Kontrak Perkuliahan. (3 SKS kuliah 1 SKS Tutorial)

Teks penuh

(1)

K

o

n

tr

a

k

K

o

n

tr

a

k

P

e

rk

u

li

a

h

a

n

P

e

rk

u

li

a

h

a

n

F

is

ik

a

F

is

ik

a

II

(3

S

K

S

(3

S

K

S

k

u

li

a

h

k

u

li

a

h

1

S

K

S

T

u

to

ri

a

l)

1

S

K

S

T

u

to

ri

a

l)

D

o

se

n

D

o

se

n

P

e

n

g

a

m

p

u

P

e

n

g

a

m

p

u

S

a

h

ru

l

S

a

h

ru

l

H

id

a

y

a

t

H

id

a

y

a

t

F

is

ik

a

F

is

ik

a

2 0 :0 9

S

a

h

ru

l

S

a

h

ru

l

H

id

a

y

a

t

H

id

a

y

a

t

K

o

m

p

e

te

n

si

K

o

m

p

e

te

n

si

y

a

n

g

y

a

n

g

d

ih

a

ra

p

k

a

n

d

ih

a

ra

p

k

a

n

M

e

to

d

e

M

e

to

d

e

P

e

rk

u

li

a

h

a

n

P

e

rk

u

li

a

h

a

n

M

e

to

d

e

M

e

to

d

e

E

v

a

lu

a

si

E

v

a

lu

a

si

M

a

te

ri

M

a

te

ri

K

u

li

a

h

K

u

li

a

h

R

e

fe

re

n

si

R

e

fe

re

n

si

B

lo

g

:

B

lo

g

:

sa

h

ru

lh

.w

o

rd

p

re

ss

.c

o

sa

h

ru

lh

.w

o

rd

p

re

ss

.c

o

E

m

a

il

:

E

m

a

il

:

sa

h

ru

l@

u

n

p

a

d

.a

c.

sa

h

ru

l@

u

n

p

a

d

.a

c.

H

P

H

P

:

0

8

1

2

2

1

8

8

7

:

0

8

1

2

2

1

8

8

7

(2)

2 0 :0 9

K

O

M

P

E

T

E

N

S

I

K

O

M

P

E

T

E

N

S

I

M

a

h

a

si

sw

a

M

a

h

a

si

sw

a

m

e

n

d

a

p

a

tk

a

n

m

e

n

d

a

p

a

tk

a

n

p

e

m

a

h

a

m

a

n

p

e

m

a

h

a

m

a

n

y

a

n

g

y

a

n

g

k

o

k

o

h

k

o

k

o

h

te

n

ta

n

g

te

n

ta

n

g

k

o

n

se

p

k

o

n

se

p

--k

o

n

se

p

k

o

n

se

p

d

a

sa

r

d

a

sa

r

fi

si

k

a

fi

si

k

a

,,

m

e

m

b

ia

sa

k

a

n

m

e

m

b

ia

sa

k

a

n

b

e

rp

ik

ir

b

e

rp

ik

ir

se

rt

a

se

rt

a

b

e

rt

in

d

a

k

b

e

rt

in

d

a

k

il

m

ia

h

il

m

ia

h

,,

d

a

n

d

a

n

m

e

n

e

ra

p

k

a

n

n

y

a

m

e

n

e

ra

p

k

a

n

n

y

a

p

a

d

a

p

a

d

a

k

e

h

id

u

p

a

n

k

e

h

id

u

p

a

n

se

h

a

ri

se

h

a

ri

--h

a

ri

h

a

ri

d

a

n

d

a

n

p

ro

fe

si

n

y

a

p

ro

fe

si

n

y

a

F

is

ik

a

F

is

ik

a

p

a

d

a

p

a

d

a

k

e

h

id

u

p

a

n

k

e

h

id

u

p

a

n

se

h

a

ri

se

h

a

ri

--h

a

ri

h

a

ri

d

a

n

d

a

n

p

ro

fe

si

n

y

a

p

ro

fe

si

n

y

a

M

e

n

a

n

a

m

k

a

n

M

e

n

a

n

a

m

k

a

n

k

o

n

se

p

k

o

n

se

p

d

a

sa

r

d

a

sa

r

a

n

a

li

sa

a

n

a

li

sa

g

e

ja

la

g

e

ja

la

fi

si

s

fi

si

s

y

a

n

g

y

a

n

g

d

it

e

m

u

k

a

n

d

it

e

m

u

k

a

n

d

a

la

m

d

a

la

m

k

e

h

id

u

p

a

n

k

e

h

id

u

p

a

n

p

ro

fe

si

n

y

a

p

ro

fe

si

n

y

a

M

e

m

a

h

a

m

i

M

e

m

a

h

a

m

i

h

u

k

u

m

h

u

k

u

m

--h

u

k

u

m

h

u

k

u

m

fi

si

k

a

fi

si

k

a

se

b

a

g

a

i

se

b

a

g

a

i

d

a

sa

r

d

a

sa

r

u

n

tu

k

u

n

tu

k

p

e

n

g

e

m

b

a

n

g

a

n

p

e

n

g

e

m

b

a

n

g

a

n

sa

in

sa

in

d

a

n

d

a

n

te

k

n

o

lo

g

i

te

k

n

o

lo

g

i

(3)

