dengan metode Maximum Likelihood yang didapatkan masih dalam bentuk fungsi implisit, maka nilai estimasinya ditentukan dengan prosedur Newton-Raphson. Langkahnya sebagai berikut :
1. Memasukkan data
2. Menentukan nilai awal penduga-penduga yang dapat ditulis
dengan .
3. Menentukan fungsi dalam bentuk matriks, dengan
, yaitu dengan adalah fungsi dari
(4.5) , adalah fungsi dari (4.6).
4. Menentukan matriks jacobian dari fungsi (4.5), (4.6) yaitu :
Dengan adalah invers dari
6. Menentukan atau
Dimana merupakan nilai penduga yang akan dicari.
7. Melakukan pengulangan dari langkah II sampai V hingga max
dengan dengan error = 0.5 Kemudian
diperoleh nilai penduga parameter
4.6.3. Algoritma untuk menentukan penduga dengan metode Ordinary
Least Square
Jika pada estimasi parameter distribusi Exponentiated Eksponensial pada data tersensor tipe II dengan metode Ordinary Least Square yang didapatkan masih dalam bentuk fungsi implisit maka nilai estimasinya ditentukan dengan prosedur Newton-Raphson. Langkahnya sebagai berikut :
1. Memasukkan data 2. Mengurutkan data
3. Menentukan nilai awal penduga-penduga yang dapat ditulis dengan .
yaitu dengan adalah fungsi dari (4.7), adalah fungsi dari (4.8).
5. Menentukan matriks jacobian dari fungsi (4.7), (4.8) yaitu :
6. Mencari nilai koreksi ( ), yaitu
Dengan adalah invers dari
7. Menentukan atau
Dimana merupakan nilai penduga yang akan dicari.
8. Melakukan pengulangan dari langkah II sampai V hingga max
dengan dengan error = 0.5. Kemudian
diperoleh nilai penduga parameter
4.6.4. Algoritma untuk menentukan nilai Mean Square Error (MSE)
1. Memasukkan data 2. Mengurutkan data
3. Memasukkan penduga yang telah diperoleh dari metode Maximum
4. Menghitung MSE untuk metode Maximum Likelihood. 5. Menghitung MSE untuk metode Ordinary Least Square.
6. Menentukan penduga lebih baik dengan melihat nilai MSE (Mean
Square Error) terkecil.
4.6.5. Algoritma untuk uji Goodness of fit Kolmogorov Smirnov
1. Memasukkan data pasien Leukimia 2. Mengurutkan data pasien Leukimia 3. Membuat Hipotesis
misalkan merupakan fungsi distribusi yang dibutuhkan untuk semua t dari sampai untuk salah satu nilai
4. Menghitung statistik hitungnya dengan memasukkan penduga yang telah diperoleh dari metode Maximum Likelihood dan OLS (Ordinary Least
Square) ke persamaan :
5. Membandingkan statistik hitungnya dengan tabel Kolmogorov Smirnov dengan tingkat signifikan 1- Apabila nilai statistik test T < tabel Kolmogorov-Smirnov maka terima dan sebaliknya.
4.6.6. Implementasi Algoritma ke Progam Komputer
Progam komputer yang digunakan dalam pembahasan skripsi ini dibuat menggunakan paket progam S-Plus. Algoritma yang telah disusun akan dijabarkan ke dalam beberapa progam yang dapat dilihat pada (lampiran 1). Adapun progamnya antara lain :
1. Progam untuk membangkitkan r data dari n data berdistribusi Exponentiated Eksponensial
2. Progam untuk menentukan nilai penduga parameter distribusi Exponentiated Eksponensial pada data tesensor tipe II dengan metode Maximum
Likelihood.
Dengan sub-progam :
2.1 Progam matriks turunan pertama distribusi Exponentiated Eksponensial pada data tesensor tipe II dengan metode Maximum
Likelihood.
2.2 Progam matriks jacobian pertama distribusi Exponentiated Eksponensial pada data tesensor tipe II dengan metode Maximum
Likelihood.
3. Progam untuk menentukan nilai penduga parameter distribusi Exponentiated Eksponensial pada data tersensor tipe II dengan metode Ordinary Least
Square.
3.1 Progam matriks turunan pertama distribusi Exponentiated Eksponensial pada data tersensor tipe II dengan metode Ordinary
Least Square.
3.2 Progam matriks jacobian pertama distribusi Exponentiated Eksponensial pada data tersensor tipe II dengan metode Ordinary
Least Square.
4. Progam utama untuk menentukan nilai Mean Square Error dari metode
Maximum Likelihood dan Ordinary Least Square.
5. Progam untuk menentukan nilai penduga parameter dan nilai Mean Square
Error dari metode Maximum Likelihood dan Ordinary Least Square pada
data pasien Leukimia.
4.7. Penerapan pada Data Tahan Hidup Tersensor Tipe II
Berdasarkan tujuan penyusunan skripsi ini, telah disusun program S-Plus untuk mendapatkan penduga parameter dan dari distribusi Exponentiated Eksponensial data tahan hidup tersensor tipe II dengan menggunakan metode
Maximum Likelihood dan Ordinary Least Square (OLS). Berikut ini akan dibahas
mengenai penerapan program pada data tahan hidup tersensor tipe II.
4.7.1. Penerapan pada Data Simulasi
Dalam penerapan pada sampel simulasi digunakan beberapa data
percobaan yang dibangkitkan sesuai distribusi Exponentiated Eksponensial pada data tersensor tipe II dengan menggunakan progam gen.ee2( ) pada
(lampiran 1,progam 1) dengan adalah parameter bentuk, adalah parameter skala, n adalah banyaknya sampel dan r adalah banyaknya data yang dibangkitkan. Pada pembahasan skripsi ini dipilih data sebagai berikut :
Data 1 adalah data yang dibangkitkan dengan progam gen.ee2(0.8,2,50,50)
yang artinya , , ,
Data 2 adalah data yang dibangkitkan dengan progam gen.ee2(0.8,1,50,50)
yang artinya , , ,
Data 3 adalah data yang dibangkitkan dengan progam gen.ee2(0.4,2,50,50)
yang artinya , , ,
Data 4 adalah data yang dibangkitkan dengan progam gen.ee2(0.4,1,50,50)
yang artinya , , ,
Data 5 adalah data yang dibangkitkan dengan progam gen.ee2(0.8,2,50,45)
yang artinya , , ,
Data 6 adalah data yang dibangkitkan dengan progam gen.ee2(0.4,2,50,45)
yang artinya , , ,
Data 7 adalah data yang dibangkitkan dengan progam gen.ee2(0.4,1,50,50)
yang artinya , , ,
Data 8 adalah data yang dibangkitkan dengan progam gen.ee2(0.8,2,50,40)
yang artinya , , ,
Data 9 adalah data yang dibangkitkan dengan progam gen.ee2(0.4,2,50,40)
yang artinya , , ,
Data 10 adalah data yang dibangkitkan dengan progam
Data 11 adalah data yang dibangkitkan dengan progam
gen.ee2(0.8,2,50,35) yang artinya , , ,
Data 12 adalah data yang dibangkitkan dengan progam
gen.ee2(0.4,2,50,35) yang artinya , , ,
Data 13 adalah data yang dibangkitkan dengan progam
gen.ee2(0.4,1,50,35) yang artinya , , ,
Data 14 adalah data yang dibangkitkan dengan progam
gen.ee2(0.8,2,50,30) yang artinya , , ,
Data 15 adalah data yang dibangkitkan dengan progam
gen.ee2(0.4,2,50,30) yang artinya , , ,
Data 16 adalah data yang dibangkitkan dengan progam
Tabel 4.1 Nilai parameter ,nilai penduga parameter ( , ) dan nilai mse dengan metode Maximum Likelihood dan OLS Sampel
Ke n r
Nilai awal parameter Maximum Likelihood Ordinary Least Square (OLS)