2 0 :0 9

M

E

T

O

D

E

P

E

R

K

U

LI

A

H

A

N

M

E

T

O

D

E

P

E

R

K

U

LI

A

H

A

N

S

is

te

m

S

is

te

m

p

e

m

b

e

la

ja

ra

n

p

e

m

b

e

la

ja

ra

n

d

il

a

k

u

k

a

n

d

il

a

k

u

k

a

n

d

e

n

g

a

n

d

e

n

g

a

n

m

e

to

d

e

m

e

to

d

e

ce

ra

m

a

h

ce

ra

m

a

h

d

e

n

g

a

n

d

e

n

g

a

n

m

e

n

g

g

u

n

a

k

a

n

m

e

n

g

g

u

n

a

k

a

n

fa

si

li

ta

s

fa

si

li

ta

s

m

u

lt

im

e

d

ia

m

u

lt

im

e

d

ia

(L

C

D

(L

C

D

p

ro

je

ct

o

r,

p

ro

je

ct

o

r,

p

a

p

a

n

p

a

p

a

n

tu

li

s

tu

li

s))

o

le

h

o

le

h

d

o

se

n

d

o

se

n

F

is

ik

a

F

is

ik

a

La

ti

h

a

n

La

ti

h

a

n

p

e

n

y

e

le

sa

ia

n

p

e

n

y

e

le

sa

ia

n

so

a

l

so

a

l

a

ta

u

a

ta

u

k

a

su

s

k

a

su

s

d

e

n

g

a

n

d

e

n

g

a

n

m

e

to

d

e

m

e

to

d

e

d

is

k

u

si

d

is

k

u

si

d

a

n

d

a

n

ta

n

y

a

ta

n

y

a

ja

w

a

b

ja

w

a

b

P

e

n

g

a

y

a

a

n

P

e

n

g

a

y

a

a

n

m

a

te

ri

m

a

te

ri

d

il

a

k

u

k

a

n

d

il

a

k

u

k

a

n

d

e

n

g

a

n

d

e

n

g

a

n

m

e

m

b

e

ri

k

a

n

m

e

m

b

e

ri

k

a

n

tu

g

a

s

tu

g

a

s

d

a

n

d

a

n

tu

to

ri

a

l

tu

to

ri

a

l

o

le

h

o

le

h

D

o

se

n

D

o

se

n

((

11

S

K

S

S

K

S

tu

to

ri

a

l

tu

to

ri

a

l

))

(4)

2 0 :0 9

M

E

T

O

D

E

E

V

A

LU

A

S

I

M

E

T

O

D

E

E

V

A

LU

A

S

I

M

e

to

d

e

M

e

to

d

e

e

v

a

lu

a

si

e

v

a

lu

a

si

d

il

a

k

u

k

a

n

d

il

a

k

u

k

a

n

d

e

n

g

a

n

d

e

n

g

a

n

U

ji

a

n

U

ji

a

n

T

e

n

g

a

h

T

e

n

g

a

h

S

e

m

e

st

e

r

S

e

m

e

st

e

r

d

a

n

d

a

n

U

ji

a

n

U

ji

a

n

A

k

h

ir

A

k

h

ir

S

e

m

e

st

e

r

S

e

m

e

st

e

r..

S

e

la

in

S

e

la

in

it

u

it

u

d

it

a

m

b

a

h

d

it

a

m

b

a

h

d

e

n

g

a

n

d

e

n

g

a

n

k

o

m

p

o

n

e

n

k

o

m

p

o

n

e

n

p

e

n

u

n

ja

n

g

p

e

n

u

n

ja

n

g

d

a

ri

d

a

ri

k

u

is

k

u

is

//t

u

g

a

s

tu

g

a

s..

F

is

ik

a

F

is

ik

a

//t

u

g

a

s

tu

g

a

s..

P

e

n

il

a

ia

n

P

e

n

il

a

ia

n

K

u

is

K

u

is

::

1

5

1

5

%%

T

u

g

a

s

T

u

g

a

s

::

1

5

1

5

%%

U

T

S

U

T

S

::

3

5

3

5

%%

U

A

S

U

A

S

::

3

5

3

5

%%

(5)

2 0 :0 9

M

A

T

E

R

I

K

U

LI

A

H

M

A

T

E

R

I

K

U

LI

A

H

1

.

1

.

P

e

n

d

a

h

u

lu

a

n

P

e

n

d

a

h

u

lu

a

n

,,

V

e

kt

o

r

V

e

kt

o

r

2

.

2

.

K

in

e

m

a

ti

ka

K

in

e

m

a

ti

ka

((G

e

ra

k

G

e

ra

k

d

a

la

m

d

a

la

m

11

DD

d

a

n

d

a

n

22

D

)

D

)

3

.

3

.

D

in

a

m

ika

D

in

a

m

ika

P

a

rt

ike

l

P

a

rt

ike

l

(H

u

ku

m

(H

u

ku

m

--h

u

ku

m

h

u

ku

m

G

e

ra

k)

G

e

ra

k)

4

.

4

.

K

e

rj

a

K

e

rj

a

d

a

n

d

a

n

E

n

e

rg

i

E

n

e

rg

i

F

is

ik

a

F

is

ik

a

4

.

4

.

K

e

rj

a

K

e

rj

a

d

a

n

d

a

n

E

n

e

rg

i

E

n

e

rg

i

5

.

5

.

M

o

m

e

n

tu

m

M

o

m

e

n

tu

m

Li

n

ie

r

Li

n

ie

r

6

.

6

.

D

in

a

m

ika

D

in

a

m

ika

R

o

ta

si

R

o

ta

si

7

.

7

.

G

e

ra

k

G

e

ra

k

O

si

la

si

O

si

la

si

8

.

8

.

F

e

n

o

m

e

n

a

F

e

n

o

m

e

n

a

G

e

lo

m

b

a

n

g

G

e

lo

m

b

a

n

g

9

.

9

.

G

e

lo

m

b

a

n

g

G

e

lo

m

b

a

n

g

B

u

n

y

i

B

u

n

y

i

1

0

.

1

0

.

In

te

rf

e

re

n

si

In

te

rf

e

re

n

si

1

1

.

1

1

.

D

if

ra

ks

i

D

if

ra

ks

i

(6)

2 0 :0 9

R

E

F

E

R

E

N

S

I

R

E

F

E

R

E

N

S

I

H

a

ll

id

a

y

H

a

ll

id

a

y

R

e

sn

ic

k

R

e

sn

ic

k

,,

F

u

n

d

a

m

e

n

ta

ls

F

u

n

d

a

m

e

n

ta

ls

o

f

o

f

P

h

y

si

cs

P

h

y

si

cs

((

A

d

a

A

d

a

te

rj

e

m

a

h

n

y

a

te

rj

e

m

a

h

n

y

a

,,

p

e

n

e

rb

it

p

e

n

e

rb

it

E

rl

a

n

g

g

a

E

rl

a

n

g

g

a

))

P

a

u

l

P

a

u

l

AA

..

T

ip

le

r

T

ip

le

r,,

P

h

y

si

cs

P

h

y

si

cs

fo

r

fo

r

S

ci

e

n

ti

st

s

S

ci

e

n

ti

st

s

a

n

d

a

n

d

E

n

g

in

e

e

rs

,

E

n

g

in

e

e

rs

,

F

is

ik

a

F

is

ik

a

P

a

u

l

P

a

u

l

AA

..

T

ip

le

r

T

ip

le

r,,

P

h

y

si

cs

P

h

y

si

cs

fo

r

fo

r

S

ci

e

n

ti

st

s

S

ci

e

n

ti

st

s

a

n

d

a

n

d

E

n

g

in

e

e

rs

,

E

n

g

in

e

e

rs

,

((

A

d

a

A

d

a

te

rj

e

m

a

h

n

y

a

te

rj

e

m

a

h

n

y

a

,,

p

e

n

e

rb

it

p

e

n

e

rb

it

E

rl

a

n

g

g

a

E

rl

a

n

g

g

a

))

S

e

rw

a

y

S

e

rw

a

y

A

n

d

A

n

d

Je

w

e

tt

,

Je

w

e

tt

,

P

h

y

si

cs

P

h

y

si

cs

F

o

r

F

o

r

S

ci

e

n

ti

st

s

S

ci

e

n

ti

st

s

A

n

d

A

n

d

E

n

g

in

e

e

rs

E

n

g

in

e

e

rs

88

thth

e

d

it

io

n

,

e

d

it

io

n

,

U

n

iv

e

rs

it

y

U

n

iv

e

rs

it

y

o

f

o

f

C

a

li

fo

rn

ia

,

C

a

li

fo

rn

ia

,

Lo

s

Lo

s

A

n

g

e

le

s,

A

n

g

e

le

s,

2

0

1

0

2

0

1

0

(7)

2 0 :0 9

R

u

a

n

g

R

u

a

n

g

Li

n

g

ku

p

Li

n

g

ku

p

Il

m

u

Il

m

u

F

is

ika

F

is

ika

K a ji a n K e il m u a n F is ik a S tr u k tu r S tr u k tu r m a te ri m a te ri G e ja la G e ja la A la m A la m S is te m S is te m A la m A la m S is te m S is te m R e k a y a sa R e k a y a sa S is te m S is te m La in La in In te ra k si F u n d a m e n ta l Z a t p a d a t M o le k u l A to m In ti P a rt ik e l E le m e n te r d ll C a h a y a A k u st ik d ll . B u m i A tm o sf e r K e h id u p a n , d ll . R e a k to r n u k li r, d ll .