mse Mse 1 50 50 0.8 2 0.9163184 1.977762 0.001398457 1.000202 1.997744 0.00330529 2 0.8 1 0.7546925 1.009376 0.0003318767 0.7069087 1.000029 0.001182718 3 0.4 2 0.3659377 2.00361 0.0006270971 0.3715388 2.000173 0.0004239468 4 0.4 1 0.4241685 1.008648 0.0002100578 0.4109451 0.9998516 0.0000522592 5 50 45 0.8 2 0.9395362 0.5743856 0.09060072 0.7063197 2.000174 0.001328614 6 0.4 2 0.5672164 1.890474 0.0097713 0.2983315 1.996683 0.006284723 7 0.4 1 0.6056184 0.5808292 0.04143656 0.4648476 0.9993871 0.001756528 8 50 40 0.8 2 1.31963 0.818215 0.1043668 0.7667093 1.998282 0.0001439197 9 0.4 2 0.6390672 1.75365 0.02519673 0.4862247 1.999029 0.003227308 10 0.4 1 0.5935541 0.5917582 0.03659213 0.372325 1.000145 0.0004816848 11 50 35 0.8 2 1.076376 0.4130709 0.09858349 0.7383088 1.999091 0.006202398 12 0.4 2 0.6409896 1.622661 0.02887785 0.5473103 1.995987 0.00828267 13 0.4 1 0.76441 0.3379756 0.09563613 0.4246428 0.9995619 0.0003421553 14 50 30 0.8 2 0.9210514 0.5000889 0.02912303 0.5319512 1.931316 0.01439253 15 0.4 2 0.5752592 1.906902 0.01097319 0.3023061 1.996409 0.00792486 16 0.4 1 0.7266251 0.2686743 0.08663328 0.4399284 0.9997128 0.000882549
Nilai pada tabel 4.1 diperoleh dengan menggunakan progam utama untuk menentukan nilai Mean Square Error dari metode
Maximum Likelihood dan Ordinary Least Square (Lampiran 1, Progam 4). Hasil outputnya dapat dilihat pada lampiran 2 (Output
Tabel 4.2 Perbandingan nilai MSE
Sampel ke- MSE MLE MSE OLS P I P II
1 0.001398457 0.00330529 MLE OLS 2 0.0003318767 0.001182718 MLE OLS 3 0.0006270971 0.0004239468 OLS MLE 4 0.0002100578 0.0000522592 OLS MLE 5 0.09060072 0.001328614 OLS MLE 6 0.0097713 0.006284723 OLS MLE 7 0.04143656 0.001756528 OLS MLE 8 0.1043668 0.0001439197 OLS MLE 9 0.02519673 0.003227308 OLS MLE 10 0.03659213 0.0004816848 OLS MLE 11 0.09858349 0.006202398 OLS MLE 12 0.02887785 0.00828267 OLS MLE 13 0.09563613 0.0003421553 OLS MLE 14 0.02912303 0.01439253 OLS MLE 15 0.01097319 0.00792486 OLS MLE 16 0.08663328 0.000882549 OLS MLE Rata-rata MSE 0.041272 0.003513 OLS =87.5% MLE=12.5% MLE=87.5% OLS=12.5% Keterangan :
P I : Posisi nilai MSE urutan pertama (terkecil) P II : Posisi nilai MSE urutan kedua
Dari table 4.2 diperoleh :
1. Melihat nilai rata-rata MSE Ordinary Least Square (OLS) dan Maximum
Exponentiated Eksponensial pada data tersensor tipe II adalah dengan
metode Ordinary Leat Square (OLS). Rata-rata MSE MLE = 0.041272 Rata-rata MSE OLS = 0.003513 Rata-rata MSE OLS < Rata-rata MSE MLE
2. Melihat prosentase menempati nilai MSE terkecil untuk metode Maximum
Likelihood dan Ordinary Least Square (OLS), maka penduga yang lebih
baik untuk parameter distribusi Exponentiated Eksponensial pada data tersensor tipe II adalah dengan menggunakan metode Ordinary Least
Square (OLS) dengan prosentase sebesar 87,5%.
4.7.2 Penerapan pada Data Pasien Leukimia
Untuk penerapan perhitungan, digunakan data yang diperoleh dari
(Freireich et al.,Blood,1963) yaitu data waktu tahan hidup pasien Leukimia.