F

is

ik

a

F

is

ik

a

P e ra n g k a t K e il m u a n F is ik a D is k ri p s i D is k ri p s i k e a d a a n k e a d a a n d a n d a n In te ra k s i In te ra k s i M o d e l M o d e l In te ra k s i In te ra k s i D is k ri p si M a k ro sk o p ik D is k ri p si M ik ro sk o p ik M e k a n ik a T e rm o d in a m ik a G e lo m b a n g M e k a n ik a K u a n tu m M e k a n ik a S ta ti st ik In te ra k si g ra v it a si In te ra k si e le k tr o m a g n e ti k In te ra k si k u a t In te ra k si le m a h K a ji a n K e il m u a n F is ik a

(8)

2 0 :0 9

••

F

is

ik

a

F

is

ik

a

m

e

ru

p

a

k

a

n

m

e

ru

p

a

k

a

n

il

m

u

il

m

u

p

e

n

g

e

ta

h

u

a

n

p

e

n

g

e

ta

h

u

a

n

d

a

sa

r

d

a

sa

r

y

a

n

g

y

a

n

g

m

e

m

p

e

la

ja

ri

m

e

m

p

e

la

ja

ri

si

fa

t

si

fa

t--si

fa

t

si

fa

t

m

a

te

ri

m

a

te

ri

d

a

n

d

a

n

in

te

ra

k

si

n

y

a

in

te

ra

k

si

n

y

a

, ,

b

a

ik

b

a

ik

in

te

ra

k

si

in

te

ra

k

si

a

n

ta

r

a

n

ta

r

m

a

te

ri

m

a

te

ri

a

ta

u

a

ta

u

A

p

a

k

a

h

A

p

a

k

a

h

F

is

ik

a

F

is

ik

a

ItuItu

??

F

is

ik

a

F

is

ik

a

in

te

ra

k

si

n

y

a

in

te

ra

k

si

n

y

a

, ,

b

a

ik

b

a

ik

in

te

ra

k

si

in

te

ra

k

si

a

n

ta

r

a

n

ta

r

m

a

te

ri

m

a

te

ri

a

ta

u

a

ta

u

d

e

n

g

a

n

d

e

n

g

a

n

ra

d

ia

si

ra

d

ia

si

..

••

F

is

ik

a

F

is

ik

a

m

e

ru

p

a

k

a

n

m

e

ru

p

a

k

a

n

il

m

u

il

m

u

p

e

n

g

e

ta

h

u

a

n

p

e

n

g

e

ta

h

u

a

n

y

a

n

g

y

a

n

g

d

id

a

sa

rk

a

n

d

id

a

sa

rk

a

n

p

a

d

a

p

a

d

a

p

e

n

g

a

m

a

ta

n

p

e

n

g

a

m

a

ta

n

e

k

sp

e

ri

m

e

n

ta

l

e

k

sp

e

ri

m

e

n

ta

l

d

a

n

d

a

n

p

e

n

g

u

k

u

ra

n

p

e

n

g

u

k

u

ra

n

k

u

a

n

ti

ta

ti

f

k

u

a

n

ti

ta

ti

f

((

M

e

to

d

e

M

e

to

d

e

Il

m

ia

h

Il

m

ia

h

).

).

(9)

2 0 :0 9

V

E

K

T

O

R

V

E

K

T

O

R

P

o

k

o

k

P

o

k

o

k

B

a

h

a

sa

n

B

a

h

a

sa

n

D

e

fi

n

is

i

V

e

k

to

r

D

e

fi

n

is

i

V

e

k

to

r

P

e

n

ju

m

la

h

a

n

v

e

k

to

r

P

e

n

ju

m

la

h

a

n

v

e

k

to

r

V

e

k

to

r

S

a

tu

a

n

V

e

k

to

r

S

a

tu

a

n

P

e

n

ju

m

la

h

a

n

v

e

k

to

r

se

ca

ra

a

n

a

li

ti

s

P

e

n

ju

m

la

h

a

n

v

e

k

to

r

se

ca

ra

a

n

a

li

ti

s

S

u

b

S

u

b

P

o

k

o

k

P

o

k

o

k

B

a

h

a

sa

n

B

a

h

a

sa

n

::

P

e

rk

a

li

a

n

S

k

a

la

r

P

e

rk

a

li

a

n

S

k

a

la

r

P

e

rk

a

li

a

n

V

e

k

to

r

P

e

rk

a

li

a

n

V

e

k

to

r

S

a

sa

ra

n

S

a

sa

ra

n

P

e

m

b

e

la

ja

ra

n

P

e

m

b

e

la

ja

ra

n

::

M

a

h

a

si

sw

a

m

a

m

p

u

m

e

M

a

h

a

si

sw

a

m

a

m

p

u

m

e

m

b

e

d

a

k

a

n

m

b

e

d

a

k

a

n

b

e

sa

r

v

e

k

to

r

b

e

sa

r

v

e

k

to

r

d

a

n

d

a

n

sk

a

la

r

sk

a

la

r,

m

e

n

e

n

tu

k

a

n

v

e

k

to

r

sa

tu

a

n

,

m

e

n

e

n

tu

k

a

n

v

e

k

to

r

sa

tu

a

n

M

a

h

a

si

sw

a

m

a

m

p

u

m

e

n

y

e

le

sa

ik

a

n

o

p

e

ra

si

M

a

h

a

si

sw

a

m

a

m

p

u

m

e

n

y

e

le

sa

ik

a

n

o

p

e

ra

si

--o

p

e

ra

si

v

e

k

to

r

o

p

e

ra

si

v

e

k

to

r

(10)

2 0 :0 9

F

is

ik

a

F

is

ik

a

V

E

K

T

O

R

V

E

K

T

O

R

D

e

fi

n

is

i

V

e

k

to

r

D

e

fi

n

is

i

V

e

k

to

r

S

e

b

u

a

h

b

e

sa

ra

n

v

e

k

to

r

d

a

p

a

t

d

in

y

a

ta

k

a

n

o

le

h

h

u

ru

f

d

i

ce

ta

k

te

b

a

l

(m

is

a

l

AA

)

a

ta

u

d

ib

e

ri

ta

n

d

a

p

a

n

a

h

d

i

a

ta

s

h

u

ru

f

(m

is

a

l

)

B

e

sa

ra

n

v

e

k

to

r

a

d

a

la

h

b

e

sa

ra

n

y

a

n

g

te

rd

ir

i

d

a

ri

d

u

a

v

a

ri

a

b

e

l,

y

a

it

u

b

e

sa

r

d

a

n

a

ra

h

.