Pengamatan dilakukan terhadap 21 pasien. Misalkan adalah waktu pengamatan yang dilakukan pada 21 pasien , berdasarkan tipe penyensoran tipe II diperoleh 9 kegagalan pada pasien
Tabel 4.3 Data pasien Leukimia yang masih bertahan
Kegagalan ke- Lifetime
1 6 2 6 3 6 4 7 5 10 6 13 7 16 8 22 9 23
Selanjutnya dicari nilai Mean Square Error dan penduga parameter distribusi Exponentiated Eksponensial pada data tersensor tipe II pasien Leukemia menggunakan metode Maximum Likelihood dan Ordinary Least Square (OLS) dengan progam S-Plus pada (lampiran 1, progam 6). Dan berdasarkan hasil program yang telah dibuat dengan menggunakan S-Plus, dapat diperoleh kesimpulan sebagai berikut :
a. Jumlah sampel n = 21 dengan r-kegagalan sebanyak = 9 dengan metode
Maximum Likelihood diperoleh penduga dan MSE sebagai berikut
(Tabel 4.4).
b. Jumlah sampel n = 21 dengan r-kegagalan sebanyak = 9 dengan metode
Ordinary Least Square (OLS) diperoleh penduga dan MSE sebagai
berikut (Tabel 4.4).
Tabel 4.4 hasil penduga dan nilai MSE pada data pasien leukemia dengan metode
Maximum Likelihood dan Ordinary Least Square (OLS)
Parameter MLE OLS
Nilai penduga MSE Nilai penduga MSE
0.2109925 0.3210319 1.561138 0.09842778
0.5701738 0.04031853
Selanjutnya akan dilakukan pengujian terhadap data waktu pengamatan (ti)
tersebut dengan menggunakan uji kolmogorov smirnov untuk mengetahui distribusi dari data, sehingga dapat dilakukan analisa lebih lanjut sesuai dengan distribusi probabilitasnya. Berikut ini hasil pengujian data waktu pengamatan menggunakan taraf signifikansi 5 %.
H0 : Data waktu pengamatan berdistribusi Exponentiated Eksponensial
H1 :Data waktu pengamatan tidak berdistribusi Exponentiated Eksponensial Tabel 4.5 Tabel perhitungan uji Kolmogorov-Smirnov
MLE OLS KLS MLE KLS OLS 6 21 3 18/21 0.86 0.14 0.993 0.090666 0.853 0.0493 7 18 1 17/18 0.81 0.19 0.9960 0.111915 0.806 0.0780 10 17 1 16/17 0.76 0.24 0.9992 0.178667 0.7592 0.0613 13 16 1 15/16 0.71 0.29 0.9998 0.246639 0.7098 0.0433 16 15 1 14/15 0.66 0.34 0.99992 0.313204 0.6599 0.0268 22 14 1 13/14 0.61 0.39 0.999999 0.436613 0.6099 0.0466 23 13 1 12/13 0.56 0.44 0.999999 0.455623 0.5599 0.0156 Maksimum 0.853 0.0780
Dari tabel diatas dapat diketahui bahwa Dengan metode Maximum Likelihood : 0.436
statistik hitung (T) : 0.853 Daerah kritis : T >
keputusan : tolak
Dengan metode Ordinary Least Square : 0.436
statistik hitung (T) : 0.0780 Daerah kritis : T <
Dari hasil metode Ordinary Least Square di atas dapat diambil kesimpulan bahwa data tahan hidup ( ) pasien Leukemia berdistribusi Exponentiated Eksponensial.
Melihat nilai MSE Ordinary Least Square (OLS) dan Maximum Likelihood, maka penduga yang lebih baik untuk parameter distribusi Exponentiated Eksponensial pada data tersensor tipe II yaitu pada data pasien Leukimia adalah dengan metode
Ordinary Leat Square (OLS).
Nilai MSE Maximum Likelihood = 0.3210319
Nilai MSE Ordinary Least Square (OLS) = 0.09842778 Nilai MSE Ordinary Least Square (OLS) < Nilai MSE Maximum Likelihood.