C

o

n

to

h

d

a

ri

b

e

sa

ra

n

v

e

k

to

r

a

d

a

la

h

p

e

rp

in

d

a

h

a

n

p

e

rp

in

d

a

h

a

n

.

A

r

a b R

P

e

rp

in

d

a

h

a

n

d

a

ri

a

k

e

b

d

in

y

a

ta

k

a

n

o

le

h

v

e

k

to

r

RR

te

b

a

l

(m

is

a

l

AA

)

a

ta

u

d

ib

e

ri

ta

n

d

a

p

a

n

a

h

d

i

a

ta

s

h

u

ru

f

(m

is

a

l

)

D

a

la

m

h

a

n

d

o

u

t

in

i

se

b

u

a

h

b

e

sa

ra

n

v

e

k

to

r

d

in

y

a

ta

k

a

n

o

le

h

h

u

ru

f

y

a

n

g

d

ic

e

ta

k

te

b

a

l.

A

r

(11)

2 0 :0 9

F

is

ik

a

F

is

ik

a

V

E

K

T

O

R

V

E

K

T

O

R

O

p

e

ra

si

O

p

e

ra

si

P

e

n

ju

m

la

h

a

n

P

e

n

ju

m

la

h

a

n

V

e

k

to

r

V

e

k

to

r

P

e

n

ju

m

la

h

a

n

v

e

k

to

r

RR

y

a

n

g

m

e

n

y

a

ta

k

a

n

p

e

rp

in

d

a

h

a

n

a

k

e

b

d

a

n

v

e

k

to

r

SS

y

a

n

g

m

e

n

y

a

ta

k

a

n

p

e

rp

in

d

a

h

a

n

b

k

e

c

m

e

n

g

h

a

si

lk

a

n

v

e

k

to

r

TT

y

a

n

g

m

e

n

y

a

ta

k

a

n

p

e

rp

in

d

a

h

a

n

a

k

e

c.

C

a

ra

m

e

n

ju

m

la

h

k

a

n

d

u

a

b

u

a

h

v

e

k

to

r

d

e

n

g

a

n

m

e

m

p

e

rt

e

m

u

k

a

n

u

ju

n

g

v

e

k

to

r

p

e

rt

a

m

a

,

v

e

k

to

r

RR

,

d

e

n

g

a

n

p

a

n

g

k

a

l

v

e

k

to

r

k

e

d

u

a

b c a R S T T = R + S

u

ju

n

g

v

e

k

to

r

p

e

rt

a

m

a

,

v

e

k

to

r

RR

,

d

e

n

g

a

n

p

a

n

g

k

a

l

v

e

k

to

r

k

e

d

u

a

v

e

k

to

r

SS

.

Ma

k

a

re

su

lt

a

n

v

e

k

to

rn

y

a

,

v

e

k

to

r

TT

,

a

d

a

la

h

m

e

n

g

h

u

b

u

n

g

k

a

n

p

a

n

g

k

a

l

v

e

k

to

r

p

e

rt

a

m

a

d

a

n

u

ju

n

g

v

e

k

to

r

k

e

d

u

a

.

(12)

2 0 :0 9

F

is

ik

a

F

is

ik

a

V

E

K

T

O

R

V

E

K

T

O

R

B

E

S

A

R

V

E

K

T

O

R

R

E

S

U

LT

A

N

B

E

S

A

R

V

E

K

T

O

R

R

E

S

U

LT

A

N

Ji

k

a

b

e

sa

r

v

e

k

to

r

RR

d

in

y

a

ta

k

a

n

o

le

h

R

d

a

n

b

e

sa

r

v

e

k

to

r

SS

d

in

y

a

ta

k

a

n

o

le

h

S

,

m

a

k

a

b

e

sa

r

v

e

k

to

r

TT

sa

m

a

d

e

n

g

a

n

:

θ

co

s

2

R

S

S

R

T

2 2

+

=

S

u

d

u

t

θ

m

e

n

y

a

ta

k

a

n

su

d

u

t

y

a

n

g

d

ib

e

n

tu

k

a

n

ta

ra

v

e

k

to

r

RR

d

a

n

v

e

k

to

r

SS

R S T T = R + S θ

(13)

2 0 :0 9

F

is

ik

a

F

is

ik

a

P

E

N

G

U

R

A

N

G

A

N

V

E

K

T

O

R

P

E

N

G

U

R

A

N

G

A

N

V

E

K

T

O

R

U

n

tu

k

p

e

n

g

u

ra

n

g

a

n

v

e

k

to

r,

m

is

a

l

AA

BB

d

a

p

a

t

d

in

y

a

ta

k

a

n

se

b

a

g

a

i

p

e

n

ju

m

la

h

a

n

d

a

ri

AA

+

(-BB

).

V

e

k

to

r

-BB

a

ta

u

n

e

g

a

ti

f

d

a

ri

v

e

k

to

r

BB

a

d

a

la

h

se

b

u

a

h

v

e

k

to

r

y

a

n

g

b

e

sa

rn

y

a

sa

m

a

d

e

n

g

a

n

v

e

k

to

r

BB

te

ta

p

i

a

ra

h

n

y

a

b

e

rl

a

w

a

n

a

n

.

V

E

K

T

O

R

V

E

K

T

O

R

A B -B D D = A – B

(14)

C

O

N

T

O

H

C

O

N

T

O

H

S

e

b

u

a

h

m

o

b

il

b

e

rg

e

ra

k

k

e

U

ta

ra

se

ja

u

h

2

0

k

m

k

e

m

u

d

ia

n

b

e

rg

e

ra

k

k

e

B

a

ra

t

se

ja

u

h

4

0

k

m

S

e

la

n

ju

tn

y

a

b

e

rg

e

ra

k

k

e

S

e

la

ta

n

s

e

ja

u

h

1

0

k

m

.

B

e

sa

ra

n

p

e

rp

in

d

a

h

a

n

m

o

b

il

te

rs

e

b

u

t

a

d

a

la

h

:

2 0 :0 9

F

is

ik

a

F

is

ik

a

V

E

K

T

O

R

V

E

K

T

O

R

B

e

sa

ra

n

p

e

rp

in

d

a

h

a

n

m

o

b

il

te

rs

e

b

u

t

a

d

a

la

h

:

N E U 20 km 4 0 km B S 10 km

(15)

2 0 :0 9

F

is

ik

a

F

is

ik

a

V

E

K

T

O

R

V

E

K

T

O

R

4 0 k m 1 0 k m 2 0 k m 1 0 k m A B C

C

O

N

T

O

H

C

O

N

T

O

H

1 0 k m 4 0 k m

Ji

k

a

p

e

rp

in

d

a

h

a

n

p

e

rt

a

m

a

d

in

y

a

ta

k

a

n

v

e

k

to

r

A

,

p

e

rp

in

d

a

h

a

n

k

e

d

u

a

d

in

y

a

ta

k

a

n

v

e

k

to

r

B

,

d

a

n

p

e

rp

in

d

a

h

a

n

k

e

ti

g

a

d

in

y

a

ta

k

a

n

v

e

k

to

r

C

,

m

a

k

a

p

e

rp

in

d

a

h

a

n

to

ta

l

d

in

y

a

ta

k

a

n

v

e

k

to

r

D

.

D

a

ri

g

a

m

b

a

r

d

i

a

ta

s

d

a

p

a

t

d

ik

e

ta

h

u

i

p

a

n

ja

n

g

v

e

k

to

r

D

a

d

a

la

h

:

m 1 7 1 0 1 0 4 0 2 2 = +

(16)

2 0 :0 9

F

is

ik

a

F

is

ik

a

V

E

K

T

O

R

V

E

K

T

O

R

V

E

K

T

O

R

S

A

T

U

A

N

V

E

K

T

O

R

S

A

T

U

A

N

V

e

k

to

r

sa

tu

a

n

d

id

e

fe

n

is

ik

a

n

se

b

a

g

a

i

:

R R r =

V

e

k

to

r

sa

tu

a

n

rr

ti

d

a

k

m

e

m

p

u

n

y

a

i

d

im

e

n

si

d

a

n

b

e

sa

rn

y

a

d

a

la

h

sa

tu

sa

tu

a

n

.

D

a

ri

p

e

rs

a

m

a

a

n

d

i

a

ta

s,

se

b

u

a

h

b

e

sa

ra

n

v

e

k

to

r

d

a

p

a

t

d

in

y

a

ta

k

a

n

se

b

a

g

a

i

b

e

sa

r

v

e

k

to

r

te

rs

e

b

u

t

d

ik

a

v

e

k

to

r

d

a

p

a

t

d

in

y

a

ta

k

a

n

se

b

a

g

a

i

b

e

sa

r

v

e

k

to

r

te

rs

e

b

u

t

d

ik

a

v

e

k

to

r

sa

tu

a

n

.

V

e

k

to

r

sa

tu

a

n

rr

m

e

n

y

a

ta

k

a

n

a

ra

h

d

a

ri

v

e

k

to

r

RR

T

e

rd

a

p

a

t

v

e

k

to

r

sa

tu

a

n

st

a

n

d

a

r

d

a

la

m

k

o

o

rd

in

a

t

K

a

rt

e

si

a

n

d

m

a

n

a

a

ra

h

-a

ra

h

d

a

ri

m

a

si

n

g

-m

a

si

n

g

su

m

b

u

d

in

y

a

ta

k

a

n

d

a

la

m

v

e

k

to

r

sa

tu

a

n

.