48
BAB V
KESIMPULAN DAN SARAN
5.1. KESIMPULAN
Berdasarkan pembahasan dan hasil penerapan data, dapat ditarik kesimpulan bahwa :
1. Penduga parameter distribusi Exponentiated Eksponensial pada data tersensor tipe II yaitu 16 data simulasi dan data tahan hidup pasien Leukimia dengan metode Maximum Likelihood diperoleh dengan cara menyelesaikan sistem persamaan implisit :
dan
dengan metode numerik. Salah satu metode yang dapat digunakan adalah metode Newton-Raphson.
2. Penduga parameter distribusi Exponentiated Eksponensial pada data tersensor tipe II yaitu 16 data simulasi dan data tahan hidup pasien Leukimia dengan metode Ordinary Least Square (OLS), diperoleh dengan cara menyelesaikan sistem persamaan implisit :
dan
dengan metode numerik. Salah satu metode yang dapat digunakan adalah metode Newton-Raphson.
3. Berdasarkan studi perbandingan pada 16 kali data simulasi didapatkan bahwa penduga yang lebih baik untuk parameter distribusi Exponentiated Eksponensial pada data tersensor tipe II berdasarkan kriteria MSE adalah dengan metode Ordinary Least Square (OLS). Nilai rata-rata MSE metode OLS yaitu 0,003513 < nilai rata-rata MSE metode Maximum Likelihood yaitu 0,041272, dan prosentase menempati nilai MSE terkecil untuk metode
Ordinary Least Square (OLS) sebesar 87,5% sedangkan untuk metode
Maximum Likelihood sebesar 12,5%. Kemudian pada data waktu tahan hidup
pasien Leukimia didapatkan bahwa penduga yang lebih baik untuk parameter distribusi Exponentiated Eksponensial pada data tersensor tipe II berdasarkan kriteria MSE adalah dengan metode Ordinary Least Square (OLS). nilai MSE Ordinary Least Square (OLS) adalah 0.09842778 dan Nilai MSE metode Maximum Likelihood adalah 0.3210319 sehingga Nilai MSE metode
5.2. SARAN
Estimasi parameter Distribusi Exponentiated Eksponensial pada data tersensor tipe II untuk pembahasan skripsi ini hanya menggunakan metode
Maximum Likelihood dan Ordinary Least Square (OLS). Untuk pengembangan
lebih lanjut dapat menggunakan penduga lainnya yaitu metode moment, metode L-moment, metode Weight Least Square (WLS), metode Percentiles
DAFTAR PUSTAKA
1. Al-fawzan, M.A, 2000, Methods for estimating the parameters of the
Weibull Distribution , King Abdul Aziz City for science and Tecnology ,
Riyadh – Saudi Arabia.
2. Conover, W.J ,1980 ,Practical Nonparametric Statistics Second Edition , John Wiley & Sons , New York.
3. Everitt, Brian S., 1994 , A Handbook of Statistical Analyses Using S-plus, Chapman & Hall, London.
4. Graybill, F. A., Mood, A. M., and Boes, D. C., 1963, Introduction to The
Theory of Statistics, Third Edition, McGraw-Hill, Inc, Japan.
5. Gupta, R. D. And Kundu, D. 1999, Generalized Exponential Distribution,
Australian and New Zealand journal of Statistics, 41(2), 173-188.
6. Gupta, R. D. And Kundu, D. 2000, Generalized Exponential Distribution: Different Method of Estimations, journal of Statistical Computations and
Simulations, 69(4), 315-337.
7. Roussas, G. George, 1973, A First Course in Mathematical Statistics, Melya Publications, inc, Taiwan.
8. Hogg, R. V., and Craig, A. T. 1995, Introduction to Mathematical
Statistics,Fifth Edition, Prentice-Hall, Inc. New York.
9. Kleinbaum, D. G. and Klein, M., 2005, Survival Analysis A Self-Learning
Text ,Second Edition, Springer Science Business Media, Inc, New York.
10. Lawless, J. F., 1982, Statistical Models and Method for Lifetime Data. John Wiley and Sons, Inc. New York.