V

e

k

to

r

sa

tu

a

n

ii

m

e

n

y

a

ta

k

a

n

a

ra

h

su

m

b

u

X

p

o

si

ti

f

V

e

k

to

r

sa

tu

a

n

jj

m

e

n

y

a

ta

k

a

n

a

ra

h

su

m

b

u

Y

p

o

si

ti

f

V

e

k

to

r

sa

tu

a

n

kk

m

e

n

y

a

ta

k

a

n

a

ra

h

su

m

b

u

Z

p

o

si

ti

f

(17)

2 0 :0 9

F

is

ik

a

F

is

ik

a

P

e

n

u

li

sa

n

P

e

n

u

li

sa

n

V

e

k

to

r

V

e

k

to

r

SS

e

ca

ra

e

ca

ra

A

n

a

li

ti

s

A

n

a

li

ti

s

R R y R z 2 z 2 y 2 x R R R R + + =

V

e

k

to

r

RR

d

in

y

a

ta

k

a

n

o

le

h

:

RR

=

R

x

ii

+

R

y

jj

+

R

z

kk

B

e

sa

r

v

e

k

to

r

RR

a

d

a

la

h

:

R x

S

e

ti

a

p

v

e

k

to

r

d

a

p

a

t

d

in

y

a

ta

k

a

n

d

a

la

m

b

e

n

tu

k

p

e

n

ju

m

la

h

a

n

d

a

ri

v

e

k

to

r

k

o

m

p

o

n

e

n

m

a

si

n

g

-m

a

si

n

g

su

m

b

u

k

o

o

rd

in

a

t.

(18)

2 0 :0 9

F

is

ik

a

F

is

ik

a

V

E

K

T

O

R

V

E

K

T

O

R

S e b u a h v e k to r p e rp in d a h a n d a ri ti ti k (2 ,2 ) k e ti ti k (-2 ,5 ). T e n tu k a n : a . V e k to r p e rp in d a h a n d in y a ta k a n se ca ra a n a li ti s b . S u d u t y a n g d ib e n tu k v e k to r te rs e b u t d e n g a n su m b u X c. P a n ja n g v e k to r Ja w a b : (-2 ,5 ) y

C

O

N

T

O

H

C

O

N

T

O

H

Ja w a b : (2 ,2 ) (-2 ,5 ) x V e k to r p e rp in d a h a n : R = ( x uju n g – x pa n g k a l ) i + (y u ju n g – y pa n g k a l ) j R = (-2 – 2 ) i + (5 – 2 ) j = -4 i + 3 j p a n g k a l u ju n g θ Rx Ry a .

(19)

2 0 :0 9

F

is

ik

a

F

is

ik

a

V

E

K

T

O

R

V

E

K

T

O

R

(2 ,2 ) (-2 ,5 ) x y p a n g k a l u ju n g θ Ry

C

O

N

T

O

H

C

O

N

T

O

H

o x y R R 1 4 3 4 3 ta n ta n 1 1 =       − = = − −

θ

Rx b . B e sa r v e k to r R = 5 4 3 R R 2 2 2 y 2 x = + = + c. sa tu a n S u d u t y a n g d ib e n tu k : A ta u 3 7 ° te rh a d a p su m b u n e g a ti f

(20)

2 0 :0 9

F

is

ik

a

F

is

ik

a

V

E

K

T

O

R

V

E

K

T

O

R

Ji k a d ik e ta h u i se b u a h v e k to r A = x A i + y A j d a n v e k to r B = x B i + y B j , m a k a p e n ju m la h a n v e k to r A + B = ( x A + x B ) i + ( y A + y B ) j . A ta u s e ca ra u m u m j ik a m e n ju m la h k a n n b u a h v e k to r b e rl a k u : R = ( x 0 + … + x i + … + x n ) i + ( y 0 + … + y i + … + y n ) j

P

e

n

ju

m

la

h

a

n

P

e

n

ju

m

la

h

a

n

V

e

kt

o

r

V

e

kt

o

r

C

a

ra

C

a

ra

A

n

a

li

ti

s

A

n

a

li

ti

s

x A x B y A y B A B x A + x B A B y A + y B

(21)

2 0 :0 9

F

is

ik

a

F

is

ik

a

V

E

K

T

O

R

V

E

K

T

O

R

D ik e ta h u i d u a b u a h v e k to r. A = 3 i + 2 j B = 2 i − 4 j T e n tu k a n : a. A + B d a n  A + B  -B A −−−− B

C

O

N

T

O

H

C

O

N

T

O

H

a . A + B d a n  A + B  b . A − B d a n  A − B  Ja w a b : a . A + B = 3 i + 2 j + 2 i − 4 j = 5 i − 2 j  A + B  =

2

9

)

2

(

5

2 2

=

+

b . A − B = 3 i + 2 j − (2 i − 4 j ) = i + 6 j  A − B  =

3

7

6

1

2 2

=

+

A B A −−−− B

(22)

2 0 :0 9

F

is

ik

a

F

is

ik

a

V

E

K

T

O

R

V

E

K

T

O

R

1 . N y a ta k a n se b u a h v e k to r y a n g m e m p u n y a i b e sa r 4 s a tu a n d a n a ra h n y a 6 0 o d a ri su m b u X p o si ti f se ca ra a n a li ti s d a n te n tu k a n v e k to r sa tu a n n y a ! 2 . S e b u a h b e n d a b e rg e ra k d a ri ti ti k (1 ,2 )m k e ti ti k (5 ,0 )m . T e n tu k a n : a . V e k to r p e rp in d a h a n b e n d a te rs e b u t

S

O

A

L

LA

T

IH

A

N

S

O

A

L

LA

T

IH

A

N

a . V e k to r p e rp in d a h a n b e n d a te rs e b u t b . J a ra k p e rp in d a h a n c. A ra h d a ri v e k to r p e rp in d a h a n b e n d a te rs e b u t d in y a ta k a n o le h v e k to r sa tu a n n y a 3 . D ik e ta h u i A = 3 i + 4 j . T e n tu k a n k o n st a n ta s k a la r c se h in g g a b e rl a k u c A = 1 0 s a tu a n ! 4 . D ik e ta h u i A = 2 i + 4 j , B = -7 i , d a n C = 8 j . T e n tu k a n : a . A + B -C b .  A + B + C 

(23)

2 0 :0 9

F

is

ik

a

F

is

ik

a

P

E

R

K

A

LI

A

N

V

E

K

T

O

R

P

E

R

K

A

LI

A

N

V

E

K

T

O

R

P

e

rk

a

li

a

n

P

e

rk

a

li

a

n

S

k

a

la

r

S

k

a

la

r

P e rk a li a n sk a la r a ta u ju g a se ri n g d is e b u t p e rk a li a n ti ti k d a ri d u a b u a h v e k to r m e n g h a si lk a n b e sa ra n sk a la r d i m a n a b e rl a k u : A . B = A B c o s θ Ji k a d ik e ta h u i A = a i + a j + a k d a n B = b i + b j + b k , m a k a : Ji k a d ik e ta h u i A = a x i + a y j + a z k d a n B = b x i + b y j + b z k , m a k a : A . B = a x b x + a y b y + a z b z C o n to h b e sa ra n h a si l p e rk a li a n sk a la r a d a la h u sa h a , e n e rg i p o te n si a l, fl u k s m a g n e t, d a n la in -l a in . A B θ

P

e

rl

u

P

e

rl

u

d

ii

n

g

a

t

d

ii

n

g

a

t

d

a

la

m

d

a

la

m

p

e

rka

li

a

n

p

e

rka

li

a

n

ti

ti

k

ti

ti

k

::

i

.

i

=

j

.

j

=

k

.

k

=

1

i

.

j

=

j

.

k

=

k

.

i

=

0

(24)

2 0 :0 9

F

is

ik

a

F

is

ik

a

V

E

K

T

O

R

V

E

K

T

O

R

D ik e ta h u i d u a b u a h v e k to r, A = 3 i + 4 j d a n B = 4 i − 2 j . T e n tu k a n su d u t a n ta ra v e k to r A d a n B ! Ja w a b : U n tu k m e n e n tu k a n su d u t a n ta ra v e k to r A d a n B d a p a t m e n g g u n a k a n p e rs a m a a n :

C

O

N

T

O

H

C

O

N

T

O

H

A B c o s B. A = θ A B θ p e rs a m a a n : A . B = ( 3 i + 4 j ) . (4 i − 2 j ) = 3 .4 + 4 .( -2 ) = 4 B e sa r v e k to r A =

5

4

3

2 2

=

+

B e sa r v e k to r B = 2 0 ) 2 ( 4 2 2 = − +

4

4

2

c

o

s

5

2

0

1

0

5

1

2

5

A

B

θ

=

=

=

=

A

.B

D e n g a n d e m ik ia n θ = 7 9 ,7 o AB

(25)

2 0 :0 9

F

is

ik

a

F

is

ik

a

V

E

K

T

O

R

V

E

K

T

O

R

P e rk a li a n v e k to r a ta u p e rk a li a n si la n g d a ri d u a b u a h v e k to r m e n g h a si lk a n b e sa ra n v e k to r la in d i m a n a b e rl a k u : A × B = C B e sa r v e k to r C a d a la h : C = A B s in θ A ra h v e k to r C se la lu te g a k lu ru s d e n g a n b id a n g y a n g d ib e n tu k o le h

P

e

rk

a

li

a

n

P

e

rk

a

li

a

n

V

e

k

to

r

V

e

k

to

r

A ra h v e k to r C se la lu te g a k lu ru s d e n g a n b id a n g y a n g d ib e n tu k o le h v e k to r A d a n v e k to r B . H a si l A × B ti d a k sa m a d e n g a n B × A . W a la u p u n b e sa r v e k to r h a si l p e rk a li a n si la n g it u sa m a , te ta p i a ra h n y a sa li n g b e rl a w a n a n . B A C = A × B θ B A C ’ = B × A θ C = -C ’

P

e

rl

u

P

e

rl

u

d

ii

n

g

a

t

d

ii

n

g

a

t

d

a

la

m

d

a

la

m

p

e

rka

li

a

n

p

e

rka

li

a

n

si

la

n

g

si

la

n

g

::

i

×

i

=

j

×

j

=

k

×

k

=

0

i

×

j

=

k

;

j

×

k

=

i

;

k

×

i

=

j

j

×

i

=

-k

;

k

×

j

=

-i

;

i

×

k

=

Figur

Memperbarui...

Referensi

Memperbarui...

Related subjects :

Pindai kode QR dengan aplikasi 1PDF
untuk diunduh sekarang

Instal aplikasi 1PDF